Skip to main content

Gas Sensing and Thermal Transport Through Carbon-Nanotube-Based Nanodevices

  • Chapter
  • First Online:
Design and Applications of Nanomaterials for Sensors

Abstract

Designing nanoscale devices, such as gas sensors and thermal dissipators, is challenging at multiple levels. Exploring their properties through combined experimental and theoretical collaborations is a valuable approach that expands the understanding of their peculiarities and allows for the optimization of the design process. In order to select the most relevant functional molecules for carbon-based gas sensors, and provide the best sensitivity and selectivity possible, we study the electronic transport properties of functionalized carbon nanotubes (CNTs), both through experiments and theoretical calculations. The measurements are carried out both in argon and synthetic air, using CO, NO, and H2S as test cases, with carboxyl-functionalized CNTs. The calculations, performed in the framework of density functional theory, consider both metallic and semi-conducting prototype CNTs, with respective chiralities (6,6) and (7,0), exploring a broader range of functional molecules and gases. The behavior of individual carboxyl-functionalized CNTs deduced from the multiscale results consistently reflect what happens at a larger scale and provides useful insights regarding the experimental results. CNTs are excellent thermal conductors as well and show much promise as heat dissipators in microelectronics. However, in practice, thermal properties of CNTs are affected due to the unavoidable presence of defects and interface with the environment. We investigated these limitations using a multiscale approach. Using molecular dynamics simulations, here we investigate the heat flow across the interface of a (10,10) CNT with various substances, including air and water. We also analyzed computationally the impact of CNT defects on its thermal transport properties using first principles calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ao Z, Jiang Q, Li S (2012) Al-doped graphene for ultrasensitive gas detection. Momentum Press, Highland Park. doi:10.5643/9781606503140

    Google Scholar 

  2. Muñoz E, Lu J, Yakobson BI (2010) Nano Lett 10(5):1652. doi:10.1021/nl904206d

    Google Scholar 

  3. Qiu X (2011) Gas sensors: developments, efficacy and safety. Safety and risk in society series. Nova Science Pub Incorporated

    Google Scholar 

  4. Fam D, Palaniappan A, Tok A, Liedberg B, Moochhala S (2011) Sens Actuators B Chem 157(1):1. doi:10.1016/j.snb.2011.03.040

    Google Scholar 

  5. Charlier JC (2002) Acc Chem Res 35(12):1063. doi:10.1021/ar010166khttp://pubs.acs.org/doi/abs/10.1021/ar010166k

    Google Scholar 

  6. Ayala P, Miyata Y, De Blauwe K, Shiozawa H, Feng Y, Yanagi K, Kramberger C, Silva SRP, Follath R, Kataura H, Pichler T (2009) Phys Rev B 80:205427. doi:10.1103/PhysRevB.80.205427http://link.aps.org/doi/10.1103/PhysRevB.80.205427

    Google Scholar 

  7. Ayala P, Arenal R, Rümmeli M, Rubio A, Pichler T (2010) Carbon 48(3):575. doi:10.1016/j.carbon.2009.10.009

    Google Scholar 

  8. Yao Z, Postma HWC, Balents L, C. Dekker (1999) Nature 402(6759):273. doi:10.1038/46241

    Google Scholar 

  9. Hu L, Hecht DS, Grner G (2004) Nano Lett 4(12):2513. doi:10.1021/nl048435y

    Google Scholar 

  10. Lin X, Rümmeli MH, Gemming T, Pichler T, Valentin D, Ruani G, Taliani C (2007) Carbon 45(1):196. doi:10.1016/j.carbon.2006.06.022

    Google Scholar 

  11. Chen Z, Appenzeller J, Knoch J, Lin Y, Avouris P (2005) Nano Lett 5(7):1497. doi:10.1021/nl0508624

    Google Scholar 

  12. Simon I, Bârsan N, Bauer M, Weimar U (2001) Sens Actuators B Chem 73(1):1. doi:10.1016/S0925-4005(00)00639-0

    Google Scholar 

  13. Sinha N, Ma J, Yeow JT (2006) J Nanosci Nanotechnol 6(3):573. doi:10.1166/jnn.2006.121

    Google Scholar 

  14. Marulanda JM (ed) (2010) Carbon nanotubes. InTech, Rijeka. doi:10.5772/3451

    Google Scholar 

  15. Maeng S (2011) Single-walled carbon nanotube network gas sensor. InTech, Rijeka. doi:10.5772/17884

    Google Scholar 

  16. Mowbray DJ, Morgan C, Thygesen KS (2009) Phys Rev B 79:195431. doi:10.1103/PhysRevB.79.195431

    Google Scholar 

  17. Rouxinol FP, Gelamo RV, Moshkalev SA (2010) Gas sensors based on decorated carbon nanotubes. InTech, Rijeka

    Google Scholar 

  18. García-Lastra JM, Mowbray DJ, Thygesen KS, Rubio A, Jacobsen KW (2010) Phys Rev B 81:245429. doi:10.1103/PhysRevB.81.245429

    Google Scholar 

  19. Mowbray DJ, García-Lastra JM, Thygesen KS, Rubio A, Jacobsen KW (2010) Phys Status Solidi (b) 247(11–12):2678. doi:10.1002/pssb.201000171

    Google Scholar 

  20. Pollack GL (1969) Rev Mod Phys 41:48

    Google Scholar 

  21. Green MS (1954) J Chem Phy 22(3):398

    Google Scholar 

  22. Kubo R, Yokota M, Nakajima S (1957) J Phy Soc Japan 12(11):1203. doi:10.1143/JPSJ.12.1203

    Google Scholar 

  23. Müller-Plathe F (1997) J Chem Phy 106(14):6082. doi:10.1063/1.473271

    Google Scholar 

  24. Kukovecz A, Molnár D, Kordás K, Gingl Z, Moilanen H, Mingesz R, Kónya Z, Mäklin J, Halonen N, Tóth G, Haspel H, Heszler P, Mohl M, Spi A, Roth S, Vajtai R, Ajayan PM, Pouillon Y, Rubio A, Kiricsi I (2010) Phys Status Solidi (c) 7(3–4):1217. doi:10.1002/pssc.200982973

    Google Scholar 

  25. Beecher P, Servati P, Rozhin A, Colli A, Scardaci V, Pisana S, Hasan T, Flewitt AJ, Robertson J, Hsieh GW, Li FM, Nathan A, Ferrari AC, Milne WI (2007) J Appl Phys 102:043710

    Google Scholar 

  26. Mustonen T, Mäklin J, Kordás K, Halonen N, Tóth G, Saukko S, Vähäkangas J, Jantunen H, Kar S, Ajayan PM, Vajtai R, Helisto P, Seppa H, Moilanen H (2008) Phys Rev B 77:125430

    Google Scholar 

  27. Gracia-Espino E, Sala G, Pino F, Halonen N, Luomahaara J, Mäklin J, Tóth G, Kordás K, Jantunen H, Terrones M, Helist P, Seppä H, Ajayan P, Vajtai R (2010) ACS Nano 4:3318

    Google Scholar 

  28. Mott N (1979) Electronic processes in non-crystalline materials, 2nd ed

    Google Scholar 

  29. Skákalová V, Kaiser AB, Woo YS, Roth S (2006) Phys Rev 74:085403. doi:10.1103/PhysRevB.74.085403

    Google Scholar 

  30. García-Lastra JM, Thygesen KS, Strange M, Rubio A (2008) Phys Rev Lett 101:236806. doi:10.1103/PhysRevLett.101.236806

    Google Scholar 

  31. Bahn S, Jacobsen K (2002) Com Sci Eng 4(3):56. doi:10.1109/5992.998641

    Google Scholar 

  32. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) J Phy Conden Matter 14(11):2745

    Google Scholar 

  33. Hall H (1975) Phys A Math Gen 8(2)

    Google Scholar 

  34. Wagner M (1991) Phys Rev B 44(12):6104. doi:10.1103/PhysRevB.44.6104

    Google Scholar 

  35. Thygesen K, Jacobsen K (2005) Chem Phys 319(1–3):111. doi:10.1016/j.chemphys.2005.05.032

    Google Scholar 

  36. Gonze X, Amadon B, Anglade PM, Beuken JM, Bottin F, Boulanger P, Bruneval F, Caliste D, Caracas R, Côté M, Deutsch T, Genovese L, Ghosez P, Giantomassi M, Goedecker S, Hamann D, Hermet P, Jollet F, Jomard G, Leroux S, Mancini M, Mazevet S, Oliveira M, Onida G, Pouillon Y, Rangel T, Rignanese GM, Sangalli D, Shaltaf R, Torrent M, Verstraete M, Zerah G, Zwanziger J (2009) Compu Phys Commun 180(12):2582. doi:10.1016/j.cpc.2009.07.007

    Google Scholar 

  37. Toher C, Filippetti A, Sanvito S, Burke K (2005) Phys Rev Lett 95:146402. doi:10.1103/PhysRevLett.95.146402

    Google Scholar 

  38. Indlekofer KM, Knoch J (2005) Appenzeller Phys Rev B 72:125308. doi:10.1103/PhysRevB.72.125308

    Google Scholar 

  39. Varga K, Pantelides ST (2007) Phys Rev Lett 98:076804. doi:10.1103/PhysRevLett.98.076804

    Google Scholar 

  40. Guo J, Datta S, Lundstrom M, Brink M, McEuen P, Javey A, Dai H, Kim H, McIntyre P (2002) Electron devices meeting. IEDM '02. international. pp. 711–714. doi:10.1109/IEDM.2002.1175937

    Google Scholar 

  41. Guo J, Datta S, Lundstrom M, Anantam MP (2004) Int J Multiscale Comput Eng 2(2):257. doi:10.1615/IntJMultCompEng.v2.i2.60

    Google Scholar 

  42. Koswatta SO, Lundstrom MS, Anantram MP, Nikonov DE (2005) Appl Phys Lett 87(25):253107. doi:10.1063/1.2146065

    Google Scholar 

  43. Shinkarev V, Glushenkov A, Kuvshinov D, Kuvshinov G (2010) Carbon 48(7)

    Google Scholar 

  44. Cariaso O, Walker Jr P (1975) Carbon 13(3):233

    Google Scholar 

  45. Yan R, Liang D, Tsen L, Tay J (2002) Environ Sci Technol 36(20):4460

    Google Scholar 

  46. Xiao Y, Wang S, Wu D, Yuan Q (2008) Separ Purif Technol 59(3):326

    Google Scholar 

  47. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Science 287:622

    Google Scholar 

  48. Collins PG, Bradley K, Ishigami M, Zettl A (2000) Science 287:1801

    Google Scholar 

  49. Li J, Lu Y, Ye Q, Cinke M, Han J, Meyyappan M (2003) Nano Lett 3:929

    Google Scholar 

  50. Bekyarova E, Davis M, Burch T, Itkis ME, Zhao B, Sunshine S, Haddon RC (2004) J Phys Chem B 108:19717

    Google Scholar 

  51. Sayago I, Terradob E, Lafuente E, Horrillo M, Maser W, Benito A, Navarro R, Urriolabeitia E, Martinez M, Gutierrez J (2005) Synth Metals 148:15

    Google Scholar 

  52. Parikh K, Cattanach K, Rao R, Suh DS, Wu A, Manohar SK (2006) Sens Actuators B 113:55

    Google Scholar 

  53. Mäklin J, Mustonen T, Kordás K, Saukko S, Tóth G, Vähäkangas J (2007) Phys Stat Sol (b) 244:4298

    Google Scholar 

  54. Mäklin J, Mustonen T, Halonen N, Tóth G, Kordás K, Vähäkangas J, Moilanen H, Kukovecz A, Kónya Z, Haspel H, Gingl Z, Heszler P, Vajtai R, Ajayan PM (2008) Phys Stat Sol (b) 245(10):2335. doi:10.1002/pssb.200879580

    Google Scholar 

  55. Wongwiriyapan W, Honda SI, Konishi H, Mizuta T, Ikuno T, Ito T, Maekawa T, Suzuki K, Ishikawa H, Oura K, Katayama M (2005) Jpn J Appl Phys 44(L):482

    Google Scholar 

  56. Nguyen HQ, Huh JS (2006) Sens Actuators B 117:426

    Google Scholar 

  57. Lee JH, Kim J, Seo HW, Song JW, Lee ES, Won M, Han CS (2008) Sens Actuators B 129:628

    Google Scholar 

  58. Lucci M, Regoliosi P, Reale A, Carlo AD, Orlanducci S, Tamburri E, Terranova M, Lugli P, Natale CD, DAmico A, Paolesse R (2005) Sens Actuators B 181:111

    Google Scholar 

  59. Lucci M, Reale A, Carlo AD, Orlanducci S, Tamburri E, Terranova M, Davoli I, Natale CD, DAmico A, Paolesse R (2006) Sens Actuators B 118:226

    Google Scholar 

  60. van Wees BJ, van Houten H, Beenakker CWJ, Williamson JG, Kouwenhoven LP, van der Marel D, Foxon CT (1988) Phys Rev Lett 60:848. doi:10.1103/PhysRevLett.60.848

    Google Scholar 

  61. Salvador P, Paizs B, Duran M, Suhai S (2001) J Comput Chem 22(7):765. doi:10.1002/jcc.1042

    Google Scholar 

  62. 62 Pérez Paz A, García-Lastra JM, Markussen T, Thygesen KS, Rubio A (2013) Carbon nanotubes as heat dissipaters in microelectronics. The European Physical Journal B, 86(5) 234: 1–14. DOI:10.1140/epjb/e2013-40113-5

    Google Scholar 

  63. Plimpton S (1995) Comp J Phys 117:1

    Google Scholar 

  64. Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB (2002) J Phys Condens Matter 14(4):783

    Google Scholar 

  65. Brenner DW (1990) Phys Rev B 42:9458. doi:10.1103/PhysRevB.42.9458

    Google Scholar 

  66. Stuart SJ, Tutein AB, Harrison JA (2000) J Chem Phy 112(14):6472. doi:10.1063/1.481208

    Google Scholar 

  67. Cervellera VR, Albertí M, Huarte-Larrañaga F (2008) Int J Quantum Chem 108(10):1714. doi:10.1002/qua.21590

    Google Scholar 

  68. Giannozzi P, Car R, Scoles G (2003) J Chem Phy 118(3):1003. doi:10.1063/1.1536636

    Google Scholar 

  69. Arora G, Sandler SI (2006) J Chem Phy 124(8):084702. doi:10.1063/1.2166373

    Google Scholar 

  70. Bojan MJ, Vernov AV, Steele WA (1992) Langmuir 8(3):901. doi:10.1021/la00039a027

    Google Scholar 

  71. Arab M, Picaud F, Devel M, Ramseyer C, Girardet C (2004) Phys Rev B 69:165401. doi:10.1103/PhysRevB.69.165401

    Google Scholar 

  72. Wu Y, Tepper HL, Voth GA (2006) J Chem Phy 124(2):024503. doi:10.1063/1.2136877

    Google Scholar 

  73. Hockney JWERW (1988) Particle-particle-particle-mesh (P3M) algorithms. Computer simulation using particles. CRC Press

    Google Scholar 

  74. Markussen T, Rurali R, Brandbyge M, Jauho AP (2006) Phys Rev B 74:245313

    Google Scholar 

  75. Mingo N (2006) Phys Rev B 74:125402. doi:10.1103/PhysRevB.74.125402

    Google Scholar 

  76. Berber S, Oshiyama A (2008) Phys Rev B 77:165405. doi:10.1103/PhysRevB.77.165405

    Google Scholar 

  77. Berber S, Oshiyama A (2006) Phy B Condens Matter 376–377:272

    Google Scholar 

  78. Krasheninnikov A, Lehtinen P, Foster A, Nieminen R (2006) Chemi Phy Lett 418(1–3):132

    Google Scholar 

  79. García-Lastra JM, Mowbray DJ, Thygesen KS, Rubio A, Jacobsen KW (2010) Phys Rev B 81:245429. doi:10.1103/PhysRevB.81.245429

    Google Scholar 

  80. Lu AJ, Pan BC (2004) Phys Rev Lett 92:105504. doi:10.1103/PhysRevLett.92.105504

    Google Scholar 

  81. Amorim RG, Fazzio A, Antonelli A, Novaes FD, Silvada AJR (2007) Nano Lett 7(8):2459

    Google Scholar 

  82. Kotakoski J, Krasheninnikov AV, Nordlund K (2006) Phys. Rev. B 74:245420. doi:10.1103/PhysRevB.74.245420

    Google Scholar 

  83. Mingo N, Stewart DA, Broido DA, Srivastava D (2008) Phys Rev B 77:033418

    Google Scholar 

Download references

Acknowledgement

We are grateful to Profs. S. Roth and V. Skakalova for very interesting discussions and helpful insights. The SGI/IZO-SGIker UPV/EHU (Arina cluster), supported by the Development and Innovation - Fondo Social Europeo, MCyT and Basque Government, is gratefully acknowledged for generous allocation of computational resources and high-quality user support, as well as the Red Española de Supercomputación. Y.P. and J.M.G.L. would like to thank the group of K. Thygesen for providing computational resources and assistance in running the transport code of ASE. We acknowledge financial support from the European Union through the FP7 project: “Thermal management with carbon nanotube architectures” (THEMA-CNT, contract number 228539), the European Research Council Advanced Grant DYNamo (ERC-2010-AdG - 267374) and European Commission projects CRONOS (Grant number 280879-2 CRONOS CP-FP7) and POCAONTAS (FP7-PEOPLE-2012-ITN.Project number 316633). We also received financial support from the Spanish Grants FIS2011-65702-C02-01 and PIB2010US-00652, as well as from the Ikerbasque foundation. Y.P. and A.R. acknowledge funding by the Spanish MEC (FIS2007-65702-C02-01), “Grupos Consolidados UPV/EHU del Gobierno Vasco” (IT-319-07 & IT578-13). Y.P. also acknowledges a contract funded by MICINN (PTA2008-0982-I) and ETORTEK-inanoGUNE (2009–2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Pouillon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pouillon, Y. et al. (2014). Gas Sensing and Thermal Transport Through Carbon-Nanotube-Based Nanodevices. In: Seminario, J. (eds) Design and Applications of Nanomaterials for Sensors. Challenges and Advances in Computational Chemistry and Physics, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8848-9_4

Download citation

Publish with us

Policies and ethics