Skip to main content

Distinct Diameter Dependence of Redox Property for Armchair, Zigzag Single-walled, and Double-walled Carbon Nanotubes

  • Chapter
  • First Online:
Design and Applications of Nanomaterials for Sensors

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 16))

Abstract

Multiscale density functional theories (DFTB, PBE, and M06-2X) were used to investigate redox properties, such as ionization potentials (IP), electron affinities (EA), electronegativities (χ), and Fermi levels (E f) for infinite armchair single-walled carbon nanotubes (SWNT) (n,n) (n = 3 − 16), zigzag SWNT (n,0) (n = 5 − 16), as well as double-walled carbon nanotubes (DWNT) (n,n)@(n + 5, n + 5) (n = 3, 5 and 6). These properties show strong and different diameter dependence. With increasing diameter, IPs of armchair SWNTs (n,n) decrease monotonically, while EAs increase monotonically. Although IPs of zigzag SWNTs (n,0) also generally decrease, there is an increase occurring just after (3k, 0) (k = 2, 3, 4, and 5) and shows a group behavior, in which every three neighbourhood (3k, 0), (3k − 1, 0) and (3k − 2, 0) form a group. However, opposite to the armchair SWNTs, the EAs of zigzag SWNTs decrease rapidly with increasing diameter till (11,0) and then gently increase. EAs of the zigzag SWNTs also exhibit a group behavior, yet are not synchronous with IPs. With increasing diameter, the IPs and EAs of both the armchair and zigzag SWNTs approach to approximately 4.7 and 3.9 eV. For the armchair SWNTs electronegativity (χ) and Fermi level (− E f) change very slightly with diameter, while for the zigzag they decrease rapidly till (9,0) and then gently oscillate to the similar levels to those of the armchair. The IPs and EAs for (n,n) @ (n + 5, n + 5) DWNTs have the same trend as armchair SWNTs. It was also found that these DWNTs characterize better redox properties than their constituents. These interesting findings are important for redox chemistry based on CNTs and may offer a new strategy for separation of CNTs. The biomedical implication of SWNT, C60 and Li@C60 was also discussed. Similar to Li@C60, the binding and HOMO analysis shows that SWNT may also be able to well protect DNA bases from radiation.

Submitted to the book “Design and Applications of Nanomaterials for Devices and Sensors” edited by J. Seminario, 2013

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  Google Scholar 

  2. (a) deJN, Lamy Y, Schoots K, Oosterkamp TH (2002) High brightness electron beam from a multi-walled carbon nanotube. Nature 420(6914):393–395; (b) de Heer WA, Châtelain A, Ugarte D (1995) A carbon nanotube field-emission electron source. Science 270(5239):1179–1180

    Google Scholar 

  3. Hansma PK, Cleveland JP, Radmacher M, Walters DA, Hillner PE, Bezanilla M, Fritz M, Vie D, Hansma HG, Prater CB, Massie J, Fukunaga L, Gurley J, Elings V (1994) Tapping mode atomic force microscopy in liquids. Appl Phys Lett 64(13):1738–1740

    Article  Google Scholar 

  4. Ajayan PM (1999) Nanotubes from carbon. Chem Rev 99(7):1787–1800

    Article  Google Scholar 

  5. Wallace PR (1947) The band theory of graphite. Phys Rev 71:622 (Copyright (C) 2009 The American Physical Society).

    Google Scholar 

  6. (a) Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Electronic structure of graphene tubules based on C60. Phys Rev B 46(3):1804; (b) O’Connell, MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma J, Hauge RH, Weisman RB, Smalley RE (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297(5581):593–596

    Google Scholar 

  7. Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, De Rossi D, Rinzler AG, Jaschinski O, Roth S, Kertesz M (1999) Carbon nanotube actuators. Science 284(5418):1340–1344

    Article  Google Scholar 

  8. Zheng M, Diner BA (2004) Solution redox chemistry of carbon nanotubes. J Amer Chem Soc 126(47):15490–15494

    Article  Google Scholar 

  9. (a) Kam NWS, Dai HJ (2005) Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Amer Chem Soc 127:6021–6026; (b) Kam NWS, Liu ZA, Dai HJ (2006) Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew Chem Int Ed 45:577–581; (c) Kam NWS, O’Connell M, Wisdom JA, Dai HJ (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA 102(33):11600–11605; (d) Lin Y, Allard LF, Sun YP (2004) Protein-affinity of single-walled carbon nanotubes in water. J Phys Chem B 108(12):3760–3764; (e) Xu Y, Pehrsson PE, Chen L, Zhao W (2008) Controllable redox reaction of chemically purified dna-single walled carbon nanotube hybrids with hydrogen peroxide. J Amer Chem Soc 130(31):10054–10055

    Google Scholar 

  10. Kim C, Choi YS, Lee SM, Park JT, Kim B, Lee YH (2002) The effect of gas adsorption on the field emission mechanism of carbon nanotubes. J Amer Chem Soc 124:9906–9911

    Article  Google Scholar 

  11. Lu J, Lai L, Luo G, Zhou J, Qin R, Wang D, Wang L, Mei WN, Li G, Gao Z, Nagase S, Yutaka M, Akasaka T, Yu D (2007) Why semiconducting single-walled carbon nanotubes are separated from their metallic counterparts. Small 3(9):1566–1576

    Article  Google Scholar 

  12. Yoon M, Yang S, Wang E, Zhang Z (2007) Charged fullerenes as high-capacity hydrogen storage media. Nano Lett 7(9):2578–2583

    Article  Google Scholar 

  13. Zhou B, Guo W, Tang C (2008) Chemisorption of hydrogen molecules on carbon nanotubes: charging effect from first-principles calculations. Nanotech 19(7):75707

    Article  Google Scholar 

  14. Luo J, Peng LM, Xue ZQ, Wu JL (2002) Density-functional-theory calculations of charged single-walled carbon nanotubes. Phys Rev B 66(11):115415

    Article  Google Scholar 

  15. Zhao J, Balbuena PB (2008) Effect of nanotube length on the aromaticity of single-wall carbon nanotubes. J Phys Chem C 112:3482–3488

    Article  Google Scholar 

  16. Chen D, Wang G, Li J (2006) Interfacial bioelectrochemistry: fabrication, properties and applications of functional nanostructured biointerfaces. J Phys Chem C 111(6):2351–2367

    Article  Google Scholar 

  17. (a) Gooding JJ, Wibowo R, Liu J, Yang W, Losic D, Orbons S, Mearns FJ, Shapter JG, Hibbert DB (2003) Protein electrochemistry using aligned carbon nanotube arrays. Journal of the American Chemical Society 125(30):9006–9007; (b) Yu X, Chattopadhyay D, Galeska I, Papadimitrakopoulos F, Rusling JF (2003) Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes. Electrochem Commun 5(5):408–411

    Google Scholar 

  18. (a) Wang J, Kawde A-N, Musameh M (2003) Carbon-nanotube-modified glassy carbon electrodes for amplified label-free electrochemical detection of DNA hybridization. Analyst 128:5; (b) Wang Y, Bu Y (2007) Noncovalent interactions between cytosine and SWCNT: curvature dependence of complexes via π · π stacking and cooperative CH · π/NH · π. J Phys Chem B 111(23):6520–6526; (c) Wang Y (2008) Theoretical evidence for the stronger ability of thymine to disperse SWCNT than cytosine and adenine: self-stacking of DNA bases vs their cross-stacking with SWCNT. J Phys Chem C 112(37):14297–14305; (d) Sun W, Bu Y, Wang Y (2008) Interaction between glycine/glycine radicals and intrinsic/boron-doped (8,0) single-walled carbon nanotubes: a density functional theory study. J Phys Chem B 112(48):15442–15449; (e) Wang Y, Ai H (2009) Theoretical insights into the interaction mechanism between proteins and SWCNTs: adsorptions of tripeptides GXG on SWCNTs. J Phys Chem B 113(28):9620–9627

    Google Scholar 

  19. Musameh M, Wang J, Merkoci A, Lin Y (2002) Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem Commun 4(10):743–746

    Article  Google Scholar 

  20. Petersen EJ, Tu X, Dizdaroglu M, Zheng M, Nelson BC (2013) Protective roles of single-wall carbon nanotubes in ultrasonication-induced DNA base damage. Small 9:205–208

    Article  Google Scholar 

  21. Johnson ER, Keinan S, Mori-SaÌnchez P, Contreras-GarciÌa J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132(18):6498–6506

    Article  Google Scholar 

  22. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45(23):13244

    Article  Google Scholar 

  23. (a) Delley B (2000) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92(1):508–517; (b) Delley B (2000) From molecules to solids with the DMol[sup 3] approach. J Chem Phys 113(18):7756–7764

    Article  Google Scholar 

  24. Lim SH, Li R, Ji W, Lin J (2007) Effects of nitrogenation on single-walled carbon nanotubes within density functional theory. Phys Rev B 76(19):195406

    Article  Google Scholar 

  25. Buonocore F, Trani F, Ninno D, Matteo AD, Cantele G, Iadonisi G (2008) Ab initio calculations of electron affinity and ionization potential of carbon nanotubes. Nanotechnology 19:25711

    Article  Google Scholar 

  26. Zhou Z, Steigerwald M, Hybertsen M, Brus L, Friesner RA (2004) Electronic structure of tubular aromatic molecules derived from the metallic (5,5) armchair single wall carbon nanotube. J Am Chem Soc 126(11):3597–3607

    Article  Google Scholar 

  27. Zhao J, Han J, Lu JP (2002) Work functions of pristine and alkali-metal intercalated carbon nanotubes and bundles. Phys Rev B 65:193401

    Article  Google Scholar 

  28. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865

    Article  Google Scholar 

  29. Weinert M, Davenport JW (1992) Fractional occupations and density-functional energies and forces. Phys Rev B 45:13709

    Article  Google Scholar 

  30. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, Revision A.02,. Gaussian, Inc., Wallingford CT 2009, Gaussian 09, Revision B.01

    Google Scholar 

  31. Zheng G, Witek H, Bobadova-Parvanova P, Irle S, Musaev DG, Prabhakar R, Morokuma K, Lundberg M, Elstner M, Kohler C, Frauenheim T (2007) Parameter calibration of transition-metal elements for the spin-polarized self-consistent-charge density-functional tight-binding (DFTB) method: Sc, Ti, Fe, Co and Ni. J Chem Theory Comput 3:1349–1367

    Article  Google Scholar 

  32. Wang H, Ceulemans A (2009) Physisorption of adenine DNA nucleosides on zigzag and armchair single-walled carbon nanotubes: a first-principles study. Phys Rev B 79:195419

    Article  Google Scholar 

  33. Matsuda Y, Tahir-Kheli J, Goddard WA I (2010) Definitive band gaps for single-wall carbon nanotubes. J Phys Chem Lett 1:2946–2950

    Article  Google Scholar 

  34. Bulusheva LG, Okotrub AV, Romanov DA, Tomanek D (1998) Electronic structure of (n,0) zigzag carbon nanotubes; cluster and crystal approach. J Phys Chem A 102(6):975–981

    Article  Google Scholar 

  35. (a) Pan BC, Yang WS, Yang J (2000) Formation energies of topological defects in carbon nanotubes. Phys Rev B 62:12652 (Copyright (C) 2009 The American Physical Society); (b) Lu AJ, Pan BC (2004) Nature of single vacancy in achiral carbon nanotubes. Phys Rev Lett 92(10):105504

    Google Scholar 

  36. Nikitin A, Zhang Z, Nilsson A (2009) Energetics of C–H bonds formed at single-walled carbon nanotubes. Nano Lett 9(4):1301–1306

    Article  Google Scholar 

  37. (a) Sun G, Kurti J, Kertesz M, Baughman RH (2003) Dimensional changes as a function of charge injection in single-walled carbon nanotubes. J Amer Chem Soc 124(50):15076–15080; (b) Sun G, Kurti J, Kertesz M, Baughman RH (2003) Variations of the geometries and band gaps of single-walled carbon nanotubes and the effect of charge injection. J Phys Chem B 107(29):6924–6931

    Article  Google Scholar 

  38. Endo M (2003) Graphite intercalation compounds and applications. Oxford University Press.

    Google Scholar 

  39. Brus LE (1983) A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J Chem Phys 79

    Google Scholar 

  40. Ouyang M, Huang J-L, Cheung CL, Lieber CM (2001) Energy gaps in “Metallic” single-walled carbon nanotubes. Science 292(5517):702–705

    Article  Google Scholar 

  41. Blase X, Benedict LX, Shirley EL, Louie SG (1994) Hybridization effects and metallicity in small radius carbon nanotubes. Phys Rev Lett 72:1878 (Copyright (C) 2009 The American Physical Society)

    Google Scholar 

  42. Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput 2(2):364–382

    Article  Google Scholar 

  43. (a) Sun W, Bu Y, Wang Y (2012) Interaction and protection mechanism between Li@C60 and nucleic acid bases (NABs): performance of PM6-DH2 on noncovalent interaction of NABs-Li@C60. J Comput Chem 33(5):490–501; (b) Sun W, Bu Y, Wang Y (2011) On the binding strength sequence for nucleic acid bases and C60 with density functional and dispersion-corrected density functional theories: whether C60 could protect nucleic acid bases from radiation-induced damage. J Phys Chem C 115(8):3220–3228

    Article  Google Scholar 

  44. Orlov VM, Smirnov AN, Varshavsky YM (1976) Ionization potentials and electron-donor ability of nucleic acid babes and their analogues. Tetra Lett 17(48):4377–4378

    Article  Google Scholar 

  45. Lias SG, Bartmess JE, Liebman JF, Holmes JL, Levin RD, Mallard WG (1988) Gas-phase ion and neutral thermochemistry. J Phys Chem Ref Data 17(supplement 1)

    Google Scholar 

  46. Shukla MK, Dubey M, Zakar E, Namburu R, Leszczynski J (2010) Interaction of nucleic acid bases and Watson-Crick base pairs with fullerene: computational study. Chem Phys Lett 493:130–134

    Article  Google Scholar 

  47. (a) Belash IT, Bronnikov AD, Zharikov OV, Palnichenko AV (1990) Effect of the metal concentration on the superconducting properties of lithium-, sodium- and potassium-containing graphite intercalation compounds. Synthetic Metals 36(3):283–302; (b) Guha S, Nakamoto K (2005) Electronic structures and spectral properties of endohedral fullerenes. Coordination Chem Rev 249(9–10):1111–1132; (c) Bethune DS, Johnson RD, Salem JR, de Vries MS, Yannoni CS (1993) Atoms in carbon cages: the structure and properties of endohedral fullerenes. Nature 366(6451):123–128

    Google Scholar 

  48. (a) Broclawik E, Eilmes A (1998) Density functional study of endohedral complexes M@C60 (M = Li, Na, K, Be, Mg, Ca, La, B, Al): electronic properties, ionization potentials, and electron affinities. J Chem Phys 108(9):3498–3503; (b) Chang CM, Jalbout AF (2009) Adsorption of Polar Molecules on Rb/Sr@C60. A theoretical analysis. J Comput Theor Nanosci 6(7):1487–1490; (c) Dunlap BI, Ballester JL, Schmidt PP (1992) Interactions between fullerene (C60) and endohedral alkali atoms. J Phys Chem 96(24):9781–9787

    Google Scholar 

  49. Lu T (2010) Multiwfn: a multifunctional wavefunction analyzer. Version 1.5 http://Multiwfn.codeplex.com

  50. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  Google Scholar 

Download references

Acknowledgement

This work at Shandong University (Sun and Bu) is supported by NSFC (20633060, 20973101, 21373123), the Independent Innovation Foundation of Shandong University (2009JC020), and NCET. The project described here was also supported by the National Institute of General Medical of the National Institute of Health (SC3GM082324) (Wang at Albany State University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxiang Bu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sun, W., Bu, Y., Wang, Y. (2014). Distinct Diameter Dependence of Redox Property for Armchair, Zigzag Single-walled, and Double-walled Carbon Nanotubes. In: Seminario, J. (eds) Design and Applications of Nanomaterials for Sensors. Challenges and Advances in Computational Chemistry and Physics, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8848-9_2

Download citation

Publish with us

Policies and ethics