Skip to main content

Proteomics of Lactic Acid Bacteria

  • Chapter
  • First Online:
Lactic Acid Bacteria
  • 3541 Accesses

Abstract

In this chapter, the proteomics analysis of lactic acid bacteria (LAB) focused on the whole proteins of LAB and the response to environmental stress or growth condition was reviewed. Following the development of morden biological technology, more and more LAB genome has been finished. However, the efficient mining of these data requires the development of functional genomic tools, of which proteomic studies are one of the most important. LAB proteomic studies investigate the global protein expression profile of a LAB isolate rather than the behaviour of a single protein. The procedure includes protein separation and protein identification. Two-dimensional electrophoresis (2-DE), liquid chromatography (LC) and mass spectrometry (MS) are the major techniques used in LAB proteome studies. A comprehensive description of LAB proteins and analysis of their expression pattern under different environmental conditions would significantly increase our understanding of the metabolic mechanisms underlying the growth performance. Further, the LAB proteome information is necessary to achieve the highest quality and safest products in food fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Accolas JP, Blocques R, Didiene R, Regnier J. Propriétés acidifiantes des bactéries lactiques thermophiles en relation avec la fabrication du yoghourt. Le Lait. 1977;57:1–23.

    CAS  Google Scholar 

  • Ahrné S, Molin G, Nobaek S, Jeppsson B, Adlerberth I, Wold AE. The normal lactobacillus flora of healthy human rectal and oral mucosa. J Appl Microbiol. 1998;85:88–94.

    PubMed  Google Scholar 

  • Aires J, Anglade P, Baraige F, Zagorec M, Champomier-Vergès MC, Butel MJ. Proteomic comparison of the cytosolic proteins of three Bifidobacterium longum human isolates and B. longum NCC2705. BMC Microbiol. 2010;10:29.

    PubMed Central  PubMed  Google Scholar 

  • Ananta E, Knorr D. Evidence on the role of protein biosynthesis in the induction of heat tolerance of Lactobacillus rhamnosus GG by pressure pre-treatment. Int J Food Microbiol. 2004;96:307–13.

    PubMed  CAS  Google Scholar 

  • Anderson NG, Anderson NL. Twenty years of two-dimensional electrophoresis: Past, present and future. Electrophoresis. 1996;17:443–53.

    PubMed  CAS  Google Scholar 

  • Anglade P, Demey E, Labas V, Le Caer JP, Chich JF. Towards a proteomic map of Lactococcus lactis NCDO 763. Electrophoresis. 2000;21:2546–9.

    PubMed  CAS  Google Scholar 

  • Arena S, D’Ambrosio C, Renzone G, Rullo R, Ledda L, Vitale F, Maglione G, Varcamonti M, Ferrara L, Scaloni A. A study of Streptococcus thermophilus proteome by integrated analytical procedures and differential expression investigations. Proteomics. 2006;6:181–92.

    PubMed  CAS  Google Scholar 

  • Banerjee S, Mazumdar S. Electrospray ionization mass spectrometry: a technique to access the information beyond the molecular weight of the analyte. Int J Anal Chem. 2012;2012:1–40.

    Google Scholar 

  • Beaufils S, Sauvageot N, Mazé A, Laplace JM, Auffray Y, Deutscher J, Hartke A. The cold shock response of Lactobacillus casei: relation between HPr phosphorylation and resistance to freeze/thaw cycles. J Mol Microbiol Biotechnol. 2007;13:65–75.

    PubMed  CAS  Google Scholar 

  • Begley M, Gahan CGM, Hill C. Bile stress response in Listeria monocytogenes LO28: adaptation, crossprotection and identification of genetic loci involved in bile resistance. Appl Environ Microbiol. 2002;68:6005–12.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Begley M, Gahan CG, Hill C. The interaction between bacteria and bile. FEMS Microbiol. 2005;29:625–51.

    CAS  Google Scholar 

  • Bessarabova M, Ishkin A, JeBailey L, Nikolskaya T, Nikolsky Y. Knowledge-based analysis of proteomics data. BMC Bioinformatics. 2012;13:S13.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bezkorovainy A. Probiotics: determinants of survival and growth in the gut. Am J Clin Nutr. 2001;73:399–405.

    Google Scholar 

  • Blackstock WP, Weir MP. Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol. 1999;17:121–7.

    PubMed  CAS  Google Scholar 

  • Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD, Sorokin A. The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res. 2001;11:731–53.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bossi A, Rinalducci S, Zolla L, Antonioli P, Righetti PG, Zapparoli G. Effect of tannic acid on Lactobacillus hilgardii analysed by a proteomic approach. J Appl Microbiol. 2007;102:787–95.

    PubMed  CAS  Google Scholar 

  • Bouvier J, Bordes P, Romeo Y, Fourçans A, Bouvier I, Gutierrez C. Characterization of OpuA, a Glycine-Betaine uptake system of Lactococcus lactis. J Mol Microbiol Biotechnol. 2000;2:199–205.

    PubMed  CAS  Google Scholar 

  • Bove CG, De Angelis M, Gatti M, Calasso M, Neviani E, Gobbetti M. Metabolic and proteomic adaptation of Lactobacillus rhamnosus strains during growth under cheese-like environmental conditions compared to de man, rogosa, and sharpe medium. Proteomics. 2012;12:3206–18.

    PubMed  CAS  Google Scholar 

  • Boyle RJ, Bath-Hextall FJ, Leonardi-Bee J, Murrell DF, Tang ML. Probiotics for the treatment of eczema: a systematic review. Clin Exp Allergy. 2009;39:1117–27.

    PubMed  CAS  Google Scholar 

  • Broadbent JR, Lin C. Effect of heat shock or cold shock treatment on the resistance of Lactococcus lactis to freezing and lyophilization. Cryobiol. 1999;39:88–102.

    CAS  Google Scholar 

  • Broadbent JR, Oberg JC, Wang H, Wei L. Attributes of the heat shock response in three species of dairy Lactobacillus. Syst Appl Microbiol. 1997;20:12–9.

    Google Scholar 

  • Bron PA. The molecular response of Lactobacillus plantarum to intestinal passage and conditions. Thesis of Wageningen University, Netherlands; 2003. p. 90–108.

    Google Scholar 

  • Budin-Verneuil A, Pichereau V, Auffray Y, Ehrlich DS, Maguin E. Proteomic characterization of the acid tolerance response in Lactococcus lactis MG1363. Proteomics. 2005;5:4794–807.

    PubMed  CAS  Google Scholar 

  • Burns P, Sánchez B, Vinderola G, Ruas-Madiedo P, Ruiz L, Margolles A, Reinheimer J, de los Reyes-Gavilan CG. Inside the adaptation process of Lactobacillus delbrueckii subsp. lactis to bile. Int J Food Microbiol. 2010;142:132–41.

    Google Scholar 

  • Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L, Righetti PG. Blue silver: a very sensitive colloidal coomassie G-250 staining for proteome analysis. Electrophoresis. 2004;25:1327–33.

    PubMed  CAS  Google Scholar 

  • Champomier-Vergès MC, Maguin E, Mistou MY, Anglade P, Chich JF. Lactic acid bacteria and proteomics: current knowledge and perspectives. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;771:329–42.

    PubMed  Google Scholar 

  • Chung Y, Hsu C, Ko C, Chan Y. Dietary intake of xylooligosaccharides improves the intestinal microbiota, fecal moisture, and pH value in the elderly. Nutr Res. 2007;27:756–61.

    CAS  Google Scholar 

  • Clauser KR, Baker P, Burlingame AL. Role of accurate mass measurement (±10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Anal Chem. 1999;71:2871–82.

    PubMed  CAS  Google Scholar 

  • Coenye T, Vandamme P. Extracting phylogenetic information from whole-genome sequencing projects: the lactic acid bacteria as a test case. Microbiol. 2003;149:3507–17.

    CAS  Google Scholar 

  • Coeuret V, Gueguen M, Vernoux JP. Numbers and strains of lactobacilli in some probiotic products. Int J Food Microbiol. 2004;97:147–56.

    PubMed  Google Scholar 

  • Cohen DPA. Functional analysis of Lactobacillus plantarum WCFS1: a proteomic approach. PhD. thesis Wageningen University, Wageningen, The Netherlands, with summary in Dutch; 2007. p. 32–7.

    Google Scholar 

  • Cohen DP, Renes J, Bouwman FG, Zoetendal EG, Mariman E, de Vos WM, Vaughan EE. Proteomic analysis of log to stationary growth phase Lactobacillus plantarum cells and a 2-DE database. Proteomics. 2006;6:6485–93.

    PubMed  CAS  Google Scholar 

  • Colinge J, Bennett KL. Introduction to computational proteomics. PLoS Comput Biol. 2007;3:e114.

    PubMed Central  PubMed  Google Scholar 

  • Corthals GL, Wasinger VC, Hochstrasser DF, Sánchez JC. The dynamic range of protein expression: a challenge for proteomic research. Electrophoresis. 2000;21:1104–15.

    PubMed  CAS  Google Scholar 

  • Curiel JA, Rodríguez H, de las Rivas B, Anglade P, Baraige F, Zagorec M, Champomier-Vergès M, Muñoz R, de Felipe FL. Response of a Lactobacillus plantarum human isolate to tannic acid challenge assessed by proteomic analyses. Mol Nutr Food Res. 2011;55:1454–65.

    Google Scholar 

  • Curreem SO, Watt RM, Lau SK, Woo PC. Two-dimensional gel electrophoresis in bacterial proteomics. Protein Cell. 2012;3:346–63.

    PubMed  CAS  Google Scholar 

  • De Angelis M, Gobbetti M. A review: environmental stress responses in Lactobacillus. Proteomics. 2004;4:106–22.

    PubMed  Google Scholar 

  • De Angelis M, De Angelis M, Gobbetti M, Bini L, Pallini V, Cocconcelli PS. The acid-stress response in Lactobacillus sanfranciscensis CB1. Microbiol. 2001;147:1863–73.

    Google Scholar 

  • De Angelis M, Di Cagno R, Huet C, Crecchio C, Fox PF, Gobbetti M. Heat shock response in Lactobacillus plantarum. Appl Environ Microbiol. 2004;70:1336–46.

    PubMed Central  PubMed  Google Scholar 

  • De Boever P, Wouters R, Verschaeve L, Berckmans P, Schoeters G, Verstraete W. Protective effect of the bile salt hydrolase-active Lactobacillus reuteri against bile salt cytotoxicity. Appl Microbiol Biotechnol. 2000;53:709–14.

    PubMed  Google Scholar 

  • Derzelle S, Bolotin A, Mistou MY, Rul F. Proteome analysis of Streptococcus thermophilus grown in milk reveals pyruvate formate-lyase as the major upregulated protein. Appl Environ Microbiol. 2005;71:8597–605.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Desmond C, Stanton C, Fitzgerald GF, Collins K, Ross RP. Environmental adaptation of probiotic lactobacilli towards improvement of performance during spray drying. Int Dairy J. 2001;11:801–8.

    Google Scholar 

  • Desvaux M, Hébraud M, Talon R, Henderson IR. Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol. 2009;17:139–45.

    PubMed  CAS  Google Scholar 

  • Desvaux M, Dumas E, Chafsey I, Chambon C, Hébraud M. Comprehensive appraisal of the extracellular proteins from a monoderm bacterium: theoretical and empirical exoproteomes of Listeria monocytogenes EGD-e by secretomics. J Proteome Res. 2010;9:5076–92.

    PubMed  CAS  Google Scholar 

  • Di Cagno R, De Angelis M, Limitone A, Fox PF, Gobbetti M. Response of Lactobacillus helveticus PR4 to heat stress during propagation in cheese whey with a gradient of decreasing temperatures. Appl Environ Microbiol. 2006;72:4503–14.

    PubMed Central  PubMed  Google Scholar 

  • Drews O, Weiss W, Reil G, Parlar H, Wait R, Görg A. High pressure effects step-wise altered protein expression in Lactobacillus sanfranciscensis. Proteomics. 2002;2:765–74.

    PubMed  CAS  Google Scholar 

  • Drews O, Reil G, Parlar H, Görg A. Setting up standards and a reference map for the alkaline proteome of the gram-positive bacterium Lactococcus lactis. Proteomics. 2004;4:1293–304.

    PubMed  CAS  Google Scholar 

  • Dunne C, O’Mahony L, Murphy L, Thornton G, Morrissey D, O’Halloran S, Feeney SM, Flynn S, Fitzgerald G, Daly C, Kiely B, O’Sullivan GC, Shanahan F, Collins JK. In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. Am J Clin Nutr. 2001;73:386–92.

    Google Scholar 

  • Earnshaw RG, Appleyard J, Hurst RM. Understanding physical inactivation processes: combined preservation opportunities using heat, ultrasound and pressure. Int J Food Microbiol. 1995;28:197–219.

    PubMed  CAS  Google Scholar 

  • Edelman S, Leskel S, Ron E, Apajalahti J, Korhonen TK. In vitro adhesion of an avian pathogenic Escherichia coli 078 strain to surfaces of the chicken intestinal tract and to ileal mucus. Vet Microbiol. 2003;91:41–56.

    PubMed  CAS  Google Scholar 

  • Even S, Lindley ND, Cocaign-Bousquet M. Molecular physiology of sugar catabolism in Lactococcus lactis IL1403. J Bacteriol. 2001;183:3817–24.

    Google Scholar 

  • Faiza B, Halima Z, Nour-Eddine K. Physiological responses of salt stress and osmoprotection with proline in two strains of lactococci isolated from camel’s milk in Southern algeria. Afr J Biotechnol. 2011;83:19429–35.

    Google Scholar 

  • Flahaut S, Hartke A, Giard JC, Benachour A, Boutibonnes P, Auffray Y. Relationship between stress response toward bile salts, acid and heat treatment in Enterococcus faecalis. FEMS Microbiol Lett. 1996a;138:49–54.

    PubMed  CAS  Google Scholar 

  • Flahaut S, Frere J, Boutibonnes P, Auffray Y. Comparison of the bile salts and sodium dodecyl sulfate stress responses in Enterococcus faecalis. Appl Environ Microbiol. 1996b;62:2416–20.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Foster JW. Microbial responses to acid stress. Bacterial stress responses. In: Storz G, Hengge-Aronis R, editors. American society for microbiology press. DC: Washington; 2000. p. 99–116.

    Google Scholar 

  • Foster JW, Hall HK. Inducible pH homeostasis and the acid tolerance response of Salmonella typhimurium. J Bacteriol. 1991;173:5129–35.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fouhy F, O’Connell Motherway M, Fitzgerald GF, Ross RP, Stanton C, van Sinderen D, Cotter PD. In silico assigned resistance genes confer bifidobacterium with partial resistance to aminoglycosides but not to β-lactams. PLoS One. 2013;8:e82653.

    Google Scholar 

  • Frees D, Savijoki K, Varmanen P, Ingmer H. Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC gram-positive bacteria. Mol Microbiol. 2007;63:1285–95.

    PubMed  CAS  Google Scholar 

  • Fuller R. Probiotics in man and animals. J Appl Bacteriol. 1989;66:365–78.

    PubMed  CAS  Google Scholar 

  • Gardiner GE, O’Sullivan E, Kelly J, Auty MAE, Fitzgerald GF, Collins JK, Ross RP, Stanton C. Comparative survival rates of human-derived probiotic Lactobacillus paracasei and L. salivarius strains during heat treatment and spray drying. Appl Environ Microbiol. 2000;66:2605–12.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Garnier M, Matamoros S, Chevret D, Pilet MF, Leroi F, Tresse O. Adaptation to cold and proteomic responses of the psychrotrophic biopreservative Lactococcus piscium strain CNCM I-4031. Appl Environ Microbiol. 2010;76:8011–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Giard JC, Laplace JM, Rincé A, Pichereau V, Benachour A, Leboeuf C, Flahaut S, Auffray Y, Hartke A. The stress proteome of Enterococcus faecalis. Electrophoresis. 2001;22:2947–54.

    PubMed  CAS  Google Scholar 

  • Gilad O, Jacobsen S, Stuer-Lauridsen B, Pedersen MB, Garrigues C, Svensson B. Combined transcriptome and proteome analysis of Bifidobacterium animalis subsp. lactis BB-12 grown on xylo-oligosaccharides and a model of their utilization. Appl Environ Microbiol. 2010;76:7285–91.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gilad O, Hjernø K, Sterlund EC, Margolles A, Svensson B, Stuer-Lauridsen B, Møller AL, Jacobsen S. Insights into physiological traits of Bifidobacterium animalis subsp. lactis BB-12 through membrane proteome analysis. Proteomics. 2011a;11:3935–41.

    Google Scholar 

  • Gilad O, Svensson B, Viborg AH, Stuer-Lauridsen B, Jacobsen S. The extracellular proteome of Bifidobacterium animalis subsp. lactis BB-12 reveals proteins with putative roles in probiotic effects. Proteomics. 2011b;11:2503–14.

    PubMed  CAS  Google Scholar 

  • Gitton C, Meyrand M, Wang J, Caron C, Trubuil A, Guillot A, Mistou MY. Proteomic signature of Lactococcus lactis NCDO763 cultivated in milk. Appl Environ Microbiol. 2005;71:7152–63.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Glaasker E, Konings WN, Poolman B. Osmotic regulation of intracellular solute pools in Lactobacillus plantarum. J Bacteriol. 1996;178:575–82.

    PubMed Central  PubMed  CAS  Google Scholar 

  • González-Márquez H, Perrin C, Bracquart P, Guimont C, Linden G. A 16 kDa protein family overexpressed by Streptococcus thermophilus PB18 in acid environments. Microbiol. 1997;143:1587–94.

    Google Scholar 

  • Görg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, Weiss W. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis. 2000;21:1037–53.

    PubMed  Google Scholar 

  • Gouesbert G, Jan G, Boyaval P. Lactobacillus delbrueckii subsp. bulgaricus thermotolerance. Lait. 2001;81:301–9.

    Google Scholar 

  • Gouesbet G, Jan G, Boyaval P. Two-dimensional electrophoresis study of Lactobacillus delbrueckii subsp bulgaricus thermotolerance. APP Environmental Microbio. 2002;68:1055–63.

    CAS  Google Scholar 

  • Graves PR, Haystead TAJ. Molecular biologist’s guide to proteomics. Microbiol Molecul Biol Rev. 2002;66:39–63.

    CAS  Google Scholar 

  • Guerrera IC, Kleiner O. Application of mass spectrometry in proteomics. Biosci Rep. 2005;25:71–93.

    PubMed  CAS  Google Scholar 

  • Guillaume E, Berger B, Affolter M, Kussmann M. Label-free quantitative proteomics of two Bifidobacterium longum strains. J Proteomics. 2009;72:771–84.

    PubMed  CAS  Google Scholar 

  • Guillot A, Gitton C, Anglade P, Mistou MY. Proteomic analysis of Lactococcus lactis, a lactic acid bacterium. Proteomics. 2003;3:337–54.

    PubMed  CAS  Google Scholar 

  • Gupta MK, Subramanian V, Yadav JS. Immunoproteomic identification of secretory and subcellular protein antigens and functional evaluation of the secretome fraction of Mycobacterium immunogenum, a newly recognized species of the Mycobacterium chelonae-Mycobacterium abscessus group. J Proteome Res. 2009;8:2319–30.

    PubMed  CAS  Google Scholar 

  • Gygi SP, Corthals GL, Zhang Y, Rochon Y, Aebersold R. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci USA. 2000;97:9390–5.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hamon E, Horvatovich P, Izquierdo E, Bringel F, Marchioni E, Aoudé-Werner D, Ennahar S. Comparative proteomic analysis of Lactobacillus plantarum for the identification of key proteins in bile tolerance. BMC Microbiol. 2011;11:63.

    PubMed Central  PubMed  Google Scholar 

  • Hansen MC, Nielsen AK, Molin S, Hammer K, Kilstrup M, Palmer RJ Jr, Udsen C, White DC. Changes in rRNA levels during stress invalidates results from mRNA blotting: fluorescence in situ rRNA hybridization permits renormalization for estimation of cellular mRNA levels. J Bacteriol. 2001;183:4747–51.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Harder A, Wildgruber R, Nawrocki A, Fey SJ, Larsen PM, Görg A. Comparison of yeast cell protein solubilization procedures for two-dimensional. Electrophoresis. 1999;20:826–9.

    PubMed  CAS  Google Scholar 

  • Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, Wagendorp AA, Klijn L, Bindels JG, Welling GW. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr. 2000;30:61–7.

    PubMed  CAS  Google Scholar 

  • Hartke A, Bouché S, Giard JC, Benachour A, Boutibonnes P, Auffray Y. The lactic lcid stress response of Lactococcus lactis subsp lactis. Curr Microbiol. 1996;33:194–9.

    PubMed  CAS  Google Scholar 

  • Hartke A, Frere J, Boutibonnes P, Auffray Y. Differential induction of the chaperonin GroEL and the Co-chaperonin GroES by heat, acid, and UV-irradiation in Lactococcus lactis subsp. lactis. Curr Microbiol. 1997;34:23–6.

    PubMed  CAS  Google Scholar 

  • Hartl DL, Jones EW. Genetics: analysis of Genes and genomes. Boston: Jones and Bartlett Publishers; 2005.

    Google Scholar 

  • Haynes PA, Yates JR. Proteome profiling-pitfalls and progess. Yeast. 2000;17:81–7.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Herve-Jimenez L, Guillouard I, Guedon E, Gautier C, Boudebbouze S, Hols P, Monnet V, Rul F, Maguin E. Physiology of Streptococcus thermophilus during the late stage of milk fermentation with special regard to sulfur amino-acid metabolism. Proteomics. 2008;8:4273–86.

    PubMed  CAS  Google Scholar 

  • Herve-Jimenez L, Guillouard I, Guedon E, Boudebbouze S, Hols P, Monnet V, Maguin E, Rul F. Postgenomic analysis of Streptococcus thermophilus cocultivated in milk with Lactobacillus delbrueckii subsp. bulgaricus: involvement of nitrogen, purine, and iron metabolism. Appl Environ Microbiol. 2009;75:2062–73.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hofmann AF. Bile acids: the good, the bad, and the ugly. News Physiol Sci. 1999;14:24–9.

    PubMed  CAS  Google Scholar 

  • Hörmann S, Scheyhing C, Behr J, Pavlovic M, Ehrmann M, Vogel RF. Comparative proteome approach to characterize the high-pressure stress response of Lactobacillus sanfranciscensis DSM 20451(T). Proteomics. 2006;6:1878–85.

    PubMed  Google Scholar 

  • Hurdle JG, O’Neill AJ, Chopra I, Lee RE. Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections. Nat Rev Microbiol. 2011;9:62–75.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Irmler S, Raboud S, Beisert B, Rauhut D, Berthoud H. Cloning and characterization of two Lactobacillus casei genes encoding a cystathionine lyase. Appl Environ Microbiol. 2008;74:99–106.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Isolauri E, Salminen S, Ouwehand AC. Probiotics. Best Pract Res Clin Gastroenterol. 2004;18:299–313.

    PubMed  Google Scholar 

  • Izquierdo E, Horvatovich P, Marchioni E, Aoude-Werner D, Sanz Y, Ennahar S. 2-DE and MS analysis of key proteins in the adhesion of Lactobacillus plantarum, a first step toward early selection of probiotics based on bacterial biomarkers. Electrophoresis. 2009;30:949–56.

    PubMed  CAS  Google Scholar 

  • Jacobsen CN, Nielsen VR, Hayford AE, Moller PL, Michaelsen KF, Paerregaard A, Sandstrom B, Tvede M, Jakobsen M. Screening probiotic activities of 47 strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl Environ Microbiol. 1999;65:4949–56.

    PubMed Central  PubMed  CAS  Google Scholar 

  • James P, Quadroni M, Carafoli E, Gonnet G. Protein identification by mass profile fingerprinting. Biochem Biophys Res Commun. 1993;195:58–64.

    PubMed  CAS  Google Scholar 

  • Jensen ON, Podtelejnikov AV, Mann M. Identification of the components of simple protein mixtures by high-accuracy peptide mass mapping and database searching. Anal Chem. 1997;69:4741–50.

    PubMed  CAS  Google Scholar 

  • Joo WA, Kim CW. Proteomics of Halophilic archaea. J Chromatography B. 2005;2:237–50.

    Google Scholar 

  • Jordan KN, Cogan TM. Heat resistance of Lactobacillus spp. isolated from cheddar cheese. Lett Appl Microbiol. 1999;29:136–40.

    PubMed  CAS  Google Scholar 

  • Kanehisa M, Goto S. Kyoto encyclopedia of genes and genomes: KEGG. Nucleic Acids Res. 2000;28:27–30.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kelly P, Maguire PB, Bennett M, Fitzgerald DJ, Edwards RJ, Thiede B, Treumann A, Collins JK, O’Sullivan GC, Shanahan F, Dunne C. Correlation of probiotic Lactobacillus salivarius growth phase with its cell wall-associated proteome. FEMS Microbiol Lett. 2005;252:153–9.

    PubMed  CAS  Google Scholar 

  • Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, Banerjee S, Somanathan DS, Sebastian A, Rani S, Ray S, Harrys Kishore CJ, Kanth S, Ahmed M, Kashyap MK, Mohmood R, Ramachandra YL, Krishna V, Rahiman BA, Mohan S, Ranganathan P, Ramabadran S, Chaerkady R, Pandey A. Human protein reference Database-2009 update. Nucleic Acids Res. 2009;37:D767–72.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kilstrup M, Jacobsen S, Hammer K, Vogensen FK. Induction of heat shock proteins DnaK, GroEL, and GroES by salt stress in Lactococcus lactis. Appl Environ Microbiol. 1997;63:1826–37.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kim SW, Dunn NW. Identification of a cold shock gene in lactic acid bacteria and the effect of cold shock on cryotolerance. Curr Microbiol. 1997;35:59–63.

    PubMed  CAS  Google Scholar 

  • Kim SW, Ren J, Dunn NW. Differentiation of Lactococcus lactis subspecies lactis and subspecies cremoris strains by their adaptive response to stresses. FEMS Microbiol. 1999;171:57–65.

    CAS  Google Scholar 

  • Koch S, Eugster-Meier E, Oberson G, Meile L, Lacroix C. Effects of strains and growth conditions on autolytic activity and survival to freezing and lyophilization of Lactobacillus delbrueckii ssp. lactis isolated from cheese. Int Dairy J. 2008;18:187–96.

    CAS  Google Scholar 

  • Koponen J, Laakso K, Koskenniemi K, Kankainen M, Savijoki K, Nyman TA, de Vos WM, Tynkkynen S, Kalkkinen N, Varmanen P. Effect of acid stress on protein expression and phosphorylation in Lactobacillus rhamnosus GG. J Proteomics. 2012;75:1357–74.

    PubMed  CAS  Google Scholar 

  • Koskenniemi K, Laakso K, Koponen J, Kankainen M, Greco D, Auvinen P, Savijoki K, Nyman TA, Surakka A, Salusjärvi T, de Vos WM, Tynkkynen S, Kalkkinen N, Varmanen P. Proteomics and transcriptomics characterization of bile stress response in probiotic Lactobacillus rhamnosus GG. Mol Cell Proteomics. 2011;10(M110):002741.

    PubMed  Google Scholar 

  • Krishna RG, Wold F. Post-translational modification of proteins. Adv Enzymol Relat Areas Mol Biol. 1993;67:265–98.

    PubMed  CAS  Google Scholar 

  • Kuipers R, Leer R, Tarchini SA, Peters HM, Sandbrink MW, Fiers EJ, Stiekema E, Lankhorst RM, Bron PA, Hoffer RM, Groot MN, Kerkhoven R, de Vries M, Ursing B, de Vos WM, Siezen RJ. Complete genome sequence of Lactobacillus plantarum. Proc Natl Acad Sci USA. 2003;100:1990–5.

    PubMed Central  PubMed  Google Scholar 

  • Kuwana R, Yamamoto N. Increases in GroES and GroEL from Lactobacillus acidophilus L-92 in response to a decrease in medium pH, and changes in cytokine release from splenocytes: transcriptome and proteome analyses. J Biosci Bioeng. 2012;114:9–16.

    PubMed  CAS  Google Scholar 

  • Lamberti C, Pessione E, Giuffrida MG, Mazzoli R, Barello C, Conti A, Giunta C. Combined cup loading, bis(2-hydroxyethyl) disulfide, and protein precipitation protocols to improve the alkaline proteome of Lactobacillus hilgardii. Electrophoresis. 2007;28:1633–8.

    PubMed  CAS  Google Scholar 

  • Laplace JM, Sauvageot N, Harke A, Auffray Y. Characterization of Lactobacillus collinoides response to heat, acid and ethanol treatments. Appl Microbiol Biotechnol. 1999;51:659–63.

    CAS  Google Scholar 

  • Larsen NM, Boye H, Siegumfeldt M, Jakobsen M. Differential expression of proteins and genes in the lag phase of Lactococcus lactis subsp. lactis grown in synthetic medium and reconstituted skim milk. Appl Environ Microbiol. 2006;72:1173–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lau AT, He QY, Chiu JF. Proteomic technology and its biomedical application. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai). 2003;35:965–75.

    Google Scholar 

  • Lavermicocca P, Valerio F, Lonigro SL, Angelis MD, Morelli L, Callegari ML, Rizzello CG, Visconti A. Study of adhesion and survival of lactobacilli and bifidobacteria on table olives with the aim of formulating a new probiotic food. Appl Environ Microbiol. 2005;71:4233–40.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Le Marrec C, Bon E, Lonvaud-Funel A, McLeod A. Tolerance to high osmolality of the lactic acid bacterium Oenococcus oeni and identification of potential osmoprotectants. Int J Food Microbiol. 2007;115:335–42.

    PubMed  Google Scholar 

  • Lebeer S, Vanderleyden J, De Keersmaecker SCJ. Genes and molecules of Lactobacilli supporting probiotic action. Microbiol Mol Biol Rev. 2008;72:728–64.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lee J, Kaletunc G. Evaluation of the heat inactivation of Escherichia coli and Lactobacillus plantarum by differential scanning calorimetry. Appl Environ Microbiol. 2002;68:5379–86.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lee K, Pi K. Effect of transient acid stress on the proteome of intestinal probiotic Lactobacillus reuteri. Biochemistry. 2010;75:460–5.

    PubMed  CAS  Google Scholar 

  • Lee K, Lee HG, Pi K, Choi YG. The effect of low pH on protein expression by the probiotic bacterium Lactobacillus reuteri. Proteomics. 2008;8:1624–30.

    PubMed  CAS  Google Scholar 

  • Lee JY, Pajarillo EA, Kim MJ, Chae JP, Kang DK. Proteomic and transcriptional analysis of Lactobacillus johnsonii PF01 during bile salt exposure by iTRAQ shotgun proteomics and quantitative RT-PCR. J Proteome Res. 2013;12:432–43.

    PubMed  CAS  Google Scholar 

  • Len ACL, Harty DWS, Jacques NA. Stress-responsive proteins are upregulated in Streptococcus mutans during acid tolerance. Microbiol. 2004;150:1339–51.

    CAS  Google Scholar 

  • Leverrier P, Dimova D, Pichereau V, Auffray Y, Boyaval P, Jan G. Leverrier, Susceptibility and adaptive response to bile salts in Propionibacterium freudenreichii: physiological and proteomic analysis. Appl Environ Microbiol. 2003;69:3809–18.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Leverrier P, Vissers JP, Rouault A, Boyaval P, Jan G. Mass spectrometry proteomic analysis of stress adaptation reveals both common and distinct response pathways in Propionibacterium freudenreichii. Arch Microbiol. 2004;181:215–30.

    PubMed  CAS  Google Scholar 

  • Lim EM, Ehrlich DS, Maguin E. Identification of stress-inducible proteins in Lactobacillus delbrueckii subsp. bulgaricus. Electrophoresis. 2000;21:2557–61.

    PubMed  CAS  Google Scholar 

  • Link AJ, Eng J, Schieltz DM, Carmack E. Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol. 1999;17:676–82.

    PubMed  CAS  Google Scholar 

  • Ljungh A, Wadstrom T. Lactobacillus molecular biology from genomics to probiotics. Caister Academic Press. Lactobacillus stress responses. UK: Norfolk; 2009. pp. 115–138.

    Google Scholar 

  • Lorca G, de Valdez F. A Low-pH-Inducible, stationary-phase acid tolerance response in Lactobacillus acidophilus CRL 639 G.L. Curr Microbiol. 2001;42:21–5.

    PubMed  CAS  Google Scholar 

  • Lundeen SG, Savage DC. Multiple forms of bile salt hydrolase from Lactobacillus sp. strain 100–100. J Bacteriol. 1992;174:7217–20.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Maddalo G, Chovanec P, Stenberg-Bruzell F, Nielsen HV, Jensen-Seaman MI, Kline KA, Daley DO. A reference map of the membrane proteome of Enterococcus Faecalis. Proteomics. 2011;11:3935–41.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Majumder A, Sultan A, Jersie-Christensen RR, Ejby M, Schmidt BG, Lahtinen SJ, Jacobsen S, Svensson B. Proteome reference map of Lactobacillus acidophilus NCFM and quantitative proteomics towards understanding the prebiotic action of lactitol. Proteomics. 2011;11:3470–81.

    PubMed  CAS  Google Scholar 

  • Majumder A, Cai L, Ejby M, Schmidt BG, Lahtinen SJ, Jacobsen S, Svensson B. Two-dimensional gel-based alkaline proteome of the probiotic bacterium Lactobacillus acidophilus NCFM. Proteomics. 2012;12:1006–14.

    PubMed  CAS  Google Scholar 

  • Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N, Shakhova V, Grigoriev I, Lou Y, Rohksar D, Lucas S, Huang K, Goodstein DM, Hawkins T, Plengvidhya V, Welker D, Hughes J, Goh Y, Benson A, Baldwin K, Lee JH, Daz-Muñiz I, Dosti B, Smeianov V, Wechter W, Barabote R, Lorca G, Altermann E, Barrangou R, Ganesan B, Xie Y, Rawsthorne H, Tamir D, Parker C, Breidt F, Broadbent J, Hutkins R, O’Sullivan D, Steele J, Unlu G, Saier M, Klaenhammer T, Richardson P, Kozyavkin S, Weimer B, Mills D. Comparative genomics of the lactic acid bacteria. J Bacteriol. 2007;189:1199–208.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mann M, Hojrup P, Roepstorff P. Use of mass spectrometric molecular weight information to identify proteins in sequence databases. Biol Mass Spectrom. 1993;22:338–45.

    PubMed  CAS  Google Scholar 

  • Marceau A, Zagorec M, Chaillou S, Méra T, Champomier-Vergès M. Evidence for involvement of at least six proteins in adaptation of Lactobacillus sakei to cold temperatures and addition of NaCl. Appl Environ Microbiol. 2004a;12:7260–8.

    Google Scholar 

  • Margolles A, Garcia L, Sánchez B, de los Reyes-Gavilan CG. Characterisation of a Bifidobacterium strain with acquired resistance to cholate-a preliminary study. Int J Food Microbiol. 2003;82:191–8.

    Google Scholar 

  • Marles-Wright J, Lewis RJ. Stress responses of bacteria. Curr Opin Struct Biol. 2007;17:755–60.

    PubMed  CAS  Google Scholar 

  • Martín R, Sánchez B, Suárez JE, Urdaci MC. Characterization of the adherence properties of human Lactobacilli strains to be used as vaginal probiotics. FEMS Microbiol Lett. 2012;328:166–73.

    PubMed  Google Scholar 

  • McLeod A, Zagorec M, Champomier-Verges M, Naterstad K, Axelsson L. Primary metabolism in Lactobacillus sakei food isolates by proteomic analysis. BMC Microbiol. 2010;10:120.

    PubMed Central  PubMed  Google Scholar 

  • Minellia EB, Beninia A, Marzottob M, Sbarbatic A, Ruzzenented O, Ferrarioe R, Hendriksf H, Dellagliob F. Assessment of novel probiotic Lactobacillus casei strains for the production of functional dairy foods. Int Dairy J. 2004;14:723–36.

    Google Scholar 

  • Molenaar D, Hagting A, Alkema H, Driessen AJM, Konings WN. Characteristics and osmoregulatory roles of uptake systems for proline and glycine-betaine in Lactococcus lactis. J Bacteriol. 1993;175:5438–44.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Monedero V, Maze′ A, BoeL G, Zu′ñiga M, Beaufils S, Hartke A, Deutscher J. The phosphotransferase system of Lactobacillus casei: regulation of carbon metabolism and connection to cold shock response. J Mol Microbiol Biotechnol. 2007;12:20–32.

    Google Scholar 

  • Neville BA, O’Toole PW. Probiotic properties of Lactobacillus salivarius and closely related Lactobacillus species. Future Microbiol. 2010;5:759–74.

    PubMed  CAS  Google Scholar 

  • Nitisinprasert S, Pungsungworn N, Wanchaitanawong P, Loiseau G, Montet D. In vitro adhesion assay of lactic acid bacteria, Escherichia coli and. Salmonella sp. by microbiological and PCR methods. J Sci Technol. 2006;28:99–106.

    Google Scholar 

  • O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975;250:4007–21.

    PubMed Central  PubMed  Google Scholar 

  • Obis D, Guillot A, Gripon JC, Renault P, Bolotin A, Mistou MY. Genetic and biochemical characterization of a high affinity betaine uptake system (BusA) in Lactococcus lactis reveals a new functional organization within bacterial ABC transporters. J Bacteriol. 1999;181:6238–46.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Obis D, Guillot A, Mistou MY. Tolerance to high osmolality of Lactococcus lactis subsp. lactis and cremoris is related to the activity of a betaine transport system. FEMS Microbiol Lett. 2001;202:39–44.

    PubMed  CAS  Google Scholar 

  • Oh HK, Lee JY, Lim SJ, Kim MJ, Kim GB, Kim JH, Hong SK, Kang DK. Molecular cloning and characterization of a bile salt hydrolase from Lactobacillus acidophilus PF01. J Microbiol Biotechnol. 2008;18:449–56.

    PubMed  CAS  Google Scholar 

  • O’Sullivan E, Condon S. Intracellular pH is a major factor in the induction of tolerance to acid and other stresses in Lactococcus lactis. Appl Environ Microbiol. 1997;63:4210–5.

    PubMed Central  PubMed  Google Scholar 

  • Ouwehand AC, Tuomola EM, Tolkko S, Salminen S. Assessment of adhesion properties of novel probiotic strains to human intestinal mucus. Int J Food Microbiol. 2001;64:119–26.

    PubMed  CAS  Google Scholar 

  • Panoff JM, Thammavongs B, Laplace JM, Hartke A, Boutibonnes P, Boutibonnes Y, Auffray Y. Cryotolerance and Cold adaptation in Lactococcus lactis subsp. lactis IL1403. Cryobiology. 1995;32:516–20.

    Google Scholar 

  • Pappin DD, Hojrup JP, Bleasby AJ. Rapid identification of proteins by peptide-mass finger printing. Curr Biol. 1993;3:327–32.

    PubMed  CAS  Google Scholar 

  • Paul CD, Colin H. Surviving the acid test: responses of gram-positive bacteria to low pH. Curr Microbiol Mol Biol Rev. 2003;67:429–53.

    Google Scholar 

  • Payne CM, Crowley C, Washo-Stultz D, Briehl M, Bernstein H, Bernstein C, Beard S, Holubec H, Warneke J. The stress-response proteins poly(ADP-ribose) polymerase and NF-κB protect against bile salt-induced apoptosis. Cell Death Diff. 1998;5:623–36.

    CAS  Google Scholar 

  • Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999;20:3551–67.

    PubMed  CAS  Google Scholar 

  • Perrin C, Guimont C, Bracquart P, Gaillard JL. Expression of a new cold shock protein of 21.5 kDa and of the major cold shock protein by Streptococcus thermophilus after cold shock. Curr Microbiol. 1999;39:342–7.

    PubMed  CAS  Google Scholar 

  • Perrin C, Gonzalez-Marquez H, Gaillard JL, Guimont C. Reference map of soluble proteins from Streptococcus thermophilus by two-dimensional electrophoresis. Electrophoresis. 2000;21:949–55.

    PubMed  CAS  Google Scholar 

  • Pessione E, Mazzoli R, Giuffrida MG, Lamberti C, Garcia-Moruno E, Barello C, Conti A, Giunta C. A proteomic approach to studying biogenic amine producing lactic acid bacteria. Proteomics. 2005;5:687–98.

    PubMed  CAS  Google Scholar 

  • Pessione A, Lamberti C, Pessione E. Proteomics as a tool for studying energy metabolism in lactic acid bacteria. Mol Biosyst. 2010;6:1419–30.

    PubMed  CAS  Google Scholar 

  • Pessione A, Lamberti C, Cocolin L, Campolongo S, Grunau A, Giubergia S, Eberl L, Riedel K, Pessione E. Different protein expression profiles in cheese and clinical isolates of Enterococcus faecalis revealed by proteomic analysis. Proteomics. 2012;12:431–47.

    PubMed  CAS  Google Scholar 

  • Phadtare S, Yamanaka K, Inouye M. The cold shock response. In: Stortz G, Hengge-Aronis R, editors. Bacterial stress response. Washington, DC: ASM Press; 2000. p. 33–46.

    Google Scholar 

  • Pichereau V, Bourot S, Flahaut S, Blanco C, Auffray Y, Bernard T. The osmoprotectant glycine betaine inhibits salt-induced cross-tolerance towards lethal treatment in Enterococcus faecalis. Microbiol. 1999;145:427–35.

    CAS  Google Scholar 

  • Piuri M, Sánchez-Rivas C, Ruzal SM. Adaptation to high salt in Lactobacillus: role of peptides and proteolytic enzymes. J Appl Microbiol. 2003;95:372–9.

    PubMed  CAS  Google Scholar 

  • Piuri M, Sánchez-Rivas C, Ruzal SM. Cell wall modifications during osmotic stress in Lactobacillus casei. J Appl Microbiol. 2005;98:84–95.

    PubMed  CAS  Google Scholar 

  • Plumed-Ferrer C, Koistinen KM, Tolonen TL, Lehesranta SJ, Kärenlampi SO, Mäkimattila E, Joutsjoki V, Virtanen V, von Wright A. Comparative study of sugar fermentation and protein expression patterns of two Lactobacillus plantarum strains grown in three different media. Appl Environ Microbiol. 2008;74:5349–58.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Prasad J, McJarrow P, Gopal P. Heat and osmotic stress responses of probiotic Lactobacillus rhamnosus HN001 (DR20) in relation to viability after drying. Appl Environ Microbiol. 2003;69:917–25.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Quivey RG Jr, Faustoferri RC, Clancy KA, Marquis RE. Acid adaptation in Streptococcus mutans UA159 alleviates sensitization to environmental stress due to RecA deficiency. FEMS Microbiol Lett. 1995;126:257–61.

    PubMed  CAS  Google Scholar 

  • Rabilloud T. A comparison between low background silver diammine and silver nitrate protein stains. Electrophoresis. 1992;13:429–39.

    PubMed  CAS  Google Scholar 

  • Randazzo CL, Restuccia C, Romano AD, Caggia C. Lactobacillus casei, dominant species in naturally fermented sicilian green olives. Int J Food Microbiol. 2004;90:9–14.

    PubMed  Google Scholar 

  • Rechinger KB, Siegumfeldt H, Svendsen I, Jakobsen M. “Early” protein synthesis of Lactobacillus delbrueckii ssp. bulgaricus in milk revealed by [35S] methionine labeling and two-dimensional gel electrophoresis. Electrophoresis. 2000;21:2660–9.

    PubMed  CAS  Google Scholar 

  • Reddy KBPK, Awasthi SP, Madhu AN, Prapulla SG. Role of cryoprotectants on the viability and functional properties of probiotic lactic acid bacteria during freeze drying. Food Biotechnol. 2009;23:243–65.

    CAS  Google Scholar 

  • Reuter G. The Lactobacillus and Bifidobacterium microflora of the human intestine: composition and succession. Intest Microbiol. 2001;2:43–53.

    CAS  Google Scholar 

  • Roos S, Karner F, Axelsson L, Jonsson H. Lactobacillus mucosae sp. nov., a new species with in vitro mucus-binding activity isolated from pig intestine. Int J System Evol Microbiol. 2000;50:251–8.

    CAS  Google Scholar 

  • Ruiz L, Couté Y, Sánchez B, de los Reyes-Gavilán CG, Sánchez JC, Margolles A. The cell-envelope proteome of Bifidobacterium longum in an in vitro bile environment. Microbiol. 2009a;155:957–67.

    Google Scholar 

  • Ruiz L, Sánchez B, de Los Reyes-Gavilán CG, Gueimonde M, Margolles A. Coculture of Bifidobacterium longum and Bifidobacterium breve alters their protein expression profiles and enzymatic activities. Int J Food Microbiol. 2009b;133:148–53.

    Google Scholar 

  • Rycroft CE, Jones MR, Gibson GR, Rastall RA. A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. J Appl Microbiol. 2001;91:878–87.

    PubMed  CAS  Google Scholar 

  • Salminen S, Isolauri E. Intestinal colonization, microbiota, and probiotics. J Pediatr. 2006;149:S115–20.

    CAS  Google Scholar 

  • Salminen S, Laine M, von Wright A, Vuopio-Varkila J, Korhonen T, Mattila-Sandholm T. Development of selection criteria for probiotic strains to assess their potential in function foods: a Nordic and European approach. Biosci Microflora. 1996;15:61–7.

    Google Scholar 

  • Sánchez B, Champomier-Vergès MC, Anglade P, Baraige F, de Los Reyes-Gavilán CG, Margolles A, Zagorec M. Proteomic analysis of global changes in protein expression during bile salt exposure of Bifidobacterium longum NCIMB 8809. J Bacteriol. 2005;187:5799–808.

    PubMed Central  PubMed  Google Scholar 

  • Sánchez B, Champomier-Vergès MC, Collado Mdel C, Anglade P, Baraige F, Sanz Y, de los Reyes-Gavilán CG, Margolles A, Zagorec M. Low-pH Adaptation and the acid tolerance response of Bifidobacterium longum. Appl Environ Microbiol. 2007a;73:6450–9.

    Google Scholar 

  • Sánchez B, Champomier-Vergès MC, Stuer-Lauridsen B, Ruas-Madiedo P, Anglade P, Baraige F, de los Reyes-Gavilán CG, Johansen E, Zagorec M, Margolles A. Adaptation and response of Bifidobacterium animalis subsp. lactis to bile: a proteomic and physiological approach. Appl Environ Microbiol. 2007b;73:6757–67.

    Google Scholar 

  • Santoni V, Molloy M, Rabilloud T. Membrane proteins and proteomics: un amour impossible? Electrophoresis. 2000;21:1054–70.

    PubMed  CAS  Google Scholar 

  • Savijoki K, Suokko A, Palva A, Valmu L, Kalkkinen N, Varmanen P. Effect of heat-shock and bile salts on protein synthesis of Bifidobacterium longum revealed by [35S] methionine labeling and two-dimensional gel electrophoresis. FEMS Microbiol Lett. 2005;248:207–15.

    PubMed  CAS  Google Scholar 

  • Savijoki K, Suokko A, Palva A, Varmanen P. New convenient defined media for [35S] methionine labelling and proteomic analyses of probiotic lactobacilli. Lett Appl Microbiol. 2006;42:202–9.

    PubMed  CAS  Google Scholar 

  • Savijoki K, Lietzén N, Kankainen M, Alatossava T, Koskenniemi K, Varmanen P, Nyman TA. Comparative proteome cataloging of Lactobacillus rhamnosus strains GG and Lc705. J Proteome Res. 2011;10:3460–73.

    PubMed  CAS  Google Scholar 

  • Scheifer KH, Ludwig W. Phylogeny of the genus Lactobacillus and related genera. System Appl Microbiol. 1995;18:461–7.

    Google Scholar 

  • Schell MA, Karmirantzou M, Snel B, Vilanova D, Berger B, Pessi G, Zwahlen MC, Desiere F, Bork P, Delley M, Pridmore PD, Arigoni F. The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci USA. 2002;99:14422–7.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Schmidt G, Hertel C, Hammes WP. Molecular characterization of the danK operon of Lactobacillus sakei LTH681. Syst Appl Microbiol. 1999;22:321–8.

    PubMed  CAS  Google Scholar 

  • Shaw MM, Riederer BM. Sample preparation for two-dimensional gel electrophoresis. Proteomics. 2003;3:1408–17.

    PubMed  CAS  Google Scholar 

  • Sheehan VM, Sleator RD, Fitzgerald GF, Hill C. Heterologous expression of BetL, a betaine uptake system, enhances the stress tolerance of Lactobacillus salivarius UCC118. Appl Environ Microbiol. 2006;3:2170–7.

    Google Scholar 

  • Sheehan VM, Sleator RD, Hill C, Fitzgerald GF. Improving gastric transit, gastrointestinal persistence and therapeutic efficacy of the probiotic strain Bifidobacterium breve UCC2003. Microbiology. 2007;153:3563–71.

    PubMed  CAS  Google Scholar 

  • Shin HY, Lee JH, Lee JY, Han YO, Han MJ, Kim DH. Purification and characterization of ginsenoside Ra-hydrolyzing β-D-xylosidase from Bifidobacterium breve K-110, a human intestinal anaerobic bacterium. Biol Pharm Bull. 2003;26:1170–3.

    PubMed  CAS  Google Scholar 

  • Sieuwerts S, Molenaar D, van Hijum SA, Beerthuyzen M, Stevens MJ, Janssen PW, Ingham CJ, de Bok FA, de Vos WM, van Hylckama Vlieg JE. Mixed-culture transcriptome analysis reveals the molecular basis of mixed-culture growth in Streptococcus thermophilus and Lactobacillus bulgaricus. Appl Environ Microbiol. 2010;76:7775–84.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Singh OV, Nagaraj NS. Transcriptomics, proteomics and interactomics: unique approaches to track the insights of bioremediation. Brief Funct Genomic Proteomic. 2006;4:355–62.

    PubMed  CAS  Google Scholar 

  • Smelt JP, Otten GD, Bos AP. Modelling the effect of sublethal injury on the distribution of the lag times of individual cells of Lactobacillus plantarum. Int J Food Microbiol. 2002;73:207–12.

    PubMed  Google Scholar 

  • Sneath PHA, Mair NS, Sharpe ME. Bergey’s manual of systematic bacteriology, vol. 2. Baltimore: Williams & Wilkins; 1986. p. 1209–45.

    Google Scholar 

  • Somero GN. Proteins and temperature. Annu Rev Physiol. 1995;57:43–68.

    PubMed  CAS  Google Scholar 

  • Sperandio B, Polard P, Ehrlich DS, Renault P, Guedon E. Sulfur amino acid metabolism and its control in Lactococcus lactis IL1403. J Bacteriol. 2005;187:3762–78.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Stiles EM, Holzapfel WH. Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol. 1997;36:1–29.

    PubMed  CAS  Google Scholar 

  • Streit F, Delettre J, Corrieu G, Beal C. Acid adaptation of Lactobacillus delbreckii subsp. bulgaricus induces physiological responses at membrane and cytosolic levels that improves cryotolerance. J Appld Microbiol. 2008;105:1071–80.

    CAS  Google Scholar 

  • Strupat K, Karas M, Hillenkamp F, Eckerskorn C, Lottspeich F. Matrix-assisted laser desorption ionization mass spectrometry of proteins electroblotted after polyacrylamide gel electrophoresis. Anal Chem. 1994;66:464–70.

    CAS  Google Scholar 

  • Sun Z, Bo X, He X, Jiang Z, Wang F, Zhao H, Liu D, Yuan J. Comparative proteome analysis of Bifidobacterium longum NCC2705 grown on fructose and glucose. Sheng Wu Gong Cheng Xue Bao. 2008;24:1401–6.

    PubMed  CAS  Google Scholar 

  • Svensater G, Sjogreen B, Hamilton IR. Multiple stress responses in Streptococcus mutans and the induction of general and stress specific proteins. Microbiol. 2000;146:107–17.

    CAS  Google Scholar 

  • Teixera P, Castro H, Mohacsi-Farkas C, Kirby R. Identification of sites of injury in Lactobacillus bulgaricus during heat stress. J Appl Microbiol. 1997;83:219–26.

    Google Scholar 

  • Thammavongs B, Corroler D, Panoff JM, Auffray Y, Boutibonnes P. Physiological response of Enterococcus faecalis JH2-2 to cold shock: growth at low temperatures and freezing/thawing challenge. Lett Appl Microbiol. 1996;23:398–402.

    PubMed  CAS  Google Scholar 

  • Tsakalidou E, Papadimitriou K. Stress responses of lactic acid bacteria. LLC: Springer New York Dordrecht Heidelberg London. Springer Science & Business Media; 2011. p. 67–90.

    Google Scholar 

  • Twyman R. Proteomics. http://www.genome.wellcome.ac.uk/doc_wtd020767.html. Accessed 2003.

  • Tymczyszyn EE, Gómez-Zavaglia A, Disalvo EA. Influence of the growth at high osmolality on the lipid composition, water permeability and osmotic response of Lactobacillus bulgaricus. Arch Biochem Biophys. 2005;443:66–73.

    PubMed  CAS  Google Scholar 

  • Unlu M, Morgan ME, Minden JS. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis. 1997;18:2071–7.

    PubMed  CAS  Google Scholar 

  • Van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E. Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek. 2002;82:187–216.

    PubMed  Google Scholar 

  • Van Der Heide T, Poolman B. Glycine betaine transport in Lactococcus lactis is osmotically regulated at the level of expression and translocation activity. J Bacteriol. 2000;182:203–6.

    PubMed Central  Google Scholar 

  • Van Velkinburgh JC, Gunn JS. PhoP-PhoQ regulated loci are required for enhanced bile resistance in Salmonella spp. Infect Immun. 1999;67:1614–22.

    PubMed Central  PubMed  Google Scholar 

  • Van Wijk KJ. Challenges and prospects of plant proteomics. Plant Physiol. 2001;126:501–8.

    PubMed Central  PubMed  Google Scholar 

  • Vitali B, Wasinger V, Brigidi P, Guilhaus M. A proteomic view of Bifidobacterium infantis generated by multi-dimensional chromatography coupled with tandem mass spectrometry. Proteomics. 2005;5:1859–67.

    PubMed  CAS  Google Scholar 

  • Wang Y, Delettre J, Guillot A, Corrieu G, Beal C. Influence of cooling temperature and duration ocold adaptation of Lactobacillus acidophilus RD758. Cryobiol. 2005;50:294–307.

    CAS  Google Scholar 

  • Wang J, Guo Z, Zhang Q, Yan L, Chen W, Liu XM, Zhang H. Fermentation characteristics and transit tolerance of probiotic Lactobacillus casei Zhang in soymilk and bovine milk during storage. J Dairy Sci. 2008;92:2468–76.

    Google Scholar 

  • Wang J, Zhang W, Zhong Z, Wei A, Bao Q, Zhang Y, Sun T, Postnikoffa A, Meng H, Zhang H. Gene expression profile of probiotic Lactobacillus casei Zhang during the latestage of milk fermentation. Food Control. 2011a;25:321–7.

    Google Scholar 

  • Wang, J, Zhang W, Zhong Z, Wei A, Bao Q, ZhangY, Sun T, Postnikoffa A, Meng H, Zhang H. Transcriptome analysis of probiotic Lactobacillus casei Zhang during fermentation in soymilk. J Ind Microbial Biotechnol. 2011b;39:191–206.

    Google Scholar 

  • Wang J, Wu R, Zhang W, Sun Z, Zhao W, Zhang H. Proteomic comparison of a new probiotic bacterium Lactobacillus casei Zhang cultivated in milk and soymilk. J Dairy Sci. 2013;96:5603–24.

    PubMed  CAS  Google Scholar 

  • Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams KL, Humphery-Smith I. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis. 1995;16:1090–4.

    PubMed  CAS  Google Scholar 

  • Westermeier R, Naven T, Höpker HR. Proteomics strategies. In: Proteomics in practice: a guide to successful experimental design. 2nd ed. KGaA, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co; 2008.

    Google Scholar 

  • Whitehead K, Versalovic J, Roos S, Britton RA. Genomic and genetic characterization of the bile stress response of probiotic Lactobacillus reuteri ATCC 55730. Appl Environ Microbiol. 2008;74:1812–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wilkins MR, Sánchez JC, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, Williams KL. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev. 1996;13:19–50.

    PubMed  CAS  Google Scholar 

  • Wilkins JC, Homer KA, Beighton D. Altered protein expression of Streptococcus oralis cultured at low pH revealed by two-dimensional gel electrophoresis. Appl Environ Microbiol. 2001;67:3396–405.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wilkins JC, Homer KA, Beighton D. Analysis of Streptococcus mutans proteins modulated by culture under acidic conditions. Appl Environ Microbiol. 2002;68:2382–90.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wouters JA, Sanders JW, Kok J, de Vos WM, Kuipers OP, Abee T. Clustered organization and transcriptional analysis of a family of five csp genes of Lactococcus lactis MG1363. Microbiology. 1998;144:2885–93.

    PubMed  CAS  Google Scholar 

  • Wouters JA, Rombouts FM, de Vos WM, Kuipers OP, Abee T. Cold shock proteins and low-temperature response of Streptococcus thermophilus CNRZ302. Appl Environ Microbiol. 1999a;65:4436–42.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wouters JA, Jeynov B, Rombouts FM, de Vos WM, Kuipers OP, Abee T. Analysis of the role of 7 kDa cold-shock proteins of Lactococcus lactis MG1363 in cryoprotection. Microbiology. 1999b;145:3185–94.

    PubMed  CAS  Google Scholar 

  • Wouters JA, Rombouts FM, Kuipers OP, de Vos WM, Abee T. The role of cold-shock proteins in low-temperature adaptation of food-related bacteria. Syst Appl Microbiol. 2000a;23:165–73.

    PubMed  CAS  Google Scholar 

  • Wouters JA, Mailhes M, Rombouts FM, de Vos WM, Kuipers OP, Abee T. Physiological and regulatory effects of controlled overproduction of five cold shock proteins of Lactococcus lactis MG1363. Appl Environ Microbiol. 2000b;66:3756–63.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wu R, Wang W, Yu D, Zhang W, Li Y, Sun Z, Wu J, Meng H, Zhang H. Proteomics analysis of Lactobacillus casei Zhang, a new probiotic bacterium isolated from traditional home-made koumiss in inner Mongolia of China. Mol Cell Proteomics. 2009a;8:2321–38.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wu R, Wang L, Wang J, Li H, Menghe B, Wu J, Guo M, Zhang H. Isolation and preliminary probiotic selection of lactobacilli from koumiss in inner Mongolia. J Basic Microbiol. 2009b;49:318–26.

    PubMed  Google Scholar 

  • Wu R, Sun Z, Wu J, Meng H, Zhang H. Effect of bile salts stress on protein synthesis of Lactobacillus casei Zhang revealed by 2-dimensional gel electrophoresis. J Dairy Sci. 2010;93:3858–68.

    PubMed  CAS  Google Scholar 

  • Wu R, Zhang W, Sun T, Wu J, Yue X, Meng H, Zhang H. Proteomic analysis of responses of a new probiotic bacterium Lactobacillus casei Zhang to low acid stress. Int J Food Microbiol. 2011;147:181–7.

    PubMed  CAS  Google Scholar 

  • Wu C, Zhang J, Chen W, Wang M, Du G, Chen J. A combined physiological and proteomic approach to reveal lactic-acid-induced alterations in Lactobacillus casei Zhang and its mutant with enhanced lactic acid tolerance. Appl Microbiol Biotechnol. 2012;93:707–22.

    PubMed  CAS  Google Scholar 

  • Wu J, Zhang J, Shi P, Wu R, Yue X, Zhang H. Bacterial community involved in traditional fermented soybean paste dajiang made in northeast China. Ann Microbio. 2013;63:1417–21.

    CAS  Google Scholar 

  • Xie Y, Chou LS, Cutler A, Weimer B. DNA macroarray profiling of Lactococcus lactis subsp. lactis IL 1403 gene expression during environmental stresses. Appl Environ Microbiol. 2004;70:6738–47.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yang F, Wang J, Li X, Ying T, Qiao S, Li D, Wu G. 2-DE and MS analysis of interactions between Lactobacillus fermentum I5007 and intestinal epithelial cells. Electrophoresis. 2007;28:4330–9.

    PubMed  CAS  Google Scholar 

  • Yates JR. Mass spectrometry and the age of the proteome. J Mass Spectrom. 1998;33:1–19.

    PubMed  CAS  Google Scholar 

  • Yates JR 3rd, Speicher S, Griffin PR, Hunkapiller T. Peptide mass maps: a highly informative approach to protein identification. Anal Biochem. 1993;214:397–408.

    PubMed  CAS  Google Scholar 

  • Yoon KY, Woodams EE, Hang YD. Production of probiotic cabbage juice by lactic acid bacteria. Bioresour Technol. 2006;97:1427–30.

    PubMed  CAS  Google Scholar 

  • Yuan J, Zhu L, Liu X, Li T, Zhang Y, Ying T, Wang B, Wang J, Dong H, Feng E, Li Q, Wang J, Wang H, Wei K, Zhang X, Huang C, Huang P, Huang L, Zeng M, Wang H. A proteome reference map and proteomic analysis of Bifidobacterium longum NCC2705. Mol Cell Proteomics. 2006;5:1105–18.

    Google Scholar 

  • Zaidi AH, Bakkes PJ, Lubelski J, Agustiandari H, Kuipers OP, Driessen AJM. The ABC-Type multidrug resistance transporter LmrCD is responsible for an extrusion-based mechanism of bile acid resistance in Lactococcus lactis. J Bacteriol. 2008;190:7357–66.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zapparoli G. Colony dimorphism associated with stress resistance in Oenococcus oeni VP01 cells during stationary growth phase. FEMS Microbiol Lett. 2004;239:261–5.

    PubMed  CAS  Google Scholar 

  • Zavaglia AG, Kociubinsky G, Perez P, de Antoni G. Isolation and characterization of Bifidobacterium strains for probiotic formulation. J Food Prot. 1998;61:865–73.

    CAS  Google Scholar 

  • Zhang W, Chait BT. ProFound: an expert system for protein identification using mass spectrometric peptide mapping information. Anal Chem. 2000;72:2482–9.

    PubMed  CAS  Google Scholar 

  • Zhang W, Yu D, Sun Z, Wu R, Chen X, Chen W, Meng H, Hu S, Zhang H. Complete genome sequence of Lactobacillus casei Zhang, a new probiotic strain isolated from traditional homemade koumiss in Inner Mongolia (China). J Bacteriol. 2010a;192:5268–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang YH, Zhang YP, Zhu Y, Mao S, Li Y. Proteomic analyses to reveal the protective role of glutathionein resistance of Lactococcus lactis to osmotic stress. Appl Environ Microbiol. 2010b;1:3177–86.

    Google Scholar 

  • Zhao J, Cheung PC. Comparative proteome analysis of Bifidobacterium longum subsp. infantis grown on β-glucans from different sources and a model for their utilization. J Agic Food Chem. 2013;61:4360–70.

    CAS  Google Scholar 

  • Zink R, Walker C, Schmidt G, Elli M, Pridmore D, Reniero R. Impact of multiple stress factors on the survival of dairy lactobacilli. Sci Aliments. 2000;20:119–26.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rina Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wu, R., Lu, J. (2014). Proteomics of Lactic Acid Bacteria. In: Zhang, H., Cai, Y. (eds) Lactic Acid Bacteria. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8841-0_4

Download citation

Publish with us

Policies and ethics