Skip to main content

Abstract

The analysis of seismic risk to multiple systems of spatially distributed infrastructures presents new challenges in the characterisation of the seismic hazard input. For this purpose a general procedure entitled “Shakefield” is established, which allows for the generation of samples of ground motion fields for both single scenario events, and for stochastically generated sets of events needed for probabilistic seismic risk analysis. For a spatially distributed infrastructure of vulnerable elements, the spatial correlation of the ground motion fields for different measures of the ground motion intensity is incorporated into the simulation procedure. This is extended further to consider spatial cross-correlation between different measures of ground motion intensity. In addition to the characterisation of the seismic hazard from transient ground motion, the simulation procedure is extended to consider secondary geotechnical effects from earthquake shaking. Thus the Shakefield procedure can also characterise the effects site amplification and transient strain, and also provide estimates of permanent ground displacement due to liquefaction, slope displacement and coseismic fault rupture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Spatially distributed ground motion intensities are modelled as joint lognormal random fields herein; thus, correlation provides a complete description of their statistical structure.

References

  • Akkar S, Bommer JJ (2010) Empirical equations for the prediction of PGA, PGV, and spectral accelerations in Europe, the Mediterranean Region, and the Middle East. Seismol Res Lett 81(2):195–206

    Article  Google Scholar 

  • Baker JW (2007) Correlation of ground motion intensity parameters used for predicting structural and geotechnical response. In: Kanda J, Takada T, Furuta H (eds) Applications of statistics and probability in civil engineering. Taylor & Francis, London/New York

    Google Scholar 

  • Baker JW, Cornell CA (2006) Correlation of response spectral values for multicomponents of ground motion. Bull Seismol Soc Am 96(1):215–227

    Article  Google Scholar 

  • Baker JW, Faber MH (2008) Liquefaction risk assessment using geostatistics to account for soil spatial variability. J Geotech Geoenviron Eng 134(1):14–23

    Article  Google Scholar 

  • Baker JW, Jayaram N (2008) Correlation of spectral acceleration values from NGA ground motion models. Earthq Spectra 24(1):299–317

    Article  Google Scholar 

  • Bazzurro P, Cornell CA (2004a) Ground-motion amplificationin nonlinear soil sites with uncertain properties. Bull Seismol Soc Am 94(6):2090–2109

    Article  Google Scholar 

  • Bazzurro P, Cornell CA (2004b) Nonlinear soil-site effects in probabilistic seismic hazard analysis. Bull Seismol Soc Am 94(6):2110–2123

    Article  Google Scholar 

  • Bindi D, Luzi L, Massa M, Pacor F (2010a) Horizontal and vertical ground motion prediction equations derived from the Italian Accelerometric Archive (ITACA). Bull Earthq Eng 8:1209–1230

    Article  Google Scholar 

  • Bindi D, Luzi L, Rovelli A (2010b) Ground motion prediction equations GMPEs derived from ITACA. Technical report, Deliverable No. 14, Project S4: Italian Strong Motion Data Base

    Google Scholar 

  • Bindi D, Pacor F, Luzi L, Puglia R, Massa M, Ameri G, Paolucci R (2011) Ground motion prediction equations derived from the Italian strong ground motion database. Bull Earthq Eng 9:1899–1920

    Article  Google Scholar 

  • Boore DM, Gibbs JF, Joyner WB, Tinsley JC, Ponti DJ (2003) Estimated ground motion from the 1994 Northridge, California, earthquake at the site of the Iinterstate I-10 and La Cienega Boulevard bridge colapse, West Los Angeles, California. Bull Seismol Soc Am 93(6):2737–2751

    Article  Google Scholar 

  • Bradley BA (2011a) Correlation of significant duration with amplitude and cumulative intensity measures and its use in ground motion selection. J Earthq Eng 15(6):809–832

    Article  Google Scholar 

  • Bradley BA (2011b) Empirical correlation of PGA, spectral accelerations and spectrum intensities from active shallow crustal earthquakes. Earthq Eng Struct Dyn 40(15):1707–1721

    Article  Google Scholar 

  • Chen R, Petersen MD (2011) Probabilistic fault displacement hazards for the Southern San Andreas fault using scenarios and empirical slips. Earthq Spectra 27(2):293–313

    Article  Google Scholar 

  • Chen Q, Seifried A, Andrade JE, Baker JW (2012) Characterization of random fields and their impact on the mechanics of geosystems at multiple scales. Int J Numer Anal Methods Geomech 36:140–165

    Article  Google Scholar 

  • Choi Y, Stewart JP (2005) Nonlinear site amplification function of 30m shear wave velocity. Earthq Spectra 21(1):1–30

    Article  Google Scholar 

  • Crowley H, Bommer JJ, Stafford PJ (2008a) Recent developments in the treatment of ground-motion variability in earthquake loss models. J Earthq Eng 12(S2):71–80

    Article  Google Scholar 

  • Crowley H, Stafford PJ, Bommer JJ (2008b) Can earthquake loss models be validated using field observations? J Earthq Eng 127:1078–1104

    Article  Google Scholar 

  • Davis M (1987) Production of conditional simulation via the LU decomposition of the covariance matrix. Math Geol 192:91–98

    Google Scholar 

  • Esposito S, Iervolino I (2011) PGA and PGV spatial correlation models based on European multievent datasets. Bull Seismol Soc Am 101(5):2532–2541

    Article  Google Scholar 

  • Esposito S, Iervolino I (2012) Spatial correlation of spectral acceleration in European data. Bull Seismol Soc Am 102(6):2781–2788

    Article  Google Scholar 

  • FEMA-450 (2003) NEHRP recommended provisions for seismic regulations for new buildings and other structures. Technical report, Federal Emergency Management Agency (FEMA), Washingon, DC

    Google Scholar 

  • Goda K, Atkinson GM (2009) Probabilistic characterisation of spatial correlated response spectra for earthquakes in Japan. Bull Seismol Soc Am 99(5):3003–3020

    Article  Google Scholar 

  • Goda K, Atkinson GM (2010) Intraevent spatial correlation of ground motion parameters using SK-net data. Bull Seismol Soc Am 100(6):3055–3067

    Article  Google Scholar 

  • Goda K, Hong HP (2008a) Spatial correlation of peak ground motions and response spectra. Bull Seismol Soc Am 98(1):354–365

    Article  Google Scholar 

  • Goda K, Hong HP (2008b) Estimation of seismic loss for spatially distributed buildings. Earthq Spectra 24(4):889–910

    Article  Google Scholar 

  • Goda K, Atkinson GM, Hunter JA, Crow H, Motazedian D (2011) Probabilistic liquefaction hazard analysis for four Canadian cities. Bull Seismol Soc Am 101(1):190–201

    Article  Google Scholar 

  • Hong HP, Zhang Y, Goda K (2009) Effect of spatial correlation on estimated ground motion prediction equations. Bull Seismol Soc Am 99(2A):928–934

    Article  Google Scholar 

  • Iervolino I, Giorgio M, Galasso C, Manfredi G (2010) Conditional hazard maps for secondary intensity measures. Bull Seismol Soc Am 100(6):3312–3319

    Article  Google Scholar 

  • Inoue T, Cornell CA (1990) Seismic hazard analysis of multi-degree-of-freedom structures. Technical report, RMS, Stanford

    Google Scholar 

  • Jayaram N, Baker JW (2008) Statistical tests of the joint distribution of spectral acceleration values. Bull Seismol Soc Am 98(5):2231–2243

    Article  Google Scholar 

  • Jayaram N, Baker JW (2009) Correlation model of spatially distributed ground motion intensities. Earthq Eng Struct Dyn 38:1687–1708

    Article  Google Scholar 

  • Jayaram N, Baker JW (2010a) Efficient sampling and data reduction techniques for probabilistic seismic lifeline risk assessment. Earthq Eng Struct Dyn 39(10):1109–1131

    Google Scholar 

  • Jayaram N, Baker JW (2010b) Cequations spatial correlation in mixed-effects regression, and impact on ground motion models. Bull Seismol Soc Am 100(6):3295–3303

    Article  Google Scholar 

  • Kramer SL, Mayfield RT (2007) Return period of soil liquefaction. J Geotech Geoenviron Eng 133(7):802–813

    Article  Google Scholar 

  • Loth C, Baker JW (2013) A spatial cross-correlation model of spectral accelerations at multiple periods. Earthq Eng Struct Dyn 42:397–417

    Article  Google Scholar 

  • Moss RES, Ross ZE (2011) Probabilistic fault displacement hazard analysis for reverse faults. Bull Seismol Soc Am 101(4):1542–1553

    Article  Google Scholar 

  • Musson R (2000) The use of Monte Carlo simulations for seismic hazard assessment in the UK. Annali di Geofisica 43(1):1–9

    Google Scholar 

  • NIBS N (2004) HAZUS-MH: techincal manual. Technical report, Federal Emergency Management Agency (FEMA), Washington, DC

    Google Scholar 

  • Oliver DS (2003) Gaussian cosimulation: modelling of the cross-covariance. Math Geol 356:681–698

    Article  Google Scholar 

  • Paolucci R, Smerzini C (2008) Earthquake-induced transient ground strains from dense seismic networks. Earthq Spectra 24(2):453–470

    Article  Google Scholar 

  • Park J, Bazzurro P, Baker JW (2007) Modeling spatial correlation of ground motion intensity measures for regional seismic hazard and portfolio loss estimation. In: Kanda J, Takada T, Furuta H (eds) Applications of statistics and probability in civil engineering. Taylor & Francis, London

    Google Scholar 

  • Petersen MD, Dawson TE, Chen R, Cao T, Wills CJ, Schwartz DP, Frankel AD (2011) Fault displacement hazard for strike-slip faults. Bull Seismol Soc Am 101(2):805–825

    Article  Google Scholar 

  • Pitilakis K, Riga E, Anastasiadis A (2012) Design spectra and amplification factors for Eurocode 8. Bull Earthq Eng 10:1377–1400

    Article  Google Scholar 

  • Pitilakis K, Riga E, Anastasiadis A (2013) New code site classification, amplification factors and normalised response spectra based on a worldwide ground-motion database. Bull Earthq Eng 11(4):925–966

    Article  Google Scholar 

  • Rathje EM, Saygill G (2011) Estimating fully probabilistic seismic sliding displacements of slopes from a pseudoprobabilistic approach. J Geotech Geoenviron Eng 137(3):208–217

    Article  Google Scholar 

  • Robinson D, Dhu T, Schneider J (2006) SUA: a compter program to compute site-response and epistemc ununcertainty for probabilistic seismic hazard analysis. Comput Geosci 32:109–123

    Article  Google Scholar 

  • Saygill G, Rathje EM (2008) Empirical predictive models for earthquake-induced sliding displacements of slopes. J Geotech Geoenviron Eng 134(6):790–803

    Article  Google Scholar 

  • Sokolov V, Wenzel F, Jean WY, Wen KL (2010) Uncertainty and spatial correlation of earthquake ground motion in Taiwan. Terr Atmos Ocean Sci 21(6):905–921

    Article  Google Scholar 

  • Tokimatsu K, Seed HB (1987) Evaluation of settlement in sands due to earthquake shaking. J Geotech Geoenviron Eng 113(8):861–878

    Article  Google Scholar 

  • Wang M, Takada T (2005) Macrospatial correlation model of seismic ground motions. Earthq Spectra 21:1137–1156

    Article  Google Scholar 

  • Weatherill G, Burton PW (2010) An alternative approach to probabilistic seismic hazard analysis in the Aegean region using Monte Carlo simulation. Tectonophysics 492:253–278

    Article  Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84(4):974–1002

    Google Scholar 

  • Youd TL, Perkins DM (1978) Mapping of liquefaction induced ground failure potential. J Geotech Eng Div ASCE 1044:433–466

    Google Scholar 

  • Youngs RR, Arabasz WJ, Ernest Anderson R, Ramelli AR, Aki JP, Slemmons DB, McCalpin JP, Doser DI, Fridrich CJ, Swan FH III, Rogers AM, Yount JC, Anderson LW, Smith KD, Bruhn RL, Knuepfer PLK, Smith RB, dePolo CM, O’Leary DW, Coppersmith KJ, Pezzopane SK, Schwartz DP, Whitney JW, Olig SS, Toro GR (2003) A methodology for probabilistic fault displacement hazard analysis (PFDHA). Earthq Spectra 19(1):191–219

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme Weatherill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Weatherill, G., Esposito, S., Iervolino, I., Franchin, P., Cavalieri, F. (2014). Framework for Seismic Hazard Analysis of Spatially Distributed Systems. In: Pitilakis, K., Franchin, P., Khazai, B., Wenzel, H. (eds) SYNER-G: Systemic Seismic Vulnerability and Risk Assessment of Complex Urban, Utility, Lifeline Systems and Critical Facilities. Geotechnical, Geological and Earthquake Engineering, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8835-9_3

Download citation

Publish with us

Policies and ethics