Skip to main content

Modeling and Analysis of Spray Pyrolysis Deposited SnO2 Films for Gas Sensors

  • Conference paper
  • First Online:
Transactions on Engineering Technologies

Abstract

Metal oxide materials such as tin oxide (SnO2) show powerful gas sensing capabilities. Recently, the deposition of a thin tin oxide film at the backend of a CMOS processing sequence has enabled the manufacture of modern gas sensors. Among several potential deposition methods for SnO2, spray pyrolysis deposition has proven itself to be relatively easy to use and cost effective while providing excellent surface coverage on step structures and etched holes. A model for spray pyrolysis deposition using a pressure atomizer is presented and implemented in a Level Set framework. A simulation of tin oxide deposition is performed on a typical gas sensor geometry and the resulting structure is imported into a finite element tool in order to analyze the electrical characteristics and thermo-mechanical stress present in the grown layer after processing. The deposition is performed at 400 °C and the subsequent cooling to room temperatures causes a stress to develop at the material interfaces due to variations in the coefficient of thermal expansion between the different materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Batzill, U. Diebold, The surface and materials science of tin oxide. Prog. Surf. Sci. 79(2), 47–154 (2005)

    Article  Google Scholar 

  2. G. Blandenet, M. Court, Y. Lagarde, Thin layers deposited by the pyrosol process. Thin Solid Films 77(1–3), 81–90 (1981)

    Article  Google Scholar 

  3. J. Boltz, D. Koehl, M. Wuttig, Low temperature sputter deposition of SnOx: Sb films for transparent conducting oxide applications. Surf. Coat. Technol. 205(7), 2455–2460 (2010)

    Article  Google Scholar 

  4. A. Bouaoud, A. Rmili, F. Ouachtari, A. Louardi, T. Chtouki, B. Elidrissi, H. Erguig, Transparent conducting properties of Ni doped zinc oxide thin films prepared by a facile spray pyrolysis technique using perfume atomizer. Mater. Chem. Phys. 137(3), 843–847 (2013)

    Article  Google Scholar 

  5. E. Brunet, T. Maier, G.C. Mutinati, S. Steinhauer, A. Köck, C. Gspan, W. Grogger, Comparison of the gas sensing performance of SnO2 thin film and SnO2 nanowire sensors. Sens. Actuator B 165, 110–118 (2012)

    Article  Google Scholar 

  6. D.M. Carvalho, J.L. Maciel Jr, L.P. Ravaro, R.E. Garcia, V.G. Ferreira, L.V. Scalvi, Numerical simulation of the liquid phase in SnO2 thin film deposition by sol-gel-dip-coating. J. Sol-Gel. Sci. Technol. 55(3), 385–393 (2010)

    Article  Google Scholar 

  7. O. Ertl, Numerical methods for topography simulation. Dissertation, Technischen Universität Wien, Fakultät für Elektrotechnik und Informationstechnik, http://www.iue.tuwien.ac.at/phd/ertl/ (2010)

  8. O. Ertl, S. Selberherr, A fast level set framework for large three-dimensional topography simulations. Comput. Phys. Commun. 180(8), 1242–1250 (2009)

    Article  Google Scholar 

  9. L. Filipovic, O. Ertl, S. Selberherr, Parallelization strategy for hierarchical run length encoded data structures. In Proceedings of IASTED International Conference on Parallel and Distributed Computing and Networks (PDCN) 2011, 15–17 Feb 2011, Innsbruck, Austria, pp. 131–138 (2011)

    Google Scholar 

  10. L. Filipovic, S. Selberherr, G.C. Mutinati, E. Brunet, S. Steinhauer, A. Köck, J. Teva, J. Kraft, J. Siegert, F. Schrank, Modeling spray pyrolysis deposition. In Lecture Notes in Engineering and Computer Science: Proceedings of World Congress on Engineering 2013, 3–5 July 2013, London, UK, pp. 987–992 (2013)

    Google Scholar 

  11. L. Filipovic, S. Selberherr, G.C. Mutinati, E. Brunet, S. Steinhauer, A. Köck, J. Teva, J. Kraft, J. Siegert, F. Schrank, C. Gspan, W. Grogger, Modeling the growth of thin SnO2 films using spray pyrolysis deposition. In Proceedings of International Conference on Simulation of Processes and Devices (SISPAD) 2013, 3–5 Sept 2013, Glasgow, UK, pp. 208–211

    Google Scholar 

  12. L. Filipovic, S. Selberherr, G.C. Mutinati, E. Brunet, S. Steinhauer, A. Köck, J. Teva, J. Kraft, J. Siegert, F. Schrank, A method for simulating spray pyrolysis deposition in the level set framework. Eng. Lett. 21(4), 224–240 (2013)

    Google Scholar 

  13. W. Göpel, K. Schierbaum, SnO2 sensors: current status and future prospects. Sens. Actuator B 26(1–3), 1–12 (1995)

    Article  Google Scholar 

  14. J. Greenwood, The correct and incorrect generation of a cosine distribution of scattered particles for Monte-Carlo modelling of vacuum systems. Vacuum 67(2), 217–222 (2002)

    Article  Google Scholar 

  15. C. Griessler, E. Brunet, T. Maier, S. Steinhauer, A. Köck, J. Teva, F. Schrank, M. Schrems, Tin oxide nanosensors for highly sensitive toxic gas detection and their 3D system integration. Microelectron. Eng. 88(8), 1779–1781 (2011)

    Article  Google Scholar 

  16. J. Joseph, V. Mathew, J. Mathew, K. Abraham, Studies on physical properties and carrier conversion of SnO2:Nd thin films. Turkish J. Phys. 33, 37–47 (2009)

    Google Scholar 

  17. G. Korotcenkov, V. Brinzari, J. Schwank, M. DiBattista, A. Vasiliev, Peculiarities of SnO2 thin film deposition by spray pyrolysis for gas sensor application. Sens. Actuator B 77(1–2), 244–252 (2001)

    Article  Google Scholar 

  18. S. Major, A. Banerjee, K. Chopra, Highly transparent and conducting indium-doped zinc oxide films by spray pyrolysis. Thin Solid Films 108(3), 333–340 (1983)

    Article  Google Scholar 

  19. G.L. Messing, S.C. Zhang, G.V. Jayanthi, Ceramic powder synthesis by spray pyrolysis. J. Am. Ceram. Soc. 76(11), 2707–2726 (1993)

    Article  Google Scholar 

  20. G. Mutinati, E. Brunet, S. Steinhauer, A. Köck, J. Teva, J. Kraft, J. Siegert, F. Schrank, E. Bertagnolli, CMOS-integrable ultrathin SnO2 layer for smart gas sensor devices. Procedia Eng. 47, 490–493 (2012)

    Article  Google Scholar 

  21. A. Nakaruk, C. Sorrell, Conceptual model for spray pyrolysis mechanism: fabrication and annealing of titania thin films. J. Coat. Technol. Res. 7(5), 665–676 (2010)

    Article  Google Scholar 

  22. S.H. Ng, J. Wang, D. Wexler, S.Y. Chew, H.K. Liu, Amorphous carbon-coated silicon nanocomposites: a low-temperature synthesis via spray pyrolysis and their application as high-capacity anodes for lithium-ion batteries. J. Phys. Chem. C 111(29), 11131–11138 (2007)

    Article  Google Scholar 

  23. S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  24. G. Patil, D. Kajale, V. Gaikwad, G. Jain, Spray pyrolysis deposition of nanostructured tin oxide thin films. ISRN Technol. 2012(1–5), 275872 (2012)

    Google Scholar 

  25. D. Perednis, L.J. Gauckler, Solid oxide fuel cells with electrolytes prepared via spray pyrolysis. Solid State Ion. 166(3–4), 229–239 (2004)

    Article  Google Scholar 

  26. D. Perednis, L.J. Gauckler, Thin film deposition using spray pyrolysis. J. Electroceram. 14(2), 103–111 (2005)

    Article  Google Scholar 

  27. C. Poulier, D. Smith, J. Absi, Thermal conductivity of pressed powder compacts: tin oxide and alumina. J. Eur. Ceram. Soc. 27(2), 475–478 (2007)

    Article  Google Scholar 

  28. K. Shamala, L. Murthy, K.N. Rao, Studies on tin oxide films prepared by electron beam evaporation and spray pyrolysis methods. Bull. Mater. Sci. 27(3), 295–301 (2004)

    Article  Google Scholar 

  29. M. Siegele, C. Gamauf, A. Nemecek, G.C. Mutinati, S. Steinhauer, A. Kock, J. Kraft, J. Siezert, F. Schrank, Optimized integrated micro-hotplates in CMOS technology. In Proceedings of IEEE International New Circuit and Systems Conference (NEWCAS) 2013, 16–19 June 2013, Paris, France, pp. 1–4 (2013)

    Google Scholar 

  30. S. Sinha, R. Bhattacharya, S. Ray, I. Manna, Influence of deposition temperature on structure and morphology of nanostructured SnO2 films synthesized by pulsed laser deposition. Mater. Lett. 65(2), 146–149 (2011)

    Article  Google Scholar 

  31. A. Tischner, T. Maier, C. Stepper, A. Köck, Ultrathin SnO2 gas sensors fabricated by spray pyrolysis for the detection of humidity and carbon monoxide. Sens. Actuators B 134(2), 796–802 (2008)

    Article  Google Scholar 

  32. I. Volintiru, A. de Graaf, J. Van Deelen, P. Poodt, The influence of methanol addition during the film growth of SnO2 by atmospheric pressure chemical vapor deposition. Thin Solid Films 519(19), 6258–6263 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partly performed in the COCOA-CATRENE European project and in the project ESiP. In this latter the Austrian partners are funded by the Austrian Research Promotion Agency (FFG) under project no. 824954 and the ENIAC Joint Undertaking.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lado Filipovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Filipovic, L. et al. (2014). Modeling and Analysis of Spray Pyrolysis Deposited SnO2 Films for Gas Sensors. In: Yang, GC., Ao, SI., Gelman, L. (eds) Transactions on Engineering Technologies. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8832-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8832-8_22

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8831-1

  • Online ISBN: 978-94-017-8832-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics