Skip to main content

Spatial Prediction of a Pre-curved Bimetallic Strip Under Combined Loading

  • Conference paper
  • First Online:
  • 1517 Accesses

Abstract

This work establishes a way of calculating the free end point position, of a pre-curved bimetallic strip, that is subjected to uniform heating. The prediction of the endpoint of a bimetallic strip is required during the design phase of an electronic control circuit sensor switch that uses a sensing/activating unit containing a bimetallic strip. Bimetallic sensors are normally flat at ambient temperature and at the required sensing temperature the strip bends into a radius of curvature, this then displaces the contact on the end of the strip to make or break an electrical circuit. Although the normal, flat type of bimetallic sensor exists, this work concentrates on a pre-curved bimetallic sensor at ambient temperature. A curved bimetallic strip sensor provides a much larger sensing range and displacement at the free end of the strip, per degree of temperature change, than for a straight bimetallic strip. The greater sensing range is due to the arc length of the bimetallic strip being longer which affords a greater flexibility at the activation point when compared to the chord length of an equivalent straight bimetallic strip. Pre-curved bimetallic test samples were subjected to heating whilst the motion of the free end point of the strip was recorded on a metal plate. As the heat applied to the samples was increased, many temperature points were recorded to generate approximate loci of points. The loci of test points compared well to theoretical curve generated by the derived formulae. Therefore the advantages of this work offers a less critical sensing range, it also benefits from a mechanism which can be designed to be much smaller and take less space in the product compared to a comparable flat bimetallic strips sensor.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S. Timoshenko, Analysis of bi-metal thermostats. JOSA 11, 233–255 (1925)

    Article  Google Scholar 

  2. G. Angel, G. Haritos, I. Campbell., in WCE 2013: Straightening locus of a curved bimetallic strip subjected to heating. Proceedings of The World Congress on Engineering, London. Lecture Notes in Engineering and Computer Science, pp. 2059–2064, 3–5 July 2013

    Google Scholar 

  3. B.C. Shivalik, Ltd., Bimetallic Strip Supplier, SBC-206-1 [cited 2013 November]. Available from http://www.shivalikbimetals.com

  4. A.B. Kanthal, The Kanthal Thermostatic Bimetal Handbook, vol. 135. (Hallstahammar: Kanthal, 2008), p. 30.

    Google Scholar 

  5. Matweb, Online materials information resource [cited 2013 November]. Available from http://www.matweb.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Dennis Angel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Angel, G.D., Haritos, G., Campbell, I.S. (2014). Spatial Prediction of a Pre-curved Bimetallic Strip Under Combined Loading. In: Yang, GC., Ao, SI., Gelman, L. (eds) Transactions on Engineering Technologies. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8832-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8832-8_17

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8831-1

  • Online ISBN: 978-94-017-8832-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics