Skip to main content

Far-Infrared Semiconductor Detectors and Focal Plane Arrays

  • Conference paper
  • First Online:
THz and Security Applications

Abstract

The detection of far-infrared (far-IR) and sub-mm-wave radiation is resistant to the commonly employed techniques in the neighbouring microwave and IR frequency bands. In this wavelength detection range the use of solid state detectors has been hampered for the reasons of transit time of charge carriers being larger than the time of one oscillation period of radiation. Also the energy of radiation quanta is substantially smaller than the thermal energy at room temperature and even liquid nitrogen temperature.

Development of focal plane arrays started in 1970s last century and has revolutionized imaging systems in the next decades. This chapter presents progress in far-IR and sub-mm-wave semiconductor detector technology of focal plane arrays during the past 20 years. Special attention is given on recent progress in the detector technologies for real-time uncooled THz focal plane arrays such as Schottky barrier arrays, field-effect transistor detectors, and microbolometers. Also cryogenically cooled silicon and germanium extrinsic photoconductor arrays, and semiconductor bolometer arrays are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agnese P, Buzzi C, Rey P et al (1999) New technological development for far-infrared bolometer arrays. Proc SPIE 3698:284–290

    Article  ADS  Google Scholar 

  2. Al Hadi R, Sherry H, Grzyb J et al (2012) A 1 k-pixel video camera for 0.7–1.1 terahertz imaging applications in 65-nm CMOS. IEEE J Solid State Circ 47:2999–3012

    Article  Google Scholar 

  3. Arone D (2004) 10 emerging technologies that will change your world. Technol Rev (February): 32–50

    Google Scholar 

  4. Billot N, Agnese P, Augueres JL et al (2006) The Herschel/PACS 2560 bolometers imaging camera. Proc SPIE 6265:62650D

    Article  Google Scholar 

  5. Bolduc M, Terroux M, Tremblay B et al (2011) Noise-equivalent power characterization of an uncooled microbolometer-based THz imaging camera. Proc SPIE 8023:80230C-1–10

    Google Scholar 

  6. Brown ER, Young AC, Zimmerman J et al (2006) High-sensitivity, quasi-optically-coupled semimetal-semiconductor detectors at 104 GHz. Proc SPIE 6212:621205

    Article  Google Scholar 

  7. Corcos D, Brouk I, Malits M et al (2011) The TeraMOS sensor for monolithic passive THz imagers. In: 2011 IEEE international Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS), Tel Aviv, 8–9 November

    Google Scholar 

  8. Crowe TW, Porterfield DP, Hesler JL (2005) Terahertz sources and detectors. Proc SPIE 5790:271–280

    Article  ADS  Google Scholar 

  9. Dobrovolsky V, Sizov FF (2010) THz/sub-THz bolometer based on the electron heating in a semiconductor waveguide. Opto Electron Rev 18:250–258

    Article  ADS  Google Scholar 

  10. Dyakonov M, Shur MS (1993) Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by the dc current. Phys Rev Lett 71:2465–2468

    Article  ADS  Google Scholar 

  11. Farhoomand J, Sisson DL, Beeman JW (2008) Viability of layered-hybrid architecture for far IR focal-plane arrays. Infrared Phys Technol 51:152–159

    Article  ADS  Google Scholar 

  12. Farhoomand J, Sisson DL, Beeman JW (2010) Latest progress in developing large format Ge arrays for far-IR astronomy. Proc SPIE 7741:77410A-1–8

    Google Scholar 

  13. Haller EE, Breeman JW (2002) Far infrared photoconductors: recent advances and future prospects. Far-IR, Sub-mm & MM Detector Technology Workshop, Monterey

    Google Scholar 

  14. Han R, Zhang Y, Coquillat D et al (2011) A 280-GHz diode detector in 130-nm digital CMOS. IEEE J Solid State Circ 46:2602–2612

    Article  Google Scholar 

  15. Han R, Zhang Y, Kim Y et al (2012) 280GHz and 860GHz image sensors using Schottky-barrier diodes in 0.13μm digital CMOS. In: IEEE international solid-state circuits conference, San Francisco, 19–23 February, pp 254–255

    Google Scholar 

  16. Harwit M, Helou G, Armus L et al (2012) Far-infrared/submillimeter astronomy from space tracking an evolving universe and the emergence of life. http://www.ipac.caltech.edu/DecadalSurvey/farir.html

  17. Hesler JL, Crowe TW (2007) Responsivity and noise measurements of zero-bias Schottky diode detectors. In: Proceedings of the 18th international symposium on Space Terahertz Technology, Pasadena

    Google Scholar 

  18. Hogue H, Atkins E, Reynolds D et al (2011) Update on blocked impurity band detector technology from DRS. Proc SPIE 7780(778004):1–10

    Google Scholar 

  19. http://fifi-ls.mpg-garching.mpg.dr/detector.html

  20. http://herschel.jpl.nasa.gov/spireInstrument.shtml

  21. http://www.infraredlaboratories.com/InSb_Hot_e_Bolometers.html

  22. Kazanskii AG, Richards PL, Haller EE (1977) Far-infrared photoconductivity of uniaxially stressed germanium. Appl Phys Lett 31:496–497

    Article  ADS  Google Scholar 

  23. Knap W, Dyakonov MI (2013) Field effect transistors for terahertz applications. In: Saeedkia (ed) Handbook of terahertz technology. Woodhead Publishing, Cambridge, pp 121–155

    Google Scholar 

  24. Knap W, Teppe F, Meziani Y et al (2004) Plasma wave detection of sub-terahertz and terahertz radiation by silicon field-effect transistors. Appl Phys Lett 85:675

    Article  ADS  Google Scholar 

  25. Lee AWN, Williams BS, Kumar S et al (2006) Real-time imaging using a 4.3-THz quantum cascade laser and a 320 × 240 microbolometer focal-plane array. IEEE Photon Technol Lett 18:1415–1417

    Article  ADS  Google Scholar 

  26. Leotin J (1986) Far infrared photoconductive detectors. Proc SPIE 666:81–100

    Article  Google Scholar 

  27. Mills R, Beuville E, Corrales E et al (2011) Evolution of large format impurity band conductor focal plane arrays for astronomy applications. Proc SPIE 8154:81540R-1–10

    Google Scholar 

  28. Nguyen D-T, Simoens F, Ouvrier-Buffet J-L et al (2012) Broadband THz uncooled antenna-coupled microbolometer array—electromagnetic design, simulations and measurements. IEEE Trans Terahertz Sci Technol 2:299–305

    Article  Google Scholar 

  29. Norton PR (1991) Infrared image sensors. Opt Eng 30:1649–1663

    Article  ADS  Google Scholar 

  30. OAD-7 Golay detector operating manual, QMC Instruments Ltd., Cardiff, UK, 4 Jan 2005

    Google Scholar 

  31. Oda N (2010) Uncooled bolometer-type terahertz focal-plane array and camera for real-time imaging. Comptes Rendus Phys 11:496–509

    Article  ADS  Google Scholar 

  32. Öjefors E, Pfeiffer UR, Lisauskas A et al (2009) A 0.65 THz focal-plane array in a quarter-micron CMOS process technology. IEEE J Solid State Circ 44:1968–1280

    Article  Google Scholar 

  33. Petroff MD, Stapelbroek MG (1986) Blocked-impurity-band detectors. US Patent No.4,566,960. Filled 23 Oct 1980, granted 4 Feb 1986

    Google Scholar 

  34. Phillips TG, Jefferts KB (1973) A low temperature bolometer heterodyne receiver for millimeter wave astronomy. Rev Sci Instrum 44:1009–1014

    Article  ADS  Google Scholar 

  35. Poglitsch A, Waelkens C, Bauer OH et al (2008) The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Laboratory. Proc SPIE 7010:701005

    Article  Google Scholar 

  36. Pyroelectric Detector, product sheet for model SPH-62. Spectrum Detector Inc., Lake Oswego, OR. www.spectrumdetector.com

  37. Rogalski (2011) Infrared detectors, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  38. Sizov F (2010) THz radiation sensors. Opto Electron Rev 18:10–36

    Article  ADS  Google Scholar 

  39. Sizov F, Rogalski A (2010) THz detectors. Prog Quantum Electron 34:278–347

    Article  ADS  Google Scholar 

  40. Tauk R, Teppe F, Boubanga S et al (2006) Plasma wave detection of terahertz radiation by silicon field effects transistors: responsivity and noise equivalent power. Appl Phys Lett 89:253511

    Article  ADS  Google Scholar 

  41. Ueda T, An Z, Komiyama S (2011) Temperature dependence of novel single-photon detectors in the long-wavelength infrared range. J Infrared Millim Terahertz Waves 32:673–680

    Article  Google Scholar 

  42. Young DT, Irvin JC (1965) Millimeter frequency conversion using Au-n-type GaAs Schottky barrier epitaxial diodes with a novel contacting technique. Proc IEEE 53:2130–2132

    Article  Google Scholar 

  43. Zhang Z, Rajavel R, Deelman P et al (2011) Sub-micro area heterojunction backward diode millimeter-wave detectors with 0.18 pW/Hz1/2 noise equivalent power. IEEE Microw Wirel Compon Lett 21:267–269

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antony Rogalski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Rogalski, A. (2014). Far-Infrared Semiconductor Detectors and Focal Plane Arrays. In: Corsi, C., Sizov, F. (eds) THz and Security Applications. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8828-1_2

Download citation

Publish with us

Policies and ethics