Skip to main content

Towards Computational Non-associative Lambek Lambda-Calculi for Formal Pragmatics

  • Chapter
Formal Approaches to Semantics and Pragmatics

Part of the book series: Studies in Linguistics and Philosophy ((SLAP,volume 95))

  • 804 Accesses

Abstract

This paper will propose a new “mathematical foundation” for formal pragmatics, based on Non-associative Lambek Lambda Calculi (Wansing 1993; Buszkowski 1987, 1997) which are enhanced by substructural modalities \(\underset{\{s\}}{!}\) for each substructurality \(s\) (Jacobs 1994; Morrill 1994), computational monads \(\mathcal {T}\) as in Computational Lambda Calculi (Moggi 1991; Benton 1995; Benton and Wadler 1996; Goubault-Larrecq et al. 2008), and new type constructor for each \(\alpha \)-position. I will show that the resulting system, called the Computational Lambek \(\alpha \lambda \)-Calculus (\(\lambda _{c\alpha \odot !}\)), is enough to treat formal pragmatics including information structures, underspecification, and communicative interactions.

This is the last paper written by Norry Ogata before his untimely death. As such, the editors have decided to leave it mostly unchanged, despite some insightful comments from reviewers (whom we would like to thank). We have only made occasional minor edits for clarity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This version of \((C)\) and \((W)\) are the Gentzen sequent’s ones.

References

  • Abrusci, V. M. (1991). Phase semantics and sequent calculus for pure noncommutative classical linear propositional logic. The Journal of Symbolic Logic, 56(4), 1403–1451.

    Google Scholar 

  • Abrusci, V. M. (2002). Classical conservative extensions of Lambek calculus. Studia Logica, 71(3), 277–314.

    Google Scholar 

  • Abrusci, V. M. (2003). Towards a semantics of proofs for non-commutative logic: Multiplicatives and additives. Theoretical Computer Science, 294(3), 335–351.

    Google Scholar 

  • Adámek, J., Herrlich, H., & Strecker, G. E. (1990). Abstract and concrete categories—The joy of cats. New York: John Wiley and Son Inc.

    Google Scholar 

  • Adámek, J. (2005). Introduction to coalgebra. Theory and Applications of Categories, 14(8), 157–199.

    Google Scholar 

  • Asperti, A., & Longo, G. (1991). Categories, types, and structures: An introduction to category theory for the working computer scientist. Cambridge: The MIT Press.

    Google Scholar 

  • Barker, C. (2002). Continuations and the nature of quantification. Natural Language Semantics, 10(3), 211–242.

    Google Scholar 

  • Barker, C., & Shan, C.-C. (2006). Types as graphs: Continuations in type logical grammar. Journal of Logic, Language and Information, 15(4), 331–370.

    Google Scholar 

  • Benton, N. (1995). A mixed linear and non-linear logic: Proofs, terms and models (extended abstract). In Selected papers from the 8th International Workshop on Computer Science Logic (Vol. 933, pp. 121–135). Lecture Notes in Computer Science.

    Google Scholar 

  • Benton, N., & Wadler, P. (1996). Linear logic, monads and the lambda calculus. In Proceedings of the 11th Annual IEEE Symposium on Logic in Computer, Science (pp. 420–431).

    Google Scholar 

  • Bierman, G. M. (1995). What is a categorical model of intuitionistic linear logic? In Proceedings of the Second International Conference on Typed Lambda Calculi and Applications (Vol. 902, pp. 78–93). Lecture Notes in Computer Science, April 1995.

    Google Scholar 

  • Blute, R., & Scott, P. (2004). Category theory for linear logicians. In Linear logic in computer science (Vol. 316, pp. 3–64). London Mathematical Society Lecture Note Series. Cambridge: Cambridge University Press.

    Google Scholar 

  • Blute, R. F., Lamarche, F., & Ruet, P. (2002). Entropic Hopf algebras and models of non-commutative logic. Theory and Applications of Categories, 10(17), 424–460.

    Google Scholar 

  • Buszkowski, W. (1997). Mathematical linguistics and proof theory. In J. van Benthem & A. ter Meulen (Eds.), Handbook of logic and language (Chapter 12, pp. 683–736). Amsterdam: Elsevier Science B.V.

    Google Scholar 

  • Buszkowski, W. (1987). The logic of types. In J. T. Srzednicki (Ed.), Initiatives in logic (Vol. 2, pp. 180–206). Dordrecht: Nijhoff.

    Chapter  Google Scholar 

  • Cîrstea, C. (2006). Modularity in coalgebra. Electric Notes in Theoretical Computer Science, 164(1), 3–26.

    Article  Google Scholar 

  • de Groote, P. (1999). The non-associative Lambek calculus with product in polynomial time. In Proceedings of Automated Reasoning with Analytic Tableaux and Related Methods (pp. 128–139).

    Google Scholar 

  • de Groote, P. (2008). A type-theoretic view of dynamic logic. Tokyo: Presented in Fifth Workshop on Lambda Calculus and Formal Grammar.

    Google Scholar 

  • de Groote, P., & Lamarche, F. (2002). Classical non-associative Lambek calculus. Studia Logica, 71(3), 355–388.

    Article  Google Scholar 

  • Gabbay, D. M. (1996). Labelled deductive systems (Vol. 1). Oxford: Clarendon Press.

    Google Scholar 

  • Girard, J.-Y. (1987). Linear logic. Theoretical Computer Science, 50, 1–102.

    Google Scholar 

  • Goubault-Larrecq, J., Lasota, S., & Nowak, D. (2008). Logical relations for monadic types. Mathematical Structures in Computer Science, 18, 1169–1217.

    Google Scholar 

  • Iwasa, M. (1983). Chugoku no Shosu Minzoku to Gengo (The Minority Ethnic Groups and their Languages in China). Tokyo: Koseikan.

    Google Scholar 

  • Jacobs, B. (1994). Semantics of weakening and contraction. Annals of Pure and Applied Logic, 69(1), 73–106.

    Google Scholar 

  • Kanazawa, M. (1999). Lambek calculus: Recognizing power and complexity. In J. Gerbrandy, M. Marx, M. de Rijke & Y. Venema (Eds.), JFAK. Essays dedicated to Johan van Benthem on the occasion of his 50th Birthday. Amsterdam: Amsterdam University Press, Vossiuspers.

    Google Scholar 

  • Kanazawa, M. (1992). The Lambek calculus enriched with additional connectives. Journal of Logic, Language and Information, 1(2), 141–171.

    Google Scholar 

  • Lambek, J. (1958). The mathematics of sentence structure. The American Mathematical Monthly, 65, 154–170.

    Google Scholar 

  • Lambek, J. (1968). Deductive systems and categories I. Syntactic calculus and residuated categories. Journal of Mathematical Systems Theory, 2(4), 287–318.

    Google Scholar 

  • Lambek, J. (2004). Bicategories in algebra and linguistics. In T. Ehrhard, J.-Y. Girard, P. Ruet, & P. Scott (Eds.), Linear logic in computer science (pp. 325–345). Cambridge: Cambridge University Press.

    Google Scholar 

  • Mac Lane, S. (1998). Categories for the working mathematician. Berlin: Springer.

    Google Scholar 

  • Moggi, E. (1989). An abstract view of programming languages. Technical report: Stanford University.

    Google Scholar 

  • Moggi, E. (1991). Notions of computation and monads. Information and Computation, 93(1), 55–92.

    Google Scholar 

  • Moortgat, M. (1997). Categorial type logics. In J. van Benthem & A. ter Meulen (Eds.), Handbook of logic and language (pp. 93–177). Amsterdam: Elsevier Science B.V.

    Google Scholar 

  • Morrill, G. V. (1994). Type logical grammar: Categorial logic of signs. New York: Springer.

    Book  Google Scholar 

  • Moss, L. S., & Viglizzo, I. D. (2004). Harsanyi type spaces and final coalgebras constructed from satisfied theories. Electronic Notes in Theoretical Computer Science, 106, 279–295.

    Article  Google Scholar 

  • Ōno, S., et al. (1974). Iwanami Kogo Jiten (The Iwanami Dictionary of Old Japanese). Tokyo: Iwanami Shoten.

    Google Scholar 

  • Polakow, J., & Pfenning, F. (1999). Natural deduction for intuitionistic non-commutative linear logic. In Proceedings of the 4th International Conference on Typed Lambda Calculi and Applications (pp. 295–309).

    Google Scholar 

  • Ramsey, N., & Pfeffer, A. (2002). Stochastic lambda calculus and monads of probability distributions. In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (pp. 154–165).

    Google Scholar 

  • Restall, G. (2000). An introduction to substructural logics. London: Routledge.

    Book  Google Scholar 

  • Schröder, L. (2008). Expressivity of coalgebraic modal logic: The limits and beyond. Theoretical Computer Science, 390(2–3), 230–247.

    Google Scholar 

  • Shan, C.-C., & Barker, C. (2006). Explaining crossover and superiority as left-to-right evaluation. Linguistics and Philosophy, 29(1), 91–134.

    Google Scholar 

  • Sørensen, M. H., & Urzyczyn, P. (2006). Lectures on the Curry-Howard isomorphism. Amsterdam, Netherlands: Elsevier Science Inc.

    Google Scholar 

  • Steedman, M. (2000). The syntactic process. Cambridge: The MIT Press.

    Google Scholar 

  • Sun, H., Lu, S., Zhang, J., & Jueya, O. (Eds.). (1980). Menba, Luoba, Dengren de yuyan (The languages of Memba, Lakpa, and Den). Beijing: Zhonguo Shehui Kexue Chuanshe.

    Google Scholar 

  • Wadler, P. (1992). Comprehending monads. Mathematical Structures in Computer Science, 2(4), 461–493.

    Google Scholar 

  • Walker, D. (2005). Substructural type systems. In B. C. Pierce (Ed.), Advanced topics in types and programming languages (pp. 3–43). Cambridge: The MIT Press.

    Google Scholar 

  • Wansing, H. (1993). The logic of information structures. Berlin: Springer.

    Google Scholar 

  • Wansing, H. (2002). A rule-extension of the non-associative Lambek calculus. Studia Logica, 71(3), 443–451.

    Google Scholar 

  • Yamada, Y. (1912). Narachō Bunpō-shi (The History of the Grammar of the Japanese in the Nara Era). Tokyo: Hōbunkan.

    Google Scholar 

  • Yetter, D. N. (1990). Quantales and (noncommutative) linear logic. The Journal of Symbolic Logic, 55(1), 41–64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ogata, N. (2014). Towards Computational Non-associative Lambek Lambda-Calculi for Formal Pragmatics. In: McCready, E., Yabushita, K., Yoshimoto, K. (eds) Formal Approaches to Semantics and Pragmatics. Studies in Linguistics and Philosophy, vol 95. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8813-7_11

Download citation

Publish with us

Policies and ethics