Skip to main content

Changes in Nutrient Content and Availability During the Slow Pyrolysis of Animal Wastes

  • Chapter
  • First Online:
Applied Manure and Nutrient Chemistry for Sustainable Agriculture and Environment

Abstract

Although a large number of reports are available on the total and soluble phosphorus, potassium, and nitrogen (and other nutrient elements) content of manure biochars, information is lacking to understand the changes in chemical speciation of different elements during pyrolysis. Manure is intrinsically heterogeneous, and is composed of feces, urine, bedding materials, waste feed (and their degradation products formed during storage) and in some cases soils. Molecular level understandings in thermochemical transformation pathways are necessary to predict the utility of manure biochars as a sterile, renewable, organic fertilizer for different soil types. This critical review will utilize micro/spectroscopic characterization of manure biochars from slow pyrolysis and gasification as well as manure ash to understand the phosphorus speciation. Inorganic (ash) component is enriched with phosphorus and potassium, and can comprise over 50 wt% (on a dry weight basis) of manure biochar. “Ash” is a complex mixture of amorphous, semi-crystalline, and crystalline inorganic phases as well as organic (char) components. These ash components may be originally present in the manure feedstock or thermochemically produced (e.g., apatite). Organic carbon fraction of biochar likely stabilizes ash by various organo-mineral interactions, e.g., by serving as a template for the formation of nano-crystals during pyrolysis. Depending on the thermochemical conversion procedure, stable minerals like hydroxyapatite and whitlockite may form. Much like phosphate rock, acidulation and other pretreatments such as blending with more soluble fertilizer and compost may be necessary to fully utilize less soluble P of manure biochars under alkaline conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bridle TR, Pritchard D (2004) Energy and nutrient recovery from sewage sludge via pyrolysis. Water Sci Technol 50:169–175

    PubMed  CAS  Google Scholar 

  • Cade-Menun BJ, Berch SM, Preston CM, Lavkulich LM (2000) Phosphorus forms and related soil chemistry of Podzolic soils on northern Vancouver Island. II. The effects of clear-cutting and burning. Can J For Res 30:1726–1741

    Article  CAS  Google Scholar 

  • Cantrell K, Ro K, Mahajan D, Anjom M, Hunt PG (2007) Role of thermochemical conversion in livestock waste-to-energy treatments: obstacles and opportunities. Ind Eng Chem Res 46:8918–8927

    Article  CAS  Google Scholar 

  • Cantrell KB, Ducey T, Ro KS, Hunt PG (2008) Livestock waste-to-bioenergy generation opportunities. Bioresour Technol 99:7941–7953

    Article  PubMed  CAS  Google Scholar 

  • Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS (2012) Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol 107:419–428

    Article  PubMed  CAS  Google Scholar 

  • Cao XD, Harris W (2010) Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour Technol 101:5222–5228

    Article  PubMed  CAS  Google Scholar 

  • Centner TJ, Newton GL (2008) Meeting environmental requirements for the land application of manure. J Anim Sci 86:3228–3234

    Article  PubMed  CAS  Google Scholar 

  • Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2008) Using poultry litter biochars as soil amendments. Aust J Soil Res 46:437–444

    Article  Google Scholar 

  • Coventry JL, Halliwell DJ, Nash DM (2001) The orthophosphate content of bicarbonate soil extracts. Aust J Soil Res 39:415–421

    Article  CAS  Google Scholar 

  • Dai Z, Meng J, Muhammad N, Liu X, Wang H, He Y, Brookes PC, Xu J (2013) The potential feasibility for soil improvement, based on the properties of biochars pyrolyzed from different feedstocks. J Soil Sediment 13:989–1000

    Article  Google Scholar 

  • Enders A, Lehmann J (2012) Comparison of wet-digestion and dry-ashing methods for total elemental analysis of biochar. Commun Soil Sci Plant Anal 43:1042–1052

    Article  CAS  Google Scholar 

  • Fuller CC, Bargar JR, Davis JA (2003) Molecular-scale characterization of uranium sorption by bone apatite materials for a permeable reactive barrier demonstration. Environ Sci Technol 37:4642–4649

    Article  PubMed  CAS  Google Scholar 

  • Gaskin JW, Steiner C, Harris K, Das KC, Bibens B (2008) Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans ASABE 51:2061–2069

    Article  Google Scholar 

  • Gilbert N (2009) The disappearing nutrient. Nature 461:716–718

    Article  PubMed  CAS  Google Scholar 

  • Herrera D, Harris WG, Nair VD, Josan M, Staples CR (2010) Effect of dietary modifications of calcium and magnesium on reducing solubility of phosphorus in feces from lactating dairy cows. J Dairy Sci 93:2598–2611

    Article  PubMed  CAS  Google Scholar 

  • Hochella MF Jr, Lower SK, Maurice PA, Penn RL, Sahai N, Sparks DL, Twining BS (2008) Nanominerals, mineral nanoparticles, and earth systems. Science 319:1631–1635

    Article  PubMed  CAS  Google Scholar 

  • Hossain MK, Strezov V, Chan KY, Ziolkowski A, Nelson PF (2011) Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J Environ Manag 92:223–228

    Article  CAS  Google Scholar 

  • Iijima M, Moriwaki Y (1998) Lengthwise and oriented growth of octacalcium phosphate crystal in polyacrylamide gel in a model system of tooth enamel apatite formation. J Cryst Growth 194:125–132

    Article  CAS  Google Scholar 

  • Jha P, Biswas AK, Lakaria BL, Rao AS (2010) Biochar in agriculture – prospects and related implications. Curr Sci 99:1218–1225

    CAS  Google Scholar 

  • Knicker H (2007) How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 85:91–118

    Article  CAS  Google Scholar 

  • Komiyama T, Kobayashi A, Yahagi M (2013) The chemical characteristics of ashes from cattle, swine and poultry manure. J Mater Cycles Waste Manag 15:106–110

    Article  CAS  Google Scholar 

  • Ksawery K, John GR, Gorm PT, Baiq Emielda Y (2010) The composition and dissolution in citric extractants of ash from the thermal gasification of pig manure. Chem Eng J 163:1–9

    Article  CAS  Google Scholar 

  • Lehmann J, da Silva JP, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the central amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249:343–357

    Article  CAS  Google Scholar 

  • Lima IM, Boateng AA, Klasson KT (2009) Pyrolysis of broiler manure: char and product gas characterization. Ind Eng Chem Res 48:1292–1297

    Article  CAS  Google Scholar 

  • Miller DN, Varel VH (2002) An in vitro study of manure composition on the biochemical origins, composition, and accumulation of odorous compounds in cattle feedlots. J Anim Sci 80:2214–2222

    PubMed  CAS  Google Scholar 

  • Miller DN, Varel VH (2003) Swine manure composition affects the biochemical origins, composition, and accumulation of odorous compounds. J Anim Sci 81:2131–2138

    PubMed  CAS  Google Scholar 

  • Nishanth D, Biswas DR (2008) Kinetics of phosphorus and potassium release from rock phosphate and waste mica enriched compost and their effect on yield and nutrient uptake by wheat (Triticum aestivum). Bioresour Technol 99:3342–3353

    Article  PubMed  CAS  Google Scholar 

  • North Carolina Department of Agriculture and Consumer Services (1994) http://www.bae.ncsu.edu. Biological and Agricultural Engineering Department, Agronomic Division, North Carolina State University

  • Novak JM, Lima I, Xing B, Gaskin JW, Steiner C, Das KC, Watts DW, Busscher WJ, Schomberg H (2009) Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann Environ Sci 3:195–206

    CAS  Google Scholar 

  • Nowakowski DJ, Woodbridge CR, Jones JM (2008) Phosphorus catalysis in the pyrolysis behaviour of biomass. J Anal Appl Pyrolysis 83:197–204

    Article  CAS  Google Scholar 

  • Omelon SJ, Grynpas MD (2008) Relationships between polyphosphate chemistry, biochemistry and apatite biomineralization. Chem Rev 108:4694–4715

    Article  PubMed  CAS  Google Scholar 

  • Peretyazhko T, Sposito G (2005) Iron(III) reduction and phosphorous solubilization in humid tropical forest soils. Geochim Cosmochim Acta 69:3643–3652

    Article  CAS  Google Scholar 

  • Plaza C, Sanz R, Clemente C, Fernández JM, González R, Polo A, Colmenarejo MF (2007) Greenhouse evaluation of struvite and sludges from municipal wastewater treatment works as phosphorus sources for plants. J Agric Food Chem 55:8206–8212

    Article  PubMed  Google Scholar 

  • Qian L, Chen B, Hu D (2013) Effective alleviation of aluminum phytotoxicity by manure-derived biochar. Environ Sci Technol 47:2737–2745

    Article  PubMed  CAS  Google Scholar 

  • Quyn DM, Wu H, Li CZ (2002) Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part I. Volatilisation of Na and Cl from a set of NaCl-loaded samples. Fuel 81:143–149

    Article  CAS  Google Scholar 

  • Sato S, Solomon D, Hyland C, Ketterings QM, Lehmann J (2005) Phosphorus speciation in manure and manure-amended soils using XANES spectroscopy. Environ Sci Technol 39:7485–7491

    Article  PubMed  CAS  Google Scholar 

  • Siebers N, Leinweber P (2013) Bone char: a clean and renewable phosphorus fertilizer with cadmium immobilization capability. J Environ Qual 42:405–411

    Article  PubMed  CAS  Google Scholar 

  • Silber A, Levkovitch I, Graber ER (2010) pH-dependent mineral release and surface properties of cornstraw biochar: agronomic implications. Environ Sci Technol 44:9318–9323

    Article  PubMed  CAS  Google Scholar 

  • Singh K, Risse M, Worley J, Das KC, Thompson S (2008) Effect of fractionation on fuel properties of poultry litter. Appl Eng Agric 24:383–388

    Article  Google Scholar 

  • Singh B, Singh BP, Cowie AL (2010) Characterisation and evaluation of biochars for their application as a soil amendment. Aust J Soil Res 48:516–525

    Article  CAS  Google Scholar 

  • Smith KA, Chalmers AG, Chambers BJ, Christie P (1998) Organic manure phosphorus accumulation, mobility and management. Soil Use Manag 14:154–159

    Article  Google Scholar 

  • Song G, Shen L, Xiao J (2011) Estimating specific chemical energy of biomass from basic analysis data. Ind Eng Chem Res 50:9758–9766

    Article  CAS  Google Scholar 

  • Sposito G (1989) The chemistry of soils. Oxford University Press, New York

    Google Scholar 

  • Steffens D (1994) Phosphorus release kinetics and extractable phosphorus after long-term fertilization. Soil Sci Soc Am J 58:1702–1708

    Article  CAS  Google Scholar 

  • Sternitzke V, Kaegi R, Audinot JN, Lewin E, Hering JG, Johnson CA (2012) Uptake of fluoride from aqueous solution on nano-sized hydroxyapatite: examination of a fluoridated surface layer. Environ Sci Technol 46:802–809

    Article  PubMed  CAS  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry. Wiley-Interscience, New York

    Google Scholar 

  • Tõnsuaadu K, Gross KA, Pluduma L, Veiderma M (2012) A review on the thermal stability of calcium apatites. J Therm Anal Calorim 110:647–659

    Article  CAS  Google Scholar 

  • Toor GS, Peak JD, Sims JT (2005) Phosphorus speciation in broiler litter and turkey manure produced from modified diets. J Environ Qual 34:687–697

    Article  PubMed  CAS  Google Scholar 

  • Tsai WT, Liu SC, Chen HR, Chang YM, Tsai YL (2012) Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment. Chemosphere 89:198–203

    Article  PubMed  CAS  Google Scholar 

  • Uchimiya M, Bannon DI, Wartelle LH, Lima IM, Klasson KT (2012) Lead retention by broiler litter biochars in small arms range soil: impact of pyrolysis temperature. J Agric Food Chem 60:5035–5044

    Article  PubMed  CAS  Google Scholar 

  • van Straaten P (2002) Rocks for crops: agrominerals of sub-Saharan Africa. International Centre for Research in Agroforestry, Nairobi

    Google Scholar 

  • Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2010) An overview of the chemical composition of biomass. Fuel 89:913–933

    Article  CAS  Google Scholar 

  • Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2013a) An overview of the composition and application of biomass ash. Part 1. Phase-mineral and chemical composition and classification. Fuel 105:40–76

    Article  CAS  Google Scholar 

  • Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2013b) An overview of the composition and application of biomass ash.: Part 2. Potential utilisation, technological and ecological advantages and challenges. Fuel 105:19–39

    Article  CAS  Google Scholar 

  • Wang L, Weller CL, Jones DD, Hanna MA (2008) Contemporary issues in thermal gasification of biomass and its application to electricity and fuel production. Biomass Bioenergy 32:573–581

    Article  CAS  Google Scholar 

  • Wang T, Camps-Arbestain M, Hedley M, Bishop P (2012) Predicting phosphorus bioavailability from high-ash biochars. Plant Soil 357:173–187

    Article  CAS  Google Scholar 

  • Wheeler E, Smith Zajaczkowski J (2002) Horse stable manure management. College of Agricultural Sciences. G-97. Penn State Cooperative Extension, University Park, PA, USA

    Google Scholar 

  • Wu H, Yip K, Kong Z, Li CZ, Liu D, Yu Y, Gao X (2011) Removal and recycling of inherent inorganic nutrient species in mallee biomass and derived biochars by water leaching. Ind Eng Chem Res 50:12143–12151

    Article  CAS  Google Scholar 

  • Xu X, Cao X, Zhao L (2013) Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: role of mineral components in biochars. Chemosphere 92:955–961

    Article  PubMed  CAS  Google Scholar 

  • Yokoi T, Kawashita M, Kikuta K, Ohtsuki C (2010a) Biomimetic mineralization of calcium phosphate crystals in polyacrylamide hydrogel: effect of concentrations of calcium and phosphate ions on crystalline phases and morphology. Mater Sci Eng 30:154–159

    Article  CAS  Google Scholar 

  • Yokoi T, Kawashita M, Kikuta K, Ohtsuki C (2010b) Crystallization of calcium phosphate in polyacrylamide hydrogels containing phosphate ions. J Cryst Growth 312:2376–2382

    Article  CAS  Google Scholar 

  • Zhang M, Gao B, Yao Y, Xue Y, Inyang M (2012) Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions. Chem Eng J 210:26–32

    Article  CAS  Google Scholar 

  • Zhao L, Cao X, Wang Q, Yang F, Xu S (2013) Mineral constituents profile of biochar derived from diversified waste biomasses: implications for agricultural applications. J Environ Qual 42:545–552

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minori Uchimiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Uchimiya, M. (2014). Changes in Nutrient Content and Availability During the Slow Pyrolysis of Animal Wastes. In: He, Z., Zhang, H. (eds) Applied Manure and Nutrient Chemistry for Sustainable Agriculture and Environment. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8807-6_3

Download citation

Publish with us

Policies and ethics