Skip to main content

Residual Veterinary Pharmaceuticals in Animal Manures and Their Environmental Behaviors in Soils

  • Chapter
  • First Online:
Applied Manure and Nutrient Chemistry for Sustainable Agriculture and Environment

Abstract

The worldwide heavy use of veterinary pharmaceuticals in confined animal-feeding operations has resulted in annual discharge of 3,000–27,000 tons of drug chemicals via livestock manure into the environment. More than 50 major antibiotics have been detected in poultry, swine, cattle, and horse manures at 0.01–765 mg kg−1 dry manure mass. In animal manures, most veterinary pharmaceuticals degrade rapidly via biochemical reactions, demonstrating a half-life time 2–30 days. In soils, veterinary pharmaceuticals interact with soil minerals, organic matter, and organisms and are subject to sorption, photohydrolysis, oxidation, and biodegradation. The soil distribution coefficient (Kd) values of animal pharmaceuticals range from 0.3 to 6,300 L kg−1, varying with the chemical species and soil properties. The persistence of veterinary pharmaceuticals in soils is influenced by soil type, organic matter content, pH, moisture content, and temperature. Though certain antibiotics such as roxithromycin, sarafloxacin, and virginiamycin are persistent, the vast majority of veterinary pharmaceuticals are degradable (half-life <30 days) in soils. The sorption, rapid degradation, and physical attenuation limit residual pharmaceuticals in the top 30-cm soil of agricultural land at generally less than 1 μg kg−1, posing little impacts on soil microorganisms, fauna, and plants. Nevertheless, veterinary pharmaceuticals could migrate from manured fields to water bodies via surface runoff and leaching. In North American drainage ditches and streams, up to 290 ng L−1 of animal antibiotics had been detected, although the concentrations were far below the no-observed-effect concentration levels of veterinary pharmaceuticals to aquatic organisms. Antibiotic-resistant bacteria have been identified in animal manures and livestock-handling workers, indicating the risk of antibiotic-resistant genes spread in association with veterinary pharmaceutical overuse and manure disposal. Future research should focus on developing standard composting protocols to eliminate residual veterinary pharmaceuticals and antibiotic-resistant pathogens from animal manures and on cultivating animal-feeding methods alternative to drug administration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Accinelli C, Koskinen WC, Becker JM, Sadowsky MJ (2007) Environmental fate of two sulfonamide antimicrobial agents in soil. J Agric Food Chem 55:2677–2682

    PubMed  CAS  Google Scholar 

  • Al-Ahmad A, Daschner FD, Kümmerer K (1999) Biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin G, and sulfamethoxazole and inhibition of waste water bacteria. Arch Environ Contam Toxicol 37:158–163

    PubMed  CAS  Google Scholar 

  • Allaire SE, Del Castillo J, Juneau V (2006) Sorption kinetics of chlortetracycline and tylosin on sandy loam and heavy clay soils. J Environ Qual 35:969–972

    PubMed  CAS  Google Scholar 

  • Andremont A (2003) Commensal flora may play key role in spreading antibiotic resistance. ASM News 69:601–607

    Google Scholar 

  • Batchelder AR (1982) Chlorotetracycline and oxytetracycline effects on plant growth and development in soil systems. J Environ Qual 11:675–678

    CAS  Google Scholar 

  • Bauger AJ, Jensen J, Krogh PH (2000) Effects of the antibiotics oxytetracycline and tylosin on soil fauna. Chemosphere 40:751–757

    Google Scholar 

  • Beausse J (2004) Selected drugs in solid matrices: a review of environmental determination, occurrence and properties of principal substances. Trends Anal Chem 23:753–761

    CAS  Google Scholar 

  • Blackwell PA, Kay P, Boxall ABA (2007) The dissipation and transport of veterinary antibiotics in a sandy loam soil. Chemosphere 67:292–299

    PubMed  CAS  Google Scholar 

  • Boes J, Alban L, Bagger J, Mongelmose V, Baggsen DL, Olsen JE (2005) Survival of Escherichia coli and Salmonella typhimurium in slurry applied to clay soil on a Danish swine farm. Prev Vet Med 69:213–228

    PubMed  CAS  Google Scholar 

  • Boonstra H, Reichman EP, van den Brink PJ (2011) Effects of the veterinary pharmaceutical ivermectin in indoor aquatic microcosms. Arch Environ Contam Toxicol 60:77–89

    PubMed Central  PubMed  CAS  Google Scholar 

  • Boxall BAB (2008) Fate of veterinary medicines applied to soil. In: Kümmerer K (ed) Pharmaceuticals in the environment: sources, fate, effects and risks. Springer, Berlin/Heidelberg, pp 103–119

    Google Scholar 

  • Brain RA, Johnson DJ, Richards SM, Sanderson H, Sibley PK, Solomon KR (2004) Effects of 25 pharmaceutical compounds to Lemna gibba using a 7-day static renewal test. Environ Toxicol Chem 23:371–382

    PubMed  CAS  Google Scholar 

  • Brooks BW, Riley TM, Taylor RD (2006) Water quality of effluent dominated stream ecosystems: ecotoxicological, hydrological, and management considerations. Hydrobiologia 556:365–379

    CAS  Google Scholar 

  • Burkhardt M, Stamm C, Waul C, Singer H, Müller S (2005) Surface runoff and transport of sulfonamide antibiotics and tracers on manured grassland. J Environ Qual 34:1363–1371

    PubMed  CAS  Google Scholar 

  • Campagnolo ER, Hohnson KR, Karpari A et al (2002) Antimicrobial residues in animal water and water resources proximal to large-scale swine and poultry feeding operations. Sci Total Environ 299:89–95

    PubMed  CAS  Google Scholar 

  • Carballo EM, Barreiro CG, Scharf S, Gans O (2007) Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environ Pollut 148:570–579

    Google Scholar 

  • Carlsson G, Patring J, Kreuger J, Norrgren L, Oskarsson A (2013) Toxicity of 15 veterinary pharmaceuticals in zebrafish (Danio rerio) embryos. Aquat Toxicol 126:30–41

    PubMed  CAS  Google Scholar 

  • Chee-Sanford JC, Mackie RI, Koike S et al (2009) Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. J Environ Qual 38:1086–1108

    PubMed  CAS  Google Scholar 

  • Chefetz B, Mualem T, Ben-Ari J (2008) Sorption and mobility of pharmaceutical compounds in soil irrigated with reclaimed wastewater. Chemosphere 73:1335–1343

    PubMed  CAS  Google Scholar 

  • Chen H, Gao B, Li H, Ma LQ (2011) Effects of pH and ionic strength on sulfamethoxazole and ciprofloxacin transport in saturated porous media. J Contam Hydrol 126:29–36

    PubMed  CAS  Google Scholar 

  • Cote C, Masse DI, Quessy S (2006) Reduction of indicator and pathogenic microorganisms by psychrophilic anaerobic digestion in swine slurries. Bioresour Technol 97:686–691

    PubMed  CAS  Google Scholar 

  • Cotta MA, Whitehead TR, Zeltwanger RL (2003) Isolation, characterization and comparison of bacteria from swine feces and manure storage pits. Environ Microbiol 5:737–745

    PubMed  CAS  Google Scholar 

  • Davis JG, Truman CC, Kim SC, Ascough JC, Carlson K (2006) Antibiotic transport via runoff and soil loss. J Environ Qual 35:2250–2260

    PubMed  CAS  Google Scholar 

  • De Liguoro M, Cibin V, Capolongo F et al (2003) Use of oxytetracycline and tylosin in intensive calf farming: evaluation of transfer to manure and soil. Chemosphere 52:203–212

    PubMed  Google Scholar 

  • Dewey CE, Cox BD, Straw BE, Budh EJ, Hurd HS (1997) Association between off‐label feed additives and farm size, veterinary consultant use, and animal age. Prev Vet Med 31:133–146

    PubMed  CAS  Google Scholar 

  • Ding Y, Teppen BJ, Boyd SA, Li H (2013) Measurement of associations of pharmaceuticals with dissolved humic substances using solid phase extraction. Chemosphere 91:314–319

    PubMed  CAS  Google Scholar 

  • Doi AM, Stoskopf MK (2000) The kinetics of oxytetracycline degradation in deionized water under varying temperature, pH, light, substrate, and organic matter. J Aquat Anim Health 12:246–253

    Google Scholar 

  • Dolliver H, Kumar K, Gupta S (2007) Sulfamethazine uptake by plants from manure-amended soil. J Environ Qual 36:1224–1230

    PubMed  CAS  Google Scholar 

  • Dolliver H, Gupta S, Noll S (2008) Antibiotic degradation during manure composting. J Environ Qual 37:1245–1253

    PubMed  CAS  Google Scholar 

  • Donoho AL (1984) Biochemical studies on the fate of monensin in animals and in the environment. J Anim Sci 58:1528–1539

    PubMed  CAS  Google Scholar 

  • Europa (2005) Ban on antibiotics as growth promoters in animal feed enters into effect. Europa press release, December 22, 2005. http://europa.eu/rapid/press-release_IP-05-1687_en.htm. Accessed 10 Dec 2012

  • FDA (2010) 2009 summary report on antimicrobials sold or distributed for use in food-producing animals. Food and Drug Administration, Rockville. www.fda.gov/downloads/ForIndustry/UserFees/AnimalDrugUserFeeActADUFA/UCM231851.pdf. Accessed 5 Mar 2013

  • FDA (2012) The Green Book – FDA approved products. Food and Drug Administration, Rockville. http://www.accessdata.fda.gov/scripts/animaldrugsatfda

  • Furtula V, Huang L, Chambers PA (2009) Determination of veterinary pharmaceuticals in poultry litter and soil by methanol extraction and liquid chromatography-tandem mass spectrometry. J Environ Sci Health B 44:717–723

    PubMed  CAS  Google Scholar 

  • Furtula V, Farrell EG, Diarrassouba F et al (2010) Veterinary pharmaceuticals and antibiotic resistance of Escherichia coli isolates in poultry litter from commercial farms and controlled feeding trials. Poult Sci 89:180–189

    PubMed  CAS  Google Scholar 

  • Gao J, Pedersen JA (2005) Adsorption of sulfonamide antimicrobial agents to clay minerals. Environ Sci Technol 39:9509–9516

    PubMed  CAS  Google Scholar 

  • Garrido Frenich A, Plaza-Bolanos P, Aguilera-Luiz MM, Martinez-Vidal JL (2010) Veterinary drugs and growth-promoting agent analyses. Nova Science, Hauppauge

    Google Scholar 

  • Gartiser S, Urich E, Alexy R, Kümmerer K (2007) Ultimate biodegradation and elimination of antibiotics in inherent tests. Chemosphere 67:604–613

    PubMed  CAS  Google Scholar 

  • Gaskins HR, Collier CT, Anderson DB (2002) Antibiotics as growth promotants: mode of action. Anim Biotechnol 13:29–42

    PubMed  CAS  Google Scholar 

  • Gavalchin J, Katz SE (1994) The persistence of fecal‐borne antibiotics in soil. J AOAC Int 77:481–485

    CAS  Google Scholar 

  • Gilbertson TJ, Hornish RE, Jaglan PS et al (1990) Environmental fate of ceftiofur sodium, a cephalosporin antibiotic. Role of animal excreta in its decomposition. J Agric Food Chem 38:890–894

    CAS  Google Scholar 

  • Gruber VF, Halley BA, Hwang SC, Ku CC (1990) Mobility of avermectin B1a in soil. J Agric Food Chem 38:886–890

    CAS  Google Scholar 

  • Gu C, Karthikeyan KG, Sibley SD, Pedersen JA (2007) Complexation of the antibiotic tetracycline with humic acid. Chemosphere 66:1494–1501

    PubMed  CAS  Google Scholar 

  • Haack BJ, Andrews RE (2000) Isolation of Tn916-like conjugal elements from swine lot effluent. Can J Microbiol 46:542–549

    PubMed  CAS  Google Scholar 

  • Haller MY, Müller SR, McArdell CS, Alder AC, Suter MJ (2002) Quantification of veterinary antibiotics (sulfonamides and trimethoprim) in animal manure by liquid chromatography–mass spectrometry. J Chromatogr A 952:111–120

    PubMed  CAS  Google Scholar 

  • Halling-Sørensen B (2001) Inhibition of aerobic growth and nitrification of bacteria in sewage sludge by antibacterial agents. Arch Environ Contam Toxicol 40:451–460

    PubMed  Google Scholar 

  • Halling-Sørensen B, Nors Nielsen S, Lanzky PF et al (1998) Occurrence, fate and effects of pharmaceutical substances in the environment – a review. Chemosphere 36:357–393

    PubMed  Google Scholar 

  • Hamscher G, Sczesny S, Höper H, Nau H (2002) Determination of persistent tetracycline residues in soil fertilized with liquid manure by high‐performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal Chem 74:1509–1518

    PubMed  CAS  Google Scholar 

  • Hamscher G, Pawelzick HT, Höper H, Nau H (2005) Different behavior of tetracyclines and sulfonamides in sandy soils after repeated fertilization with liquid manure. Environ Toxicol Chem 24:861–868

    PubMed  CAS  Google Scholar 

  • Harrison EM, Paterson GK, Holden MTG et al (2013) Whole genome sequencing identifies zoonotic transmission of MRSA isolates with the novel mecA homologue mecC. EMBO Mol Med 5:509–515

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hayes JR, English LL, Carr LE, Wagner DD, Joseph SW (2004) Multiple-antibiotic resistance of Enterococcus spp. isolated from commercial poultry production environments. Appl Environ Microbiol 70:6005–6011

    PubMed Central  PubMed  CAS  Google Scholar 

  • Henderson KD, Coats JR (2010) Veterinary pharmaceuticals in the environment: an introduction. In: Henderson KD, Coats JR (eds) Veterinary pharmaceuticals in the environment, vol 1018, ACS symposium series. American Chemical Society, Washington, DC, pp 3–7

    Google Scholar 

  • Holt JP (2008) Growth performance and the development of antibiotic resistant bacteria in swine fed growth-promoting antimicrobials. PhD thesis, North Carolina State University, Raleigh

    Google Scholar 

  • Hu D, Coats JR (2007) Aerobic degradation and photolysis of tylosin in water and soil. Environ Toxicol Chem 26:884–889

    PubMed  CAS  Google Scholar 

  • Huang CH, Renew JE, Smeby KL et al (2001) Assessment of potential antibiotic contaminants in water and preliminary occurrence analysis. In: Proceedings of the 2nd international conference on pharmaceuticals and endocrine disrupting chemicals in water. Groundwater Association, Westerville, pp 46–57

    Google Scholar 

  • Jiao S, Zheng S, Yin D, Wang L, Chen L (2008) Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria. Chemosphere 73:377–382

    PubMed  CAS  Google Scholar 

  • Jones AD, Bruland GL, Agrawal SG, Vasudevan D (2005) Factors influencing the sorption of oxytetracycline to soils. Environ Toxicol Chem 24:761–770

    PubMed  CAS  Google Scholar 

  • Karci A, Balcioglu IA (2009) Investigation of the tetracycline, sulfonamide, and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in Turkey. Sci Total Environ 407:4652–4664

    PubMed  CAS  Google Scholar 

  • Kim SC, Davis JG, Truman CC, Ascough Ii JC, Carlson K (2010) Simulated rainfall study for transport of veterinary antibiotics – mass balance analysis. J Hazard Mater 175:836–843

    PubMed  CAS  Google Scholar 

  • Kishi H, Kogure N, Hashimoto Y (1990) Contribution of soil constituents in adsorption coefficient of aromatic compounds, halogenated alicyclic and aromatic compounds to soil. Chemosphere 21:867–876

    CAS  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT et al (2002) Pharmaceuticals, hormones and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211

    PubMed  CAS  Google Scholar 

  • Kreuzig R, Holtge S, Brunotte J et al (2005) Test-plot studies on runoff of sulfonamides from manured soils after sprinkler irrigation. Environ Toxicol Chem 24:777–781

    PubMed  CAS  Google Scholar 

  • Kulshrestha P, Giese RF, Aga DS (2004) Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil. Environ Sci Technol 38:4097–4105

    PubMed  CAS  Google Scholar 

  • Kumar K, Thompson A, Singh AK, Chander Y, Gupta SC (2004) Enzyme‐linked immunosorbent assay for ultratrace determination of antibiotics in aqueous samples. J Environ Qual 33:250–256

    PubMed  CAS  Google Scholar 

  • Kumar K, Gupta SC, Baidoo SK, Chander Y, Rosen CJ (2005a) Antibiotic uptake by plants from soil fertilized with animal manure. J Environ Qual 34:2082–2085

    PubMed  CAS  Google Scholar 

  • Kumar K, Gupta SC, Chander Y, Singh AK (2005b) Antibiotic use in agriculture and its impact on the terrestrial environment. Adv Agron 87:1–54

    CAS  Google Scholar 

  • Left LG, Dana JR, McArthur JV, Shimkets LJ (1993) Detection of Tn5-1ike sequences in Kanamycin-resistant stream bacteria and environmental DNA. Appl Environ Microbiol 59:417–421

    Google Scholar 

  • Lertpaitoonpan W, Ong SK, Moorman TB (2009) Effect of organic carbon and pH on soil sorption of sulfamethazine. Chemosphere 76:558–564

    PubMed  CAS  Google Scholar 

  • Li XL, Zheng W, Machesky ML, Yates SR, Katterhenry M (2011) Degradation kinetics and mechanism of antibiotic ceftiofur in recycled water derived from a beef farm. J Agric Food Chem 59:10176–10181

    PubMed  CAS  Google Scholar 

  • Li Y, Zhang X, Li W, Lu X, Liu B, Wang J (2013) The residues and environmental risks of multiple veterinary antibiotics in animal faeces. Environ Monit Assess 185:2211–2220

    PubMed  CAS  Google Scholar 

  • Lin K, Gan J (2011) Sorption and degradation of wastewater-associated non-steroidal anti-inflammatory drugs and antibiotics in soils. Chemosphere 83:240–246

    PubMed  CAS  Google Scholar 

  • Lissemore L, Hao C, Yang P et al (2006) An exposure assessment for selected pharmaceuticals within a watershed in southern Ontario. Chemosphere 64:717–729

    PubMed  CAS  Google Scholar 

  • MacKay AA, Canterbury B (2005) Oxytetracycline sorption to organic matter by metal-bridging. J Environ Qual 34:1964–1971

    PubMed  CAS  Google Scholar 

  • Marengo JR, Kok RA, O’Brien K et al (1997) Aerobic biodegradation of (14C)‐Sarafloxacin hydrochloride in soil. Environ Toxicol Chem 16:462–471

    CAS  Google Scholar 

  • McEwen SA, Fedorka‐Cray PJ (2002) Antimicrobial use and resistance in animals. Clin Infect Dis 34:S93–S106

    PubMed  CAS  Google Scholar 

  • Michelini L, Reichel R, Werner W et al (2012) Sulfadiazine uptake and effects on Salix fragilis L. and Zea mays L. plants. Water Air Soil Pollut 223:5243–5257

    CAS  Google Scholar 

  • Migliore L, Brambilla G, Cozzolina S, Gaudio L (1995) Effect on plants of sulphadimethoxine used in intensive farming (Panicum miliaceum, Pisumm sativum and Zea mays). Agric Ecosyst Environ 52:103–110

    CAS  Google Scholar 

  • Migliore L, Brambilla G, Casoria P et al (1996) Effect of sulphadimethoxine contamination on barley (Hordeum distichum L., Poaceae, Liliopsida). Agric Ecosyst Environ 60:121–128

    CAS  Google Scholar 

  • Nowara A, Burhenne J, Spiteller M (1997) Binding of fluoroquinolone carboxylic acid derivatives to clay minerals. J Agric Food Chem 45:1459–1463

    CAS  Google Scholar 

  • OTA (1979) Drugs in livestock feed. NTIS order #PB-298450. Office of Technology Assessment, Congress of the United States, Washington, DC

    Google Scholar 

  • Paesen J, Cypers W, Busson R et al (1995) Isolation of decomposition products of tylosin using liquid chromatography. J Chromatogr A 699:99–106

    PubMed  CAS  Google Scholar 

  • Pan X, Qiang Z, Ben W, Chen M (2011) Residual veterinary antibiotics in swine manure from concentrated animal feeding operations in Shandong Province, China. Chemosphere 84:695–700

    PubMed  CAS  Google Scholar 

  • Patten DK, Wolf DC, Kunkle WE, Douglass LW (1980) Effects of antibiotics in beef cattle feces on nitrogen and carbon mineralization in soil and plant growth and composition. J Environ Qual 9:167–172

    CAS  Google Scholar 

  • Pils JRV, Laird DA (2007) Sorption of tetracycline and chlortetracycline on K- and Ca-saturated soil clays, humic substances, and clay−humic complexes. Environ Sci Technol 41:1928–1933

    PubMed  CAS  Google Scholar 

  • Rabølle M, Spliid NH (2000) Sorption and mobility of metronidazole, olaquindox, oxytetracycline, and tylosin in soil. Chemosphere 40:715–722

    PubMed  Google Scholar 

  • Richards SM, Wilson CJ, Johnson DJ et al (2004) Effects of pharmaceutical mixtures in aquatic microcosms. Environ Toxicol Chem 23:1035–1042

    PubMed  CAS  Google Scholar 

  • Rinsky JL, Naimpalli M, Wing S et al (2013) Livestock-associated methicillin and multidrug resistant Staphylococcus aureus is present among industrial, not antibiotic-free livestock operation workers in North Carolina. PLoS One 8(7):e67641. doi:10.1371/journal.pone.0067641

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759

    PubMed  CAS  Google Scholar 

  • Sassman SA, Lee LS (2005) Sorption of three tetracyclines by several soils: assessing the role of pH and cation exchange. Environ Sci Technol 39:7452–7459

    PubMed  CAS  Google Scholar 

  • Sassman SA, Lee LS (2007) Sorption and degradation in soils of veterinary ionophore antibiotics: monensin and lasalocid. Environ Toxicol Chem 26:1614–1621

    PubMed  CAS  Google Scholar 

  • Schlüsener MP, Bester K (2006) Persistence of antibiotics such as macrolides, tiamulin and salinomycin in soil. Environ Pollut 143:565–571

    PubMed  Google Scholar 

  • Sengeløv G, Halling‐Sørensen AB, Baloda SB et al (2003) Bacterial antibiotic resistance levels in Danish farmland as a result of treatment with pig manure slurry. Environ Int 28:587–595

    PubMed  Google Scholar 

  • Sibley SD, Pedersen JA (2008) Interaction of the macrolide antimicrobial clarithromycin with dissolved humic acid. Environ Sci Technol 42:422–428

    PubMed  CAS  Google Scholar 

  • Sithole BB, Guy RD (1987) Models for tetracycline in aquatic environments: I. Interaction with Bentonite clay systems. Water Air Soil Pollut 32:303–314

    CAS  Google Scholar 

  • Smith SC, Ainsworth CC, Traina SJ, Hicks RJ (1992) Effect of sorption on the biodegradation of quinoline. Soil Sci Soc Am J 56:737–746

    CAS  Google Scholar 

  • Sobsey MD, Khatib LA, Hill MR et al (2001) Pathogens in animal wastes and the impacts of waste management practices on their survival, transport and fate. White Paper Summaries. www.cals.ncsu.edu/waste_mgt/natlcenter/whitepaperstimmaries/pathogens.pdf. Accessed 29 Dec 2012

  • Solomon KR, Hillis DG, Lissemore L, Sibley PK (2010) Risks of agricultural pharmaceuticals in surface water systems and soils. In: Henderson K et al (ed) Veterinary pharmaceuticals in the environment, ACS symposium series. American Chemical Society, Washington, DC, pp 191–204

    Google Scholar 

  • Song W, Ding Y, Chiou CT, Li H (2010) Selected veterinary pharmaceuticals in agricultural water and soil from land application of animal manure. J Environ Qual 39:1211–1217

    PubMed  CAS  Google Scholar 

  • Swift RS (1996) Organic matter characterization. In: Sparks DL (ed) Methods of soil analysis, Part 3. Chemical methods. Soil Science Society of America, Madison, pp 1011–1069

    Google Scholar 

  • Thiele-Bruhn S (2003) Pharmaceutical antibiotic compounds in soils: a review. J Plant Nutr Soil Sci 166:145–167

    CAS  Google Scholar 

  • Thiele-Bruhn S, Aust MO (2004) Effects of pig slurry on the sorption of sulfonamide antibiotics in soil. Arch Environ Contam Toxicol 47:31–39

    PubMed  CAS  Google Scholar 

  • Thiele-Bruhn S, Seibicke T, Schulten HR, Leinweber P (2004) Sorption of sulfonamide pharmaceutical antibiotics on whole soils and particle-size fractions. J Environ Qual 33:1331–1342

    PubMed  CAS  Google Scholar 

  • Tolls J (2001) Sorption of veterinary pharmaceuticals in soils: a review. Environ Sci Technol 35:3397–3406

    PubMed  CAS  Google Scholar 

  • Unc A, Goss MJ (2003) Movement of fecal bacteria through the vadose zone. Water Air Soil Pollut 149:327–337

    CAS  Google Scholar 

  • von Nussbaum F, Brands M, Hinzen B et al (2006) Medicinal chemistry of antibacterial natural products – exodus or revival? Angew Chem Int Ed 45:5072–5129

    Google Scholar 

  • Wang Q, Guo M, Yates SR (2006) Degradation kinetics of manure-derived sulfadimethoxine in amended soil. J Agric Food Chem 54:157–163

    PubMed  CAS  Google Scholar 

  • Wang YJ, Jia DA, Sun RJ, Zhu HW, Zhou DM (2008) Adsorption and cosorption of tetracycline and copper(II) on montmorillonite as affected by solution pH. Environ Sci Technol 42:3254–3259

    PubMed  CAS  Google Scholar 

  • Wang C, Teppen BJ, Boyd SA, Li H (2012) Sorption of lincomycin at low concentrations from water by soils. Soil Sci Soc Am J 76:1222–1228

    CAS  Google Scholar 

  • Warman PR, Thomas RL (1981) Chlortetracycline in soil amended with poultry manure. Can J Soil Sci 61:161–163

    CAS  Google Scholar 

  • Weerasinghe CA, Towner D (1997) Aerobic biodegradation of virginiamycin in soil. Environ Toxicol Chem 16:1873–1876

    CAS  Google Scholar 

  • Wetzstein HG, Stadler M, Tichy HV et al (1999) Degradation of ciprofloxacin by basidiomycetes and identification of metabolites generated by the brown rot fungus Gloeophyllum striatum. Appl Environ Microbiol 65:1556–1563

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wilson CJ, Brain RA, Sanderson H et al (2004) Structural and functional responses of plankton to a mixture of four tetracyclines in aquatic microcosms. Environ Sci Technol 38:6430–6439

    PubMed  CAS  Google Scholar 

  • Witte W (2000) Selective pressure by antibiotic use in livestock. Int J Antimicrob Agents 16:S19–S24

    PubMed  CAS  Google Scholar 

  • Wu CX, Spongberg AL, Witter JD et al (2010) Uptake of pharmaceutical and personal care products by soybean plants from soils applied with biosolids and irrigated with contaminated water. Environ Sci Technol 44:6157–6161

    PubMed  CAS  Google Scholar 

  • Yeager RL, Halley BA (1990) Sorption/desorption of [14C]efrotomycin with soils. J Agric Food Chem 38:883–886

    CAS  Google Scholar 

  • Zhao L, Dong YH, Wang H (2010) Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. Sci Total Environ 408:1069–1075

    PubMed  CAS  Google Scholar 

  • Zitnick KK, Shappell NW, Hakk H et al (2011) Effects of liquid swine manure on dissipation of 17beta-estradiol in soil. J Hazard Mater 186:1111–1117

    PubMed  CAS  Google Scholar 

  • Zou Y, Zheng W (2013) Modelling manure colloid-facilitated transport of the weakly hydrophobic antibiotic florfenicol in saturated soil columns. Environ Sci Technol 47:5185–5192

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxin Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Song, W., Guo, M. (2014). Residual Veterinary Pharmaceuticals in Animal Manures and Their Environmental Behaviors in Soils. In: He, Z., Zhang, H. (eds) Applied Manure and Nutrient Chemistry for Sustainable Agriculture and Environment. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8807-6_2

Download citation

Publish with us

Policies and ethics