Skip to main content

Toward Improved Estimation of the Dynamic Topography and Ocean Circulation in the High Latitude and Arctic Ocean: The Importance of GOCE

  • Chapter
  • First Online:
  • 2032 Accesses

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 46))

Abstract

The Arctic plays a fundamental role in the climate system and shows significant sensitivity to anthropogenic climate forcing and the ongoing climate change. Accelerated changes in the Arctic are already observed, including elevated air and ocean temperatures, declines of the summer sea ice extent and sea ice thickness influencing the albedo and CO2 exchange, melting of the Greenland Ice Sheet and increased thawing of surrounding permafrost regions. In turn, the hydrological cycle in the high latitude and Arctic is expected to undergo changes although to date it is challenging to accurately quantify this. Moreover, changes in the temperature and salinity of surface waters in the Arctic Ocean and Nordic Seas may also influence the flow of dense water through the Denmark Strait, which are found to be a precursor for changes in the Atlantic meridional overturning circulation with a lead time of around 10 years (Hawkins and Sutton in Geophys Res Lett 35:L11603, 2008). Evidently changes in the Arctic and surrounding seas have far reaching influences on regional and global environment and climate variability, thus emphasizing the need for advanced quantitative understanding of the ocean circulation and transport variability in the high latitude and Arctic Ocean. In this respect, this study combines in situ hydrographical data, surface drifter data and direct current meter measurements, with coupled sea ice–ocean models, radar altimeter data and the latest GOCE-based geoid in order to estimate and assess the quality, usefulness and validity of the new GOCE-derived mean dynamic topography for studies of the ocean circulation and transport estimates in the Nordic Seas and Arctic Ocean.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AMAP (1998) AMAP assessment report: Arctic pollution issues. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 859 pp

    Google Scholar 

  • Andersen OB, Knudsen P (2009) The DNSC08 mean sea surface and mean dynamic topography. J Geophys Res 114:C11. doi:10.1029/2008JC005179

    Article  Google Scholar 

  • Berx B, Hansen B, Østerhus S, Larsen KM, Sherwin T, Jochumsen K (2013) Combining in situ measurements and altimetry to estimate volume, heat and salt transport variability through the Faroe Shetland Channel. Ocean Sci 9. doi:10.5194/os-9-639-2013

    Article  Google Scholar 

  • Bingham RJ, Knudsen P, Andersen O, Pail R (2011) An initial estimate of the North Atlantic steady-state geostrophic circulation from GOCE. Geophys Res Lett 38:L01606. doi:10.1029/2010GL045633

    Article  Google Scholar 

  • Bleck Rainer (2002) An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Model 4(1):55–88

    Article  Google Scholar 

  • Bruinsma SL, Marty JC, Balmino G, Biancale R, Förste C, Abrikosov O and Neumayer H (2010) GOCE gravity field recovery by means of the direct numerical method, presented at the ESA Living Planet Symposium, 27th June–2nd July 2010, Bergen, Norway; See also: earth.esa.int/GOCE

    Google Scholar 

  • Bruinsma SL, Förste C, Abrikosov O, Marty J-C, Rio M-H, Mulet S, Bonvalot S (2013) The new ESA satellite-only gravity field model via the direct approach. Geophy Res Lett 40:1–6. doi:10.1002/grl.50716

    Article  Google Scholar 

  • Cazenave et al (2009) Sea level budget over 2003–2008: a re-evaluation from GRACE space gravimetry, satellite altimetry and Argo. Global Planet Change 65(1–2):83–88

    Article  Google Scholar 

  • Cheng YO, Andersen and Knudsen P (2013) Evaluation of gridded and along-track altimetric data in the Arctic Ocean for climate research, submitted to Marine Geodesy

    Google Scholar 

  • Förste C, Bruinsma S, Shako R, Marty JC, Flechtner F, Abrikosov O, Dahle C, Lemoine, JM, Neumayer KH, Biancale R, Barthelmes F, König R, Balmino G (2011) EIGEN-6—A new combined global gravity field model including GOCE data from the collaboration of GFZPotsdam and GRGS-Toulouse; Geophysical Research Abstracts, vol. 13, EGU2011-3242-2, EGU General Assembly

    Google Scholar 

  • Fu L–L, Cheng B, Qiu B (2001) 25-day period large-scale oscillations in the Argentine Basin revealed by the TOPEX/POSEIDON altimeter. J Phys Oceanogr 31:506–517

    Article  Google Scholar 

  • Furevik T, Nilsen JEØ (2005) Large-scale atmospheric circulation variability and its impacts on the Nordic Seas ocean climate—a review. In: The Nordic Seas: an integrated perspective. AGU Geophysical Monograph Series, vol 158. pp 105–136

    Chapter  Google Scholar 

  • Gill AE, Niiler PP (1973) The theory of seasonal variability in the ocean. Deep Sea Res 20:141–177

    Google Scholar 

  • Haines K, Johannessen JA, Knudsen P, Lea D, Rio MH, Bertino L, Davidson F, Hernandez F (2011) An ocean modelling and assimilation guide to using GOCE geoid products. Ocean Sci 7(1):151–164

    Article  Google Scholar 

  • Hansen B, Hatun H, Kristiansen R, Olsen SM, Østerhus S (2010) Stability and forcing of the Iceland-Faroe inflow of water, heat, and salt to the Arctic. Ocean Sci 6:1013–1026

    Article  CAS  Google Scholar 

  • Hawkins E, Sutton R (2008) Geophys Res Lett 35:L11603. doi:10.1029/2008GL034059

    Article  Google Scholar 

  • Helland-Hansen B, Nansen F (1909) The Norwegian Sea: its physical oceanography based upon the Norwegian Researches 1900–1904, Report on Norwegian Fishery and Marine Investigation, vol. II. The Royal Department of Trade, Navigation and Industries, Mallingske, Kristiania, pp 390

    Google Scholar 

  • Henry O, Prandi P, Llovel W, Cazenave A, Jevrejeva S, Stammer D, Meyssignac B, Koldunov N (2012) Tide gauge-based sea level variations since 1950 along the Norwegian and Russian coasts of the Arctic Ocean: contribution of the steric and mass components. J Geophys Res 117(C6):C06 023. doi:10.1029/2011JC007706

    Article  Google Scholar 

  • Johannessen JA, Balmino G, Le Provost C, Rummel R, Sabadini R, Sünkel H, Tscherning CC, Visser P, Woodworth P, Hughes CW, LeGrand P, Sneeuw N, Perosanz F, Aguirre-Martinez M, Rebhan H, Drinkwater M (2003) The European gravity field and steady-state ocean circulation explorer satellite mission: impact in Geophysics. Surv Geophy 24:339–386

    Article  Google Scholar 

  • Knudsen P, Bingham R, Andersen O, Rio Marie-Helene (2011) A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model. J Geodesy. doi:10.1007/s00190-011-0485-8

    Article  Google Scholar 

  • Koldunov NV, Serra N, Kohl A, Stammer D, Henry O, Prandi P, Cazenave A, Knudsen P, Andersen OB, Gao Y, Johannessen JA (2013) Arctic Ocean Sea Surface Height variability during the last 40 years, to be submitted to JGR

    Google Scholar 

  • Koop R, Gruber T, Rummel R (2007) The status of the GOCE highlevel processing facility (HPF). In: Proceedings of the 3rd GOCE User Workshop, pp 199–204, European Space Research Institute, European Space Agency, Frascati, Italy

    Google Scholar 

  • Kwok R, Morison J (2011) Dynamic topography of the ice-covered Arctic Ocean from ICESat. Geophys Res Lett 38(2):L02 501. doi:10.1029/2010GL046063

    Article  Google Scholar 

  • Maximenko N, Niiler P, Rio M-H, Melnichenko O, Centurioni L, Chambers D, Zlotnicki V, Galperin B (2009) Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three different techniques. J Atmos Ocean Tech 26(9):1910–1919

    Article  Google Scholar 

  • Mcphee MG (2013) Intensification of geostrophic currents in the Canada Basin, Arctic Ocean. J Climate 26. doi:10.1175/JCLI-D-12-00289.1

    Article  Google Scholar 

  • Morison J, Kwok R, Peralta-Ferriz C, Alkire M, Rigor I, Andersen R, Steele M (2012) Changing Arctic Ocean freshwater pathways. Nature 481(7379):66–70. doi:10.1038/nature10705

    Article  CAS  Google Scholar 

  • Mork KA, Skagseth Ø (2005) Annual sea surface height variability in the Nordic Seas, in The Nordic Seas: An Integrated Perspective, Geophys Monogr Ser, vol. 158, edited by H. Drange et al. pp. 51–64, AGU, Washington, DC

    Google Scholar 

  • Mork KA, Skagseth Ø (2010) A quantitative description of the Norwegian Atlantic current by combining altimetry and hydrography. Ocean Sci 6:901–911. doi:10.5194/os-6-901-2010

    Article  Google Scholar 

  • Nilsen JEØ, Hatun H, Mork KA and Valdimarsson H (2008) The NISE Data Set. Technical Report 08-01, Faroese Fisheries Laboratory, Box 3051, Torshavn, Faroe Islands

    Google Scholar 

  • Nilsen JEØ, Falck E (2006) Variation of mixed layer properties in the Norwegian Sea for the period 1948–1999. Prog Oceanogr 70:58–90. doi:10.1016/j.pocean.2006.03.014

    Article  Google Scholar 

  • Nilsen JEØ, Nilsen F (2007) The Atlantic water flow along the Vøring plateau: detecting frontal structures in oceanic station time series. Deep Sea Res Part 1 54(3):297–319. doi:10.1016/j.dSV.2006.12.012

    Article  Google Scholar 

  • Nøst OA, Isachsen PE (2003) The large-scale time-mean ocean circulation in the Nordic seas and Arctic Ocean estimated from simplified dynamics. J Mar Res 61:175–210

    Article  Google Scholar 

  • Orvik KA, Skagseth Ø (2003) Monitoring the Norwegian Atlantic slope current using a single moored current meter. Cont Shelf Res 23:159–176

    Article  Google Scholar 

  • Orvik KA, Skagseth Ø (2005) Heat flux variations in the eastern Norwegian Atlantic current toward the Arctic from moored instruments, 1995–2005. Geophys Res Lett 32:L14610. doi:10.1029/2005GL023487

    Article  Google Scholar 

  • Orvik KA, Skagseth Ø, Mork M (2001) Atlantic inflow to the Nordic Seas: current structure and volume fluxes from moored current meters, VM-ADCP and SeaSoar-CTD observations, 1995–1999. Deep-Sea Res I:48. doi:10.1016/S0967-0637(00)00038-8

    Article  Google Scholar 

  • Østerhus S, Turrrell WR, Jónsson S, Hansen B (2005) Measured volume, heat, and salt fluxes from the Atlantic to the Arctic Mediterranean. Geophys Res Lett 32:L07603. doi:10.1029/2004GL022188

    Article  Google Scholar 

  • Pail R, Bruinsma S, Migliaccio F, Foerste C, Goiginger H, Schuh W-D, Hoeck E, Reguzzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sanso F, Tscherning CC (2011) First GOCE gravity field models derived by three different approaches. J Geodesy 85(11):819–843

    Article  Google Scholar 

  • Panet I, Flury J, Biancale R, Gruber T, Johannessen JA, van den Broeke MR, van Dam P, Gegout T, Hughes CW, Ramillien G, Sasgen I, Seoane L, Thomas M (2012) Earth system mass transport mission (e.motion): a concept for future earth gravity field measurements from space. Surv Geophy. doi:10.1007/s1072-012-9209-8

    Article  Google Scholar 

  • Prandi P, Ablain M, Cazenave A, Picot N (2012) Sea level variability in the Arctic Ocean observed by satellite altimetry. Ocean Sci Discuss 9(4):2375–2401. doi:10.5194/osd-9-2375-2012

    Article  Google Scholar 

  • Rio MH, Guinehut S, Larnicol G (2011) New CNES-CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry, and in situ measurements. J Geophys Res 116:C07018. doi:10.1029/2010JC006505

    Article  Google Scholar 

  • Rossby T, Ozhigin V, Ivshin V, Bacon S (2009) An isopycnal view of the Nordic Seas hydrography with focus on properties of the Lofoten Basin. Deep Sea Res Part 1 56:1955–1971. doi:10.1016/j.dsr.2009.07.005

    Article  CAS  Google Scholar 

  • Sakov P, Counillon F, Bertino L, Lisæter KA, Oke PR, Korablev A (2012) TOPAZ4: an ocean-sea ice data assimilation system for the North Atlantic and Arctic. Ocean Sci 8:633–656. doi:10.5194/os-8-633-2012

    Article  Google Scholar 

  • Sandø AB, Nilsen JEØ, Eldevik T, Bentsen M (2012) Mechanisms for variable North Atlantic–Nordic seas exchanges. J Geophys Res 117:C12006. doi:10.1029/2012JC008177

    Article  Google Scholar 

  • Serra NRH, Käse A, Stammer Köhl D, Quadfasel D (2010) On the low-frequency phase relation between the Denmark Strait and the Faroe-Bank Channel overflows. Tellus 62:530–550. doi:10.1111/j.1600-0870.2010.00445.x

    Article  Google Scholar 

  • Shum CK, Hans-Peter Plag, Jens Schröter, Victor Zlotnicki, Peter Bender, Alexander Braun, Anny Cazenave, Don Chamber, Jianbin Duan, William Emery, Georgia Fotopoulos, Viktor Gouretski, Richard Gross, Thomas Gruber, Junyi Guo, Guoqi Han, Chris Hughes, Masayoshi Ishii, Steven Jayne, Johnny A. Johannesen, Per Knudsen, Chung-Yen Kuo, Eric Leuliette, Sydney Levitus, Nikolai Maximenko, Laury Miller, James Morison, Harunur Rashid, John Ries, Markus Rothacher, Reiner Rummel, Kazuo Shibuya, Michael Sideris, Y. Tony Song, Detlef Stammer, Maik Thomas, Josh Willis, Philip Woodworth (2010) Geodetic observations of the ocean surface topography, geoid, currents and changes in ocean mass and volume, Plenary Session Paper, OceanObs09, Venice Italy, 21–25 Sept. 2009, ESA Publicatiion WPP 306, doi: 10.5270/OceanObs09

  • Siegismund F, Johannessen JA, Drange H, Mork KA, Korablev A (2007) Steric height variability in the Nordic Seas. J Geophys Res 112:C12010. doi:10.1029/2007/JC004221

    Article  Google Scholar 

  • Skagseth Ø, Furevik T, Ingvaldsen R, Loeng H, Mork KA, Orvik KA, Ozhigin V (2008) Volume and Heat Transports to the Arctic Ocean via the Norwegian and Barents Seas. In: Dickson (ed) Arctic-Subarctic Ocean Fluxes (ASOF): Defining the Role of the Northern Seas in Climate. Springer, Berlin, pp 45–64

    Chapter  Google Scholar 

  • Søiland H, Prater MD, Rossby T (2008) Rigid topographic control of currents in the Nordic Seas. Geophys Res Lett 35:L18607. doi:10.1029/2008GL034846

    Article  Google Scholar 

  • Stammer D (1997) Steric and wind-induced changes in TOPEX/POSEIDON large-scale sea surface topography observations. J Geophys Res. doi:102,20,987-21,009

    Google Scholar 

  • Steele M, Ermold W (2007) Steric sea level change in the northern seas. J Climate 20. doi:10.1175/JCLI4022.1

    Article  Google Scholar 

  • Tomczak M, Godfrey JS (2003) Regional Oceanograhy: An Introduction, 2nd edn. Daya Publishing House, New Delhi

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Johannessen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Johannessen, J.A. et al. (2014). Toward Improved Estimation of the Dynamic Topography and Ocean Circulation in the High Latitude and Arctic Ocean: The Importance of GOCE. In: Bengtsson, L., et al. The Earth's Hydrological Cycle. Space Sciences Series of ISSI, vol 46. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8789-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8789-5_9

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8788-8

  • Online ISBN: 978-94-017-8789-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics