Skip to main content

Downscaling Satellite Precipitation with Emphasis on Extremes: A Variational ℓ1-Norm Regularization in the Derivative Domain

  • Chapter
  • First Online:
The Earth's Hydrological Cycle

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 46))

Abstract

The increasing availability of precipitation observations from space, e.g., from the Tropical Rainfall Measuring Mission (TRMM) and the forthcoming Global Precipitation Measuring (GPM) Mission, has fueled renewed interest in developing frameworks for downscaling and multi-sensor data fusion that can handle large data sets in computationally efficient ways while optimally reproducing desired properties of the underlying rainfall fields. Of special interest is the reproduction of extreme precipitation intensities and gradients, as these are directly relevant to hazard prediction. In this paper, we present a new formalism for downscaling satellite precipitation observations, which explicitly allows for the preservation of some key geometrical and statistical properties of spatial precipitation. These include sharp intensity gradients (due to high-intensity regions embedded within lower-intensity areas), coherent spatial structures (due to regions of slowly varying rainfall), and thicker-than-Gaussian tails of precipitation gradients and intensities. Specifically, we pose the downscaling problem as a discrete inverse problem and solve it via a regularized variational approach (variational downscaling) where the regularization term is selected to impose the desired smoothness in the solution while allowing for some steep gradients (called ℓ1-norm or total variation regularization). We demonstrate the duality between this geometrically inspired solution and its Bayesian statistical interpretation, which is equivalent to assuming a Laplace prior distribution for the precipitation intensities in the derivative (wavelet) space. When the observation operator is not known, we discuss the effect of its misspecification and explore a previously proposed dictionary-based sparse inverse downscaling methodology to indirectly learn the observation operator from a data base of coincidental high- and low-resolution observations. The proposed method and ideas are illustrated in case studies featuring the downscaling of a hurricane precipitation field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Badas MG, Deidda R, Piga E (2006) Modulation of homogeneous space-time rainfall cascades to account for orographic influences. Nat Hazard Earth Syst 6(3):427–437. doi:10.5194/nhess-6-427-2006

    Article  Google Scholar 

  • Bateni SM, Entekhabi D (2012) Surface heat flux estimation with the ensemble Kalman smoother: joint estimation of state and parameters. Water Resour Res 48(3). doi:10.1029/2011WR011542

  • Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci 2(1):183–202. doi:10.1137/080716542

    Article  Google Scholar 

  • Bertsekas DP (1999) Nonlinear programming, 2nd edn. Athena Scientific, Belmont, MA, p 794

    Google Scholar 

  • Chen S, Donoho D, Saunders M (2001) Atomic decomposition by basis pursuit. SIAM Rev 43(1):129–159

    Article  Google Scholar 

  • Chen SS, Donoho DL, Saunders MA (1998) Atomic decomposition by basis pursuit. SIAM J Sci Comput 20:33–61

    Article  CAS  Google Scholar 

  • Deidda R (2000) Rainfall downscaling in a space-time multifractal framework. Water Resour Res 36(7):1779–1794

    Article  Google Scholar 

  • Ebtehaj AM, Foufoula-Georgiou E (2011) Statistics of precipitation reflectivity images and cascade of Gaussian-scale mixtures in the wavelet domain: a formalism for reproducing extremes and coherent multiscale structures. J Geophys Res 116:D14110. doi:10.1029/2010JD015177

    Article  Google Scholar 

  • Ebtehaj AM, Foufoula-Georgiou E, Lerman G (2012) Sparse regularization for precipitation downscaling. J Geophys Res 116:D22110. doi:10.1029/2011JD017057

    Article  Google Scholar 

  • Ebtehaj AM, Foufoula-Georgiou E (2013) Variationl downscaling, fusion and assimilation of hydrometeorological states: a unified framework via regularization. Water Resour Res. doi:10.1002/wrcr.20424

    Article  Google Scholar 

  • Figueiredo M, Nowak R, Wright S (2007) Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J Sel Topics Signal Process 1(4):586–597. doi:10.1109/JSTSP.2007.910281

    Article  Google Scholar 

  • Flaming GM (2004) Measurement of global precipitation. In: Geoscience and remote sensing symposium, 2004. IGARSS’04. Proceedings. 2004 IEEE international, vol 2, p 918–920

    Google Scholar 

  • Freitag MA, Nichols NK, Budd CJ (2012) Resolution of sharp fronts in the presence of model error in variational data assimilation. Q J Roy Meteor Soc. doi:10.1002/qj.2002

    Article  Google Scholar 

  • Hansen P (2010) Discrete inverse problems: insight and algorithms, vol. 7. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA

    Google Scholar 

  • Harris D, Foufoula-Georgiou E, Droegemeier KK, Levit JJ (2001) Multiscale statistical properties of a high-resolution precipitation forecast. J Hydrometeor 2(4):406–418

    Article  Google Scholar 

  • Krajewski WF, Smith JA (2002) Radar hydrology: rainfall estimation. Adv Water Resour 25(8–12):1387–1394. doi:10.1016/S0309-1708(02)00062-3

    Article  Google Scholar 

  • Kim S-J, Koh K, Lustig M, Boyd S, Gorinevsky D (2007) An interior-point method for large-scale ℓ1-regularized least squares. IEEE J Sel Topics Signal Process. 1(4):606–617. doi:10.1109/JSTSP.2007.910971

    Article  Google Scholar 

  • Kumar P, Foufoula-Georgiou E (1993) A multicomponent decomposition of spatial rainfall fields. 2. Self-similarity in fluctuations. Water Resour Res 29(8):2533–2544

    Article  Google Scholar 

  • Kumar P, Foufoula-Georgiou E (1993) A multicomponent decomposition of spatial rainfall fields. 1. Segregation of large- and small-scale features using wavelet transforms. Water Resour Res 29(8):2515–2532

    Article  Google Scholar 

  • Lewicki M, Sejnowski T (2000) Learning overcomplete representations. Neural Comput 12(2):337–365

    Article  CAS  Google Scholar 

  • Lovejoy S, Mandelbrot B (1985) Fractal properties of rain, and a fractal model. Tellus A 37(3):209–232

    Article  Google Scholar 

  • Lovejoy S, Schertzer D (1990) Multifractals, universality classes and satellite and radar. J Geophys Res 95(D3):2021–2034

    Article  Google Scholar 

  • Mallat S, Zhang Z (1993) Matching pursuits with time-frequency dictionaries. IEEE Trans Signal Proces 41(12):3397–3415. doi:10.1109/78.258082

    Article  Google Scholar 

  • Mallat S (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693. doi:10.1109/34.192463

    Article  Google Scholar 

  • Nykanen DK, Foufoula-Georgiou E, Lapenta WM (2001) Impact of small-scale rainfall variability on larger-scale spatial organization of land-atmosphere fluxes. J Hydrometeor 2(2):105–121

    Article  Google Scholar 

  • Perica S, Foufoula-Georgiou E (1996) Model for multiscale disaggregation of spatial rainfall based on coupling meteorological and scaling. J Geophys Res 101(D21):26–347

    Article  Google Scholar 

  • Rebora N, Ferraris L, Von Hardenberg J, Provenzale A et al (2006) Rainfall downscaling and flood forecasting: a case study in the Mediterranean area. Nat Hazard Earth Syst 6(4):611–619

    Article  Google Scholar 

  • Rebora N, Ferraris L, Von Hardenberg J, Provenzale A (2006) RainFARM: rainfall downscaling by a filtered autoregressive model. J Hydrometeor 7:724–738

    Article  Google Scholar 

  • Sapozhnikov VB, Foufoula-Georgiou E (2007) An exponential Langevin-type model for rainfall exhibiting spatial and temporal scaling. Nonlinear Dyn Geosci :87–100

    Google Scholar 

  • Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B Stat Methodol 58(1):267–288

    Google Scholar 

  • Venugopal V, Roux SG, Foufoula-Georgiou E, Arneodo A (2006) Revisiting multifractality of high-resolution temporal rainfall using a wavelet-based formalism. Water Resour Res 42(6):6. doi:10.1029/2005WR004489

    Article  Google Scholar 

  • Venugopal V, Roux SG, Foufoula-Georgiou E, Arnéodo A (2006) Scaling behavior of high resolution temporal rainfall: new insights from a wavelet-based cumulant analysis. Phys Lett A 348(3):335–345

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Foufoula-Georgiou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht (outside the USA)

About this chapter

Cite this chapter

Foufoula-Georgiou, E., Ebtehaj, A.M., Zhang, S.Q., Hou, A.Y. (2013). Downscaling Satellite Precipitation with Emphasis on Extremes: A Variational ℓ1-Norm Regularization in the Derivative Domain. In: Bengtsson, L., et al. The Earth's Hydrological Cycle. Space Sciences Series of ISSI, vol 46. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8789-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8789-5_13

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8788-8

  • Online ISBN: 978-94-017-8789-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics