Skip to main content

Application of Models in Pharmacology, Medicine, and Ecology

  • Chapter
  • First Online:
Model Systems to Study the Excretory Function of Higher Plants
  • 307 Accesses

Abstract

Models used for fundamental studies of plant excretory function (Chaps. 1, 2, 3, and 4) may also be applied for express analysis in medicine and pharmacology as well as toxicology linked with ecology, agriculture, and forestry. First of all plant secretions are a base for natural drugs analyzed in pharmacology from ancient times. Today it also has become a part of pharmacological botany. Botanical medicine, mainly, is considered in microscopic analysis of actively secreting medicinal plant species (see fundamental book Upton et al. 2011) and learned as the necessary discipline in medicinal courses of universities (Murav’eva 1981; Samylina and Anosova 2010). Handbooks in the wide field of medicinal herbs, including analysis of their biological activity, have been published (Golovkin et al. 2001; Duke 2002, 2003; Polya 2003; Ebadi 2007). Studies in allelopathic relations in biocenosis become linked with the pharmacology because most allelochemicals as secretory products are drugs (Roshchina et al. 2011a, b). Moreover, secretions enriched in allelochemicals may be biological controllers of pathogens in nature (Inderjit and Mukerji 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson A, Merker A, Nilsson P, Sorensen H, Aman P (1999) Chemical composition of the potential new oilseed crops Barbarea vulgaris, Barbarea verna and Lepidium campestre. J Sci Food Agr 79:179–186

    Article  Google Scholar 

  • Ashman TL, Swetz J, Shvitz S (2000) Understanding the basis of pollinator selectivity in sexual dimorphic Fragaria virginiana. Oikos 90:347–356

    Article  Google Scholar 

  • Atta-ur-Rahman, Parveen S, Khalid A, Farooq A, Chouldhary MI (2001) Acetyl and butyryl cholinesterase -inhibiting triterpenoid alkaloids from Buxus papillosa. Phytochemistry 58:963–968

    Article  PubMed  CAS  Google Scholar 

  • Betz JM, Eppley RM, Taylor WC, Andrzejewski D (1994) Determination of pyrrolizidine alkaloids in commercial comfrey products (Symphytum sp.). J Pharm Sci 83(5):649–653

    Article  PubMed  CAS  Google Scholar 

  • Buchinger S, Reifferscheid G (2012) Whole cell biosensors: applications to environmental health. In: Preedy VR, Patel V (eds) Biosensors and environmental health. Science Publishers/CRC Press, Boca Raton, p 350

    Google Scholar 

  • Buchinger S, Grill P, Morosow V, Ben-Yoav H, Shacham-Diamand Y, Biran A, Pedahzur R, Belkin S, Reifferscheid G (2010) Evaluation of chrono-amperometric signal detection for the analysis of genotoxicity by a whole cell biosensor. Anal Chim Acta 2010(659):122–128

    Article  Google Scholar 

  • Budantsev AY, Roshchina VV (2007) Cholinesterase activity as a biosensor reaction for natural allelochemicals: pesticides and pharmaceuticals. In: Roshchina VV, Narwal SS (eds) Cell diagnostics. Science Publisher, Enfield, pp 127–145

    Google Scholar 

  • Buznikov GA (1967) Low molecular weight regulators in embryonic development. Nauka Publishers, Moscow, 265 pp

    Google Scholar 

  • Buznikov GA (1983) Sea urchin embryos as a test system to detect embryotoxicity of chemical compounds. Biol Int 8:5–8

    Google Scholar 

  • Buznikov GA (1987) Neirotransmittery v embriogeneze (Neurotransmitters in Embryogenesis). Nauka, Moscow, 232 pp

    Google Scholar 

  • Buznikov GA (1990) Neurotransmitters in embryogenesis. Harwood Academic Press, Chur, p 526

    Google Scholar 

  • Buznikov GA (2007) Preneuronal transmitters as regulators of embryogenesis. Current state of problem. Russian J Develop Biol (Ontogenesis) 38:262–270

    CAS  Google Scholar 

  • Buznikov GA, Shmukler YB, Lauder JM (1996) From oocyte to neuron: do neurotransmitters function in the same way throughout development? Cell Mol Neurobiol 16:537–559

    Article  PubMed  CAS  Google Scholar 

  • Buznikov GA, Slotkin TA, Lauder JM (2003) Sea urchin embryos and larvae as biosensors for neurotoxicants. Curr Protoc Toxicol. doi:10.1002/0471140856.tx0106s16

    PubMed  Google Scholar 

  • Buznikov GA, Nikitina LA, Rakić LM, Milosević I, Bezuglov VV, Lauder JM, Slotkin TA (2007) The sea urchin embryo an invertebrate model for mammalian developmental neurotoxicity reveals multiple neurotransmitter mechanisms for effects of chlorpyrifos: therapeutic interventions and a comparison with the monoamine depleter reserpine. Brain Res Bull 74(4):221–231

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Buznikov GA, Nikitina LA, Bezuglov VV, Milosević I, Lazarević L, Rogac L, Sabera Ruzdijić S, Slotkin TA, Rakić LM (2013) Sea urchin embryonic development provides a model for evaluating therapies against beta-amyloid toxicity. Brain Res Bull 75(1):94–100

    Article  Google Scholar 

  • Chen BT, Avshalumov MV, Rice ME (2001a) H2O2 is a novel, endogenous modulator of synaptic dopamine release. J Neurophysiol 85:2468–2476

    PubMed  CAS  Google Scholar 

  • Chen CY, Wong EI, Vidali L, Estavillo A, Hepler PK, Hen-ming WU, Cheung AY (2001b) The regulation of actin organization by actin-depolymerizing factor in elongating pollen tubes. Plant Cell 14:2175–2190

    Article  Google Scholar 

  • Chichiricco G, Picozzi P (2007) Reversible inhibition of the pollen germination and stigma penetration in Crocus vernus ssp. Vernus (Iridaceae) following fumigation with NO2, CO2, and O, gases. Plant Biol 9:730–735

    Article  PubMed  CAS  Google Scholar 

  • Cirkovic TD, Bukilica MN, Gavrovic MD, Vujcic ZM, Petrovic S, Jankov RM (1999) Physicochemical and immunologic characterization of low-molecular-weight allergoids of Dactylis glomerata pollen proteins. Allergy, Copenhagen 54:128–134

    Article  CAS  Google Scholar 

  • Cruz-Ortega R, Anaya AL (2007) Biochemical approach to study oxidative damage in plants exposed to allelochemical stress: a case study. In: Roshchina VV, Narwal SS (eds) Cell diagnostics. Science Publisher, Enfield, pp 117–126

    Google Scholar 

  • Denke A, Schempp H, Weise D, Elstne EF (2000) Biochemical activities of extracts from Hypericum perforatum L. %th communication: Dopamine-β-hydroxylase-product quantification by HPLC and inhibition by hypericins and flavonoids. Arzneim-Forsch/Drug Res 50(1):415–419

    CAS  Google Scholar 

  • Dobson HEM, Peng YS (1997) Digestion of pollen components by larvae of flower-specialist bee Chelostoma florisomne (Hymenoptera: Megachilidae). J Insect Physiol 43:89–100

    Article  PubMed  CAS  Google Scholar 

  • Dobson HEM, Bergstrom J, Bergstrom G, Groth I (1987) Pollen and flower volatiles in two Rosa species. Phytochemistry 26:3171–3173

    Article  CAS  Google Scholar 

  • Duke JA (2002) Handbook of medical herbs, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Duke JA (2003) CRC handbook of medical species. CRC Press, Boca Raton

    Google Scholar 

  • Ebadi M (2007) Pharmacodynamic basis of herbal medicine. CRS Press, Boca Raton

    Google Scholar 

  • Fernández M, del Río B, Linares DM, Martín MC, Alvarez MA (2006) Real-time polymerase chain reaction for quantitative detection of histamine-producing bacteria: use in cheese production. J Dairy Sci 89:3763–3769

    Article  PubMed  Google Scholar 

  • Filho JMB, Medeiros KCP, Diniz MFFM, Batista LM, Athayde-Filho PF, Silva MS, da-Cunho EVL, Almeida JRG, Quintans-Junior LJ (2006) Natural products inhibitors of the enzyme acetylcholinesterase. Braz J Pharmacogn 16(2):258–285

    Article  Google Scholar 

  • Frohne D, Pfänder HJ (2005) Poisonous plants: a handbook for doctors, pharmacists, toxicologists and veterinarians, 2nd edn. Timber Press, Portland, 469 pp

    Google Scholar 

  • Garcia OJC, Ventas P, Cosmes P, Lopez Asunsolo A (1996) An immunoblotting analysis of cross-reactivity between melon, plantago and grass pollens. J Investig Allergol Clin Immunol 6:378–382

    Google Scholar 

  • Golovkin BN, Rudenskaya RN, Trofimova IA, Shreter AI (2001) Biologically active substances of plant origin, 3 volumes. Nauka, Moscow

    Google Scholar 

  • Grando SA, Kawashima K, Kirkpatrick CJ, Meurs H, Wessler I (2012) The non-neuronal cholinergic system: basic science, therapeutic implications and new perspectives. Life Sci 91(21–22):269–272

    Google Scholar 

  • Greppi GF, Mura S (eds) (2011) Biosensors and biotechnology for environmental monitoring. 46 International Symposium, 26 September 2011, Sassari

    Google Scholar 

  • Guttman DS (2004) Plants as models for the study of human pathogenesis. Biotechnol Adv 22(5):363–382

    Article  PubMed  CAS  Google Scholar 

  • Haugland RP (2000) Handbook of Fluorescent Probes and Research Chemicals, 7th edn. Molecular Probes, Leiden/Eugene

    Google Scholar 

  • Hefferon KL (2009) Biopharmaceuticals in plants. Toward the next century of medicine. CRC Press, Boca Raton, 184 pp

    Book  Google Scholar 

  • Inderjit, Mukerji KG (eds) (2006) Allelochemicals: biological control of plant pathogens and diseases. Heidelberg, Springer, 214 pp

    Google Scholar 

  • Kawashima K, Misawa H, Moriwaki Y, Fujii YX, Fujii T, Horiuchi Y, Yamada T, Imanaka T, Kamekura M (2007) Ubiquitous expression of acetylcholine and its biological function in life forms without nervous systems. Life Sci 80:2206–2209. doi:10.1016/j.lfs.2007.01.059

  • Kawashima K, Fujii T, Moriwaki Y, Misawa H (2012) Critical roles of acetylcholine and and the muscarinic and nicotinic acetylcholine receptors in the regulation of immune function. Life Sci 91(21–22):1027–1032

    Article  PubMed  CAS  Google Scholar 

  • Kiilerich-Pedersen K, Rozlosnik N (2012) Cell-based biosensors: electrical sensing in microfluidic devices. Diagnostics 2:83–96. doi:10.3390/diagnostics2040083

    Article  Google Scholar 

  • Knaus H, Blab GA, van Veluw GJ, Gerrtsen HC, Wösten HAB (2013) Label-free fluorescence microscopy in fungi. Fungal Biol Rev 27(2):60–66

    Article  Google Scholar 

  • Knudsen JT, Tollsten L, Bergstrom G (1993) Floral scents – a checklist of volatile compounds isolated by head-space techniques. Phytochemistry 33:253–280

    Article  CAS  Google Scholar 

  • Konovalov DA (1995) Natural azulenes. Plant Res (Rastitelnye Resursy) 31(1):101–132

    Google Scholar 

  • Konrad R, Ferry N, Gatehouse AMR, Babendreier D (2007) Potential effects of oilseed rape expressing oryzacystatin-1 (OC-1) and of purified insecticidal proteins on larvae of the solitary bee Osmia bicornis. PLoS ONE 3(7):e26664. doi:10.1371/journal.pone.0002664

    Google Scholar 

  • Kryzhanovsky CA, Vititnova MB (2003) Complete modern reference book of medical drugs, 2nd edn. Classic Moscow, Russia, 1200 pp (pp 1009–1010)

    Google Scholar 

  • Luedtke RR, Freeman RA, Volk M, Arfan M, Reinecke MG (2003) Pharmacological survey of medicinal plants for activity at dopamine receptor subtypes. II. Screen for binding activity at the D1 and D2 dopamine receptor subtypes. Pharm Biol 41(1):45–58

    Article  Google Scholar 

  • Lühring H (1986) Recording of single K+ channels in the membrane of cytoplasmic drop of Chara australis. Protoplasma 133(1):19–28

    Article  Google Scholar 

  • Lühring H, Witzemann V (1995) Internodal cells of the giant green alga Chara as an expression system for ion channels. FEBS Lett 361(1):65–69

    Article  PubMed  Google Scholar 

  • Lühring H, Witzemann V (1995) Internodal cells of the giant green alga Chara as an expression system for ion channels. FEBS Lett 361(1):65–69

    Article  PubMed  Google Scholar 

  • Lyte M, Ernst S (1992) Catecholamine induced growth of gram negative bacteria. Life Sci 50:203–212

    Article  PubMed  CAS  Google Scholar 

  • Lyte M, Ernst S (1993) Alpha and beta adrenergic receptor involvement in catecholamine-induced growth of gram-negative bacteria. Biochem Biophys Res Commun 190:447–452

    Article  PubMed  CAS  Google Scholar 

  • Lyte M, Ernst S (1993) Alpha and beta adrenergic receptor involvement in catecholamine-induced growth of gram-negative bacteria. Biochem Biophys Res Commun 190:447–452

    Article  PubMed  CAS  Google Scholar 

  • Mashkovskii MD (2005) Drugs (Lekarstvennye sredstva), 15th edn. Novaya Volna, Moscow

    Google Scholar 

  • Murav’eva DA (1981) Pharmacognozie. Meditsina, Moscow, p 656

    Google Scholar 

  • Oleskin AV (2012) Biopolytics. The political potential of the life sciences. Nova Science Publishers, New York

    Google Scholar 

  • Oleskin AV, Kirovskaya TA, Botvinko IV, Lysak LV (1998a) Effects of serotonin (5-hydroxytryptamine) on the growth and differentiation of microorganisms. Microbiology (Russia) 67:305–312

    CAS  Google Scholar 

  • Oleskin AV, Botvinko IV, Kirovskaya TA (1998b) Microbial endocrinology and biopolitics. Vestnik of Moscow University (Russia). Ser Biol 4:3–10

    Google Scholar 

  • Oleskin AV, Shishov VI, Malikina KD (2010) Symbiotic biofilms and brain neurochemistry. Nova Science Publishers, New York, p 58

    Google Scholar 

  • Papuashvili MN, Ilyina NI, Pinegin VB, Schelkanov MY, Yudin AN, Vichkanova SA (2001) Antiherpetic efficiency of hyporamine in HIV-infected patients. Immunology (Russia) 4:21–23

    Google Scholar 

  • Parnyshkova EY, Lavrovskaya VP, Pavlik LL, Lezhnev EI, Moshkov DA (2012) Estimation of globular actin content in the cytozole of living cell by means of cytochemical visualization of dopamine. Biol Membr 29(3):209–214

    CAS  Google Scholar 

  • Pöhlker J, Huffman A, Pöschl U (2011) Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences. Atmos Meas Tech Discuss 4:5857–5933

    Article  Google Scholar 

  • Pöhlker C, Huffman JA, Pöschl U (2012) Autofluorescence of atmospheric bioaerosols –fluorescent biomolecules and potential interferences. Atmos Meas Techn 5:37–71

    Article  Google Scholar 

  • Polya G (2003) Biochemical targets of plant bioactive compounds. A pharmacological reference guide to sites of action and biological effects. CRS Press, Boca Raton

    Book  Google Scholar 

  • Potocky M, Jones MA, Bezvoda R, Smirnoff N, Žasky V (2007) Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytol 174(4):742–757

    Article  PubMed  CAS  Google Scholar 

  • Preedy VR, Patel V (eds) (2012) Biosensors and environmental health. Science Publishers and CRC Press, Boca Raton, p 350. doi:10.1111/j.1365-3040.2011.02401.x

    Google Scholar 

  • Preedy VR, Patel V (eds) (2012) Biosensors and environmental health. Science Publishers and CRC Press, Boca Raton, p 350. doi:10.1111/j.1365-3040.2011.02401.x

    Google Scholar 

  • Rea J (1994) Jpn J Clin Ecol 3(1):2

    Google Scholar 

  • Register of medical drugs of Russia, vol 11 (2009) Aptekar, Moscow, p 225

    Google Scholar 

  • Rodriguez E, Towers GHN, Mitchell JC (1976) Biological activities of sesquiterpene lactones. Phytochemistry 15:1573–1580

    Article  CAS  Google Scholar 

  • Roshchina VV (1991) Biomediators in plants. Acetylcholine and biogenic amines in plants. Biological Center AN SSSR, Pushchino, p 192

    Google Scholar 

  • Roshchina VV (1999a) Mechanisms of cell-cell communication. In: Narwal SS (ed) Allelopathy update. 2. Science Publishers, Enfield/New Hampshire, pp 3–25

    Google Scholar 

  • Roshchina VV (1999b) Chemosignaling in pollen. Adv Mod Biol (Russia) 119(6):557–566

    Google Scholar 

  • Roshchina VV (2001a) Neurotransmitters in plant life. Science Publisher, Einfield/New Hampshire/Plymouth

    Google Scholar 

  • Roshchina VV (2001b) Molecular-cellular mechanisms in pollen allleopathy. Allelopathy J 8(1):11–28

    Google Scholar 

  • Roshchina VV (2003) Autofluorescence of plant secreting cells as a biosensor and bioindicator reaction. J Fluoresc 13:403–420

    Article  CAS  Google Scholar 

  • Roshchina VV (2004a) Сellular models to study the allelopathic mechanisms. Allelopathy J 13:3–16

    Google Scholar 

  • Roshchina VV (2004b) Plant microspores as unicellular models for the study of relations between contractile components and chemosignaling. International symposium in biological motility, Pushchino, 23 May-1 June 2004, Pushchino, 2004, pp 194–196

    Google Scholar 

  • Roshchina VV (2004c) Plant cholinesterase activity as a biosensor for toxins in the environment. In: Silman I, Soreq H, Anglister L, Michaelson DM, Fisher A (eds) Cholinergic mechanisms. Function and dysfunction. Informa Healthcare: London, pp 679–680

    Google Scholar 

  • Roshchina VV (2004d) Plant microospores as unicellular models for the study of relations between contractile components and chemosignaling. In: Poddubnaya ZI (ed) Biological motility. Biological Center RAS, Pushchino, pp 194–196

    Google Scholar 

  • Roshchina VV (2005a) Allelochemicals as fluorescent markers, dyes and probes. Allelopathy J 16:31–46

    Google Scholar 

  • Roshchina VV (2005b) Contractile proteins in chemical signal transduction in plant microspores. Biol Bull Ser Biol 3:281–286

    Google Scholar 

  • Roshchina VV (2005c) Biosensors for the study of allelopathic mechanisms and testing of natural pesticides. In: Bansal GL, Sharma SP (eds) Proceedings of international workshop on protocols and methodologies in allelopathy, April 2–4, 2004 Palampur. College of Basic Sciences. Azad Hind Stores, Palampur (India), pp 75–87

    Google Scholar 

  • Roshchina VV (2006a) Plant microspores as biosensors. Trends Mod Biol 126(3):262–274

    Google Scholar 

  • Roshchina VV (2006b) Chemosignaling in plant microspore cells. Biol Bull 33:414–420

    Article  Google Scholar 

  • Roshchina VV (2007a) Cellular models as biosensors. In: Roshchina VV, Narwal SS (eds) Cell diagnostics. Science Publisher, Enfield/Plymouth, pp 5–22

    Google Scholar 

  • Roshchina VV (2007b) Luminescent cell analysis in allelopathy. In: Roshchina VV, Narwal SS (eds) Cell diagnostics. Science Publisher, Enfield/Plymouth, pp 103–115

    Google Scholar 

  • Roshchina VV (2008) Fluorescing world of plant secreting cells. Science Publisher, Enfield/Plymouth, p 338

    Google Scholar 

  • Roshchina VV (2009a) Effects of proteins, oxidants and antioxidants on germination of plant microspores. Allelopathy J 23(1):37–50

    Google Scholar 

  • Roshchina VV (2009b) Acetylcholine and biogenic amines in non-synaptic signalling systems. In: Zinchenko VP, Kolesnikov SS, Berezhnov AV (eds) Reception and intracellular signalling. Biological Center of RAS, Pushchino, pp 694–698

    Google Scholar 

  • Roshchina VV (2010) Chapter 2. Evolutionary сonsiderations of neurotransmitters in microbial, plant and animal cells. In: Lyte M, Freestone PPE (eds) Microbial endocrinology. Interkingdom signaling in infectious disease and health. Springer, New York, pp 17–52

    Google Scholar 

  • Roshchina VV, Karnaukhov VN (1999) Changes in pollen autofluorescence induced by ozone. Biol Plantarum 42(2):273–278

    Article  CAS  Google Scholar 

  • Roshchina VV, Karnaukhov VN (2010) The fluorescence analysis of the medicinal drugs’ interaction with unicellular biosensors. Pharmacia (Russia) 3:43–46

    Google Scholar 

  • Roshchina VV, Melnikova EV (1995) Spectral analysis of intact secretory cells and excretions of plants. Allelopathy J 2(2):179–188

    Google Scholar 

  • Roshchina VV, Melnikova EV (2001) Chemosensitivity of pollen to ozone and peroxides. Russ Plant Physiol 48:89–99

    Article  Google Scholar 

  • Roshchina VV, Roshchina VD (2003) Ozone and plant cell. Kluwer Academic Publishers, Dordrecht, 240 pp

    Book  Google Scholar 

  • Roshchina VV, Melnikova EV, Spiridonov NA, Kovaleva LV (1995) Azulenes, the blue pigments of pollen. Dokl Biol Sci 340:93–96

    Google Scholar 

  • Roshchina VV, Miller AV, Safronova VG, Karnaukhov VN (2003) Reactive oxygen species and luminescence of intact microspore cells. Biophysics 48(2):259–264

    CAS  Google Scholar 

  • Roshchina VV, Yashina AV, Yashin VA (2008) Cell communication in pollen allelopathy analyzed with laser-scanning confocal microscopy. Allelopathy J 21:219–226

    Google Scholar 

  • Roshchina VV, Yashin VA, Yashina AV, Gol’tyaev MV (2011a) Colored allelochemicals in modelling of cell-cell allelopathic interactions. Allelopathy J 28(1):1–12

    Google Scholar 

  • Roshchina VV, Yashin VA, Vikhlyantsev IM (2011b) Fluorescence of plant microspores as biosensors. Biol Membr 28(6):1–12

    Google Scholar 

  • Roshchina VV, Yashin VA, Vikhlyantsev IM (2011b) Fluorescence of plant microspores as biosensors. Biol Membr 28(6):1–12

    Google Scholar 

  • Saari SE, Putkiranta MJ, Keskinen J (2013) Fluorescence spectroscopy of atmospherically relevant bacterial and fungal spores and potential interferences. Atmos Environ 71:202–209

    Article  CAS  Google Scholar 

  • Samylina IA, Anosova OG (2010) Pharmacognozie. Atlas in 3 volumes. GEOTAR, Moscow

    Google Scholar 

  • Shubina VS, Sophin AD, Lavrovskaya VP, Vikhlyantsev IM, Bezgina EN, Pavlik LL, Moshkov DA (2009) Cytochemical and biophysical evidences for the interaction of dopamine with cytoskeleton. In: Zinchenko VP, Berezhnov (eds) Reception and intracellular signalling, vol 1. Biological Center RAS, Pushchino, pp 401–406

    Google Scholar 

  • Shubina VS, Lavrovskaya VP, Bezgina EN, Pavlik LL, Moshkov DA (2011) Cytochemical and ultrastructural characteristics of BHK-21 cells exposed to dopamine. Neurosci Behav Physiol 41(1):1–5

    Article  CAS  Google Scholar 

  • Smirnova AV, Timofeyev KN, Breygina MA, Matveyeva NP, Yemakov IP (2012) Antioxidant properties of the pollen exine polymer matrix. Biophysics (Russia) 57(2):258–263

    CAS  Google Scholar 

  • Speranza A, Crinelli R, Scoccianti V, Geitmann A (2011) Reactive oxygen species are involved in pollen tube initiation in kiwifruit. Plant Biol 14(1):64–76

    PubMed  Google Scholar 

  • Spiridonov NA, Konovalov DA, Arkhipov VV (2005) Cytotoxicity of some Russian ethnomedicinal plants and plant compounds. Phytother Res 19:428–432

    Article  PubMed  CAS  Google Scholar 

  • Uchiyama S, Rechnitz CA (1987) Biosensors using flowers as catalytic material. Anal Lett 20(3):451–470

    Article  CAS  Google Scholar 

  • Upton R, Graff A, Joliffe G, Länger R, Williamson E (eds) (2011) Microscopic characterization of botanical medicines. CRC Press, Boca Raton, 800 pp

    Google Scholar 

  • Vidali L, McKenna ST, Hepler PK (2001) Actin polymerization is essential for pollen tube growth. Mol Biol Cell 12(8):2534–2545

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wessler I, Kirkpatrick CJ (2008) Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br J Pharmacol 154(8):1558–1571

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wessler I, Kilbinger H, Bittinger F, Kirkpatrick CJ (2001) The biological role of non-neuronal acetylcholine in plants and humans. Jpn J Pharmacol 85(1):2–10

    Article  PubMed  CAS  Google Scholar 

  • Wessler I, Kaltwasser S, Michel-Schmidt R, Schmidt H, Unger R, Kirkpatrick CJ (2013) Upregulated acetylcholine synthesis during early differentiation in the embryonic stem cell line CGR8. Neurosci Lett 547(1):32–36

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa T, Kosakai K, Tomiyama T, Yasunami M, Takase K (1990) Studies of anti-ulcer agents. II. Synthesis and anti-ulcer activities of 6-isopropylazulene-1-sodium sulfonate derivatives. Chem Pharm Bull 38(12):3355–3358

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Roshchina, V.V. (2014). Application of Models in Pharmacology, Medicine, and Ecology. In: Model Systems to Study the Excretory Function of Higher Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8786-4_5

Download citation

Publish with us

Policies and ethics