Skip to main content
  • 343 Accesses

Abstract

Cell–cell communication is based on chemical interactions between organisms, including relations between cells of the same species or cells of different species (allelopathic interactions). Under normal conditions, molecular mechanism of the interactions consists of excretion of active substance on the surface of donor cell and the recognition of this chemical signal by the surface of receiver cell named acceptor cell. Many secretory components may serve as allelochemicals, pharmaceuticals (drugs), and natural pesticides. To test their biological activity and especially their mechanisms of action on the cellular level, special model systems are used as shown in previous chapters. Germination and the changes in fluorescence are main physiological responses of the objects (plants, animals, or microorganisms) to chemical signaling with components of plant secretions. Among known model process testing, one could use such reactions as the cellular autofluorescence, composition of the secretions and their spectral characteristics, germination, and growth and development. Models of cell–cell contacts may represent pollen–pistil, pollen–pollen, host cell–parasitic cell, plant cell–animal cell, and other interactions. Below, we shall consider the various types of the models useful to study cell–cell contacts where components of secretions play an essential role in a physiological reply.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allmann S, Späthe A, Bisch-Knaden S, Kallenbach M, Reinecke A, Sachse S, Baldwin IT, Hansson B (2013) Feeding-induced rearrangement of green leaf volatiles reduces moth oviposition. Life 2:e00421. doi:10.7554/eLife.00421.001

    Google Scholar 

  • Anaya AL, Hernandez-Bautista BE, Jimenez-Estrada M, Velasco-Ibarra L (1992) Phenylacetic acid as a phytotoxic compound of corn pollen. J Chem Ecol 18:897–905

    PubMed  CAS  Google Scholar 

  • Anuchin AM, Chuvelev DI, Kirovskaya TA, Oleskin AV (2008) Effects of monoamine neuromediators on the growth-re. Microbiology 77(6):674–680

    CAS  Google Scholar 

  • Auclair JL (1963) Aphids feeding and nutrition. Ann Rev Entomol 8:439–490

    Google Scholar 

  • Babadzhanyan TA (1947) Selective ability to fertilize economic plants. Izd. Armyan AN SSR, Erevan

    Google Scholar 

  • Baluška F, Barlow PW (1993) The role of microtubular cytoskeleton in determining nuclear chromatin structure and passage of maize root cells through the cell cycle. Eur J Cell Biol 61:160–167

    PubMed  Google Scholar 

  • Barriero AT, Sanchez IF, Astarejos I, Zafra MI (1992) Homoditerpenes from the essential oil of Tanacetum annuum. Phytochemistry 31:1727–1730

    Google Scholar 

  • Baumert A, Kuzovkina IN, Krauss G, Hieke M, Grogewr D (1982) Biosynthesis of rutacridone in tissue culture of Ruta graveolens L. Plant Cell Rep 1:168–171

    PubMed  CAS  Google Scholar 

  • Bednarska E (1992) The localization of nonspecific esterase and cholinesterase activity in germinating pollen and in pollen tube of Vicia faba L. The effect of actinomycin D and cycloheximide. Biol Plantarum 34:229–240

    CAS  Google Scholar 

  • Bednarska E, Tretyn A (1989) Ultrastructural localization of acetylcholinesterase activity in the stigma of Pharbitis nil L. Cell Biol Int Rep 13:275–281

    Google Scholar 

  • Bhattacharyya В, Howard R, Maity SN, Brossi A, Sharma PN, Wolff JВ (1986) Ring regulation of colchicine binding kinetics and fluorescence. Proc Narl Acad Sci USA 83(7):2052–2055

    CAS  Google Scholar 

  • Blackman RL, Eastop VF (1984) Aphids on the world’s crops, an identification guide. Wiley, New York, p 466

    Google Scholar 

  • Branscheidt P (1930) Zur Phisiologie der Pollenkeimung und ihrer experimentellen Beeinflussung. Planta 11:368–456

    Google Scholar 

  • Brockmann H, Falkenhausen EHF, Dorlars A (1950) Die Konstitution des Hypericins. Naturwissenschaften 37(23):540

    CAS  Google Scholar 

  • Brooker R (2010) Plant communities, plant-plant interactions and climate change. In: Pugnaire FI (ed) Positive plant interactions and community dynamics. CRC Press/Fundacion BBVA, Boca Raton, pp 99–123

    Google Scholar 

  • Buch F, Rott M, Rottloff S, Paetz C, Hilke I, Raessler M, Mithöfer A (2013) Secreted pitfall-trap fluid of carnivorous Nepenthes plants is unsuitable for microbial growth. Ann Bot 111(3):375–383. doi:10.1093/aob/mcs287

    PubMed  CAS  PubMed Central  Google Scholar 

  • Buttarelli FR, Pontieri FE, Margotta V, Palladini G (2000) Acetylcholine/dopamine interaction in planaria. Comp Biochem Physiol C Toxicol Pharmacol 125(2):225–231

    PubMed  CAS  Google Scholar 

  • Camehl I, Sherameti I, Seebald E, Johnson MJ, Oelmüller R (2013) Role of defense compounds in the beneficial interaction between Arabidopsis thaliana and Piriformospora indica. In: Varma A (ed) Piriformospora indica soil biology, vol 33. Berlin

    Google Scholar 

  • Cantiello HF (1997) Role of actin filament organization in cell volume and ion channel regulation. J Exp Zool 279(5):425–435

    PubMed  CAS  Google Scholar 

  • Char MBS (1977) Pollen allelopathy. Naturwissenschaften 64:489–490

    Google Scholar 

  • Chauhan SVS, Gaur S, Rana A (2005) Effects of weeds pollens on the germination of crops pollens. Allelopathy J 15:295–304

    Google Scholar 

  • Chen BT, Avshalumov MV, Rice ME (2001a) H2O2 is a novel, endogenous modulator of synaptic dopamine release. J Neurophysiol 85:2468–2476

    PubMed  CAS  Google Scholar 

  • Chen CY, Wong EI, Vidali L, Estavillo A, Hepler PK, Hen-ming WU, Cheung AY (2001b) The regulation of actin organization by actin-depolymerizing factor in elongating pollen tubes. Plant Cell 14:2175–2190

    Google Scholar 

  • Croteau R, Leblanc RM (1978) Photophysical processes in tropolone, α-methoxy-tropone and colchicines. Photochem Photobiol 28(1):33–38

    CAS  Google Scholar 

  • Cruz-Ortega R, Anaya AL (2007) Biochemical approach to study oxidative damage in plants exposed to allelochemical stress: a case study. In: Roshchina VV, Narwal SS (eds) Cell diagnostics. Science Publisher, Enfield, pp 117–126

    Google Scholar 

  • Dinh TS, Galis I, Baldwin IT (2013) UVB radiation and 17-hydroxygeranyllinalool diterpene glycosides provide durable resistance against mirid (Tupiocoris notatus) attack in field-grown Nicotiana attenuata plants. Plant Cell Environ 36(3):590–606. doi:10.1111/j.1365-3040.2012.02598.x

    CAS  Google Scholar 

  • Dobson HEM, Peng YS (1997) Digestion of pollen components by larvae of flower-specialist bee Chelostoma florisomne (Hymenoptera: Megachilidae). J Insect Physiol 43:89–100

    PubMed  CAS  Google Scholar 

  • Dobson HEM, Bergstrom J, Bergstrom G, Groth I (1987) Pollen and flower volatiles in two Rosa species. Phytochemistry 26:3171–3173

    CAS  Google Scholar 

  • Dobson HEM, Groth I, Bergstrom G (1996) Pollen advertisement: chemical contrasts between whole flower and pollen odours. Am J Bot 83:877–885

    CAS  Google Scholar 

  • Doehlemann G, van der Linde K, Aßmann D et al (2009) Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells. PLoS Pathog 5(2):e1000290

    PubMed  PubMed Central  Google Scholar 

  • Dzhabiev TS, Kurkina LA (2007) Photo-induced water oxidation to ozone by algae and a functional chemical model of photosystem II manganese cofactor of natural photosynthesis. Physics and chemistry of the processes aimed at the creation of new technologies, materials and education. (Russia) 6: 94–97

    Google Scholar 

  • Dzhabiev TS, Moiseev DN, Shilov AE (2005) Six-electron oxidation water to ozone by red marine algae. Doklady Russian Acad Sci 402(4):555–557

    Google Scholar 

  • Egorov IA, Egofarova RK (1971) The study of essential oils of blossom pollen of grape. Doklady AN SSSR 199:1439–1442

    CAS  Google Scholar 

  • Ekici K, Coşkun H (2002) Histamine content of some commercial vegetable pickles. Proceedings of ICNP-2002 – Trabzon, Turkey, pp 162–164

    Google Scholar 

  • El-Ayeb A, Omezzine F, Haouala R (2009) Status of pollen allelopathy research. Allelopathy J 23(1):71–84

    Google Scholar 

  • Engel T, Heinig JH, Weeke ER, Schwartz B, Ingemann L (1988) Basophil histamine release in insect venom allergy. Allergy 43(2):132–138

    PubMed  CAS  Google Scholar 

  • Fahn A (1979) Secretory tissue in plants. Academic Press, London, 302 p

    Google Scholar 

  • Fahn A (1979) Secretory tissue in plants. Academic Press, London, 302 p

    Google Scholar 

  • Fahn A (1979) Secretory tissue in plants. Academic Press, London, 302 p

    Google Scholar 

  • Fahn A (1979) Secretory tissue in plants. Academic Press, London, 302 p

    Google Scholar 

  • Fahn A (1979) Secretory tissue in plants. Academic Press, London, 302 p

    Google Scholar 

  • Galen C, Gregory T (1989) Interspecific pollen transfer as a mechanism of competition consequences of foreign pollen contamination for seed set in the alpine wild flower Polemonium viscosum. Oecologia 81:120–123

    Google Scholar 

  • Gaur S, Rana A, Chauhan SVS (2005) Effects of pollens of Datura alba L. on some crops. Allelopathy J 16:309–316

    Google Scholar 

  • Gaur S, Rana A, Chauhan SVS (2007) Pollen allelopathy: past achievements and future approach. Allelopathy J 20:115–126

    Google Scholar 

  • Golubinskii IN (1946) About mutual influence of pollen grains of different species at their mutual germination in the artificial media. Doklady AN SSSR 53:73–76

    Google Scholar 

  • Grümmer G (1955) Die Gegenseitige Beeinflussung – Höherer Pflanzen-Allelopathie. Fisher Jena, Germany

    Google Scholar 

  • Gupta A, Vijayaraghavan MR, Gupta R (1998) The presence of cholinesterase in marine algae. Phytochemistry 49:1875–1877

    CAS  Google Scholar 

  • Gupta A, Thakur SS, Uniyal PL, Gupta R (2001) A survey of bryophytes for presence of cholinesterase activity. Am J Bot 88:2133–2135

    PubMed  CAS  Google Scholar 

  • Hardham AR (2012) Confocal microscopy in plant-pathogen interactions. In: Bolton MDD, Bart PHJ, Thomma P (eds) Plant fungal pathogens: methods and protocols, vol 835, Methods in molecular biology. Springer, Berlin, pp 295–309

    Google Scholar 

  • Hartwell JL (1968) Plants used against cancer. Lloydia 31:71–170

    Google Scholar 

  • Hwang JU, Suh S, Yi H, Kim J, Lee Y (1997) Actin filaments modulate both stomatal opening and inward K+−channel activities in guard cells of Vicia faba L. Plant Physiol 115(2):335–342

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jaldappagari S, Motohashi N, Gangeenahalli MP, Naismith JH (2008) Bioactive mechanism of interaction between anthocyanins and macromolecules like DNA and proteins. Topics Heterocycl Chem 15:49–65

    CAS  Google Scholar 

  • Just F, Walz B (1996) The effects of serotonin and dopamine on salivary secretion by isolated cockroach salivary glands. J Exp Biol 1999:407–413

    Google Scholar 

  • Konovalov DA (1995) Natural azulenes. Plant Res (Rastitelnye Resursy) 31(1):101–132

    Google Scholar 

  • Kulakovskaya TV, Shashkov AS, Kulakovskaya EV, Golubev WL (2004) Characterization of antifungal glycolipid secreted by the yeast Sympodiomycopsis paphiopedili. FEMS Yeast Res 5:247–252

    PubMed  CAS  Google Scholar 

  • Lee S, Brown RL, Monroe W (2009) Use of confocal laser scanning microscopy in systematics of insects with a comparison of fluorescence of different stains. Entomology 34(1):10–14

    Google Scholar 

  • Lee S, Brown RL, Monroe W (2009) Use of confocal laser scanning microscopy in systematics of insects with a comparison of fluorescence of different stains. Entomology 34(1):10–14

    Google Scholar 

  • Li MH (2008) Effects of nonionic and ionic surfactants on survival, oxidative and cholinesterase activity of planarian. Chemosphere 70:1796–1803

    PubMed  CAS  Google Scholar 

  • Lyte M, Frank CD, Green BT (1996) Production of an autoinducer of growth by norepinephrine cultured Escherichia coli O157: H7. FEMS Microbiol Lett 139:155–159

    PubMed  CAS  Google Scholar 

  • Macrae EK (1961) Localization of porphyrin fluorescence in planarians. Science 134:331–332

    PubMed  CAS  Google Scholar 

  • Malikina KD, Shishov VA, Čuvelev DI, Kudrin VS, Oleskin AV (2010a) The regulatory role of nejrom ediatornyh amines in the cells of Saccharomyces cerevisiae. Appl Biochim Mikrobiol 46(6):672–677

    CAS  Google Scholar 

  • Malikina KD, Shishov VA, Chuvelev DI, Kudrin VS, Oleskin AV (2010b) Regulatory role of monoamine neurotransmitters in Saccharomyces cerevisiae cells. Appl Biochem Microbiol 46(6):620

    CAS  Google Scholar 

  • Marg S, Walz B, Blenau W (2004) The effects of dopamine receptor agonists and antagonists on the secretory rate of cockroach (Periplaneta americana) salivary glands. J Insect Physiol 50(9):821–830

    PubMed  CAS  Google Scholar 

  • Marquardt P, Vogg G (1952) Pharmakologische und chemische Untersuchungen uber Wirkstoffe in Bienenpollen. Arzneimittel Forschung 21(353):267–271

    Google Scholar 

  • Muarlidharan J, John E, Channamma L, Theerthaprasad D (1996) Changes in esterases in response to blast infection in fingermillet seedlings. Phytochemistry 43(6):1151–1155

    CAS  Google Scholar 

  • Murphy SD (1992) The determination of allelopathic potential of pollen and nectar. In: Linskens HF, Jackson IF (eds) Plant toxins analysis. Springer, Berlin/Heidelberg/New York, pp 333–357

    Google Scholar 

  • Murphy SD (1999a) Pollen allelopathy. In: Inderjit, Dakshini KMM, Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC Press, Boca Raton, pp 129–148

    Google Scholar 

  • Murphy SD (1999b) Is there a role for pollen allelopathy in biological control of weeds? In: Narwal SS (ed) Allelopathy update: basic and applied aspects, vol 2. Science Publishers, Enfield/Plymouth, pp 321–332

    Google Scholar 

  • Murphy SD (2000) Field testing for pollen allelopathy: a review. J Chem Ecol 26(9):2155–2172

    CAS  Google Scholar 

  • Murphy SD (2002) Biochemical and physiological aspects of pollen allelopathy. In: Inderjit, Mallik AU (eds) Chemical ecology of plants: allelopathy in aquatic and terrestrial ecosystems. Birkhäuser (Springer), Switzerland, pp 245–266

    Google Scholar 

  • Murphy SD (2007) Allelopathic pollen: isolating the allelopathic effects. In: Roshchina VV, Narwal SS (eds) Cell diagnostics: images biophysical and biochemical processes in allelopathy. Science Publisher, Enfield/Jersey/Plymouth, pp 185–198

    Google Scholar 

  • Murphy SD, Aaarssen LW (1989) Pollen allelopathy among sympatric grassland species in vitro evidence in Phleum pratense L. New Phytol 112:295–305

    Google Scholar 

  • Murphy SD, Aaarssen LW (1995a) Allelopathic pollen extract from Phleum pratense L. (Poaceae) reduces seed set in sympatric species. Int J Plant Sci 156:435–444

    Google Scholar 

  • Murphy SD, Aaarssen LW (1995b) Allelopathic pollen of Phleum pratense reduces seed set in Elytrigia repens in the field. Can J Bot 73:1417–1422

    Google Scholar 

  • Murphy SD, Flegel S, Smedes J, Finney N, Zhang B, Walton K, Henstra S (2009a) Identification of pollen allelochemical in Hieracium x dutillyanum Lepage and its ecological impacts on Conyza canadensis (L.) Cron. and Sonchus arvensis L. dominat ed community in southern Ontario, Canada. Allelopathy J 23:85–94

    Google Scholar 

  • Murphy SD, Sherr I, Bullock C (2009b) Allelopathic pollen in Canadian invasive species: alliaria petiolata and Hesperis matronalis. Allelopathy J 23(1):63–70

    Google Scholar 

  • Naumann TA, Price NP (2012) Truncation of class IV chitinases from Arabidopsis by secreted fungal proteases. Mol Plant Pathol 13(9):1135–1139. doi:10.1111/j.1364-3703.2012.00805.x. Epub 2012 Apr 18

    PubMed  CAS  Google Scholar 

  • Nelson L (1978) Chemistry and neurochemistry of sperm motility control. Fed Proc Fed Am Soc Exp Biol 37:2543–2549

    CAS  Google Scholar 

  • Oleskin AV (2012) Biopolytics. The political potential of the life sciences. Nova Science Publishers, New York

    Google Scholar 

  • Oleskin AV, Kirovskaya TA, Botvinko IV, Lysak LV (1998a) Effects of serotonin (5-hydroxytryptamine) on the growth and differentiation of microorganisms. Microbiology (Russia) 67:305–312

    CAS  Google Scholar 

  • Oleskin AV, Botvinko IV, Kirovskaya TA (1998b) Microbial endocrinology and biopolitics. Vestnik of Moscow University (Russia). Ser Biol 4:3–10

    Google Scholar 

  • Oleskin AV, Shishov VI, Malikina KD (2010) Symbiotic biofilms and brain neurochemistry. Nova Science Publishers, New York, p 58

    Google Scholar 

  • Oleskin AV, Zagryadskaya Yu A, Lisak LV (2013) Effects of biogenic amines on the interactions of fungal hyphae and bacteria. In: Zinchenko VP, Berezhnov AV (eds) Reception and intracellular signalling. Emma Press, Pushchino, pp 770–775

    Google Scholar 

  • Ortega RC, Anaya AL, Ramos L (1988) Effects of allelopathic compounds of corn pollen on respiration and cell division of watermelon. J Chem Ecol 14:71–86

    Google Scholar 

  • Oviedo NJ, Nicolas CL, Adams DS, Levin M (2008) Planarians: a versatile and powerful model system for molecular studies of regeneration, adult stem cell regulation, aging and behavior. Cold Spring Harb Protoc. doi:10.1101/pdb.emo101

    Google Scholar 

  • Peer WA, Murphy AS (2006) Flavonoids as signal molecules: targets of flavonoid action. In: Grotewold E (ed) The science of flavonoids, 2nd edn. Springer, Berlin, pp 239–268

    Google Scholar 

  • Racz-Kotilla E, Adam S, Galin D (1968) Protective effect of certain antiulcer medicines associated with azulene on experimental gastric ulcer. Rev Med (Targu-Mures) 14:331–334

    CAS  Google Scholar 

  • Ribeiro JMC (1987) Role of saliva in blood-feeding by arthropods. Annu Rev Entomol 32:463–478

    PubMed  CAS  Google Scholar 

  • Rodriguez E, Towers GHN, Mitchell JC (1976) Biological activities of sesquiterpene lactones. Phytochemistry 15:1573–1580

    CAS  Google Scholar 

  • Roshchina VV (1991) Biomediators in plants. Acetylcholine and biogenic amines in plants. Biological Center AN SSSR, Pushchino, p 192

    Google Scholar 

  • Roshchina VV (1999a) Mechanisms of cell-cell communication. In: Narwal SS (ed) Allelopathy update. 2. Science Publishers, Enfield/New Hampshire, pp 3–25

    Google Scholar 

  • Roshchina VV (1999b) Chemosignaling in pollen. Adv Mod Biol (Russia) 119(6):557–566

    Google Scholar 

  • Roshchina VV (2001a) Neurotransmitters in plant life. Science Publisher, Einfield/New Hampshire/Plymouth

    Google Scholar 

  • Roshchina VV (2001b) Molecular-cellular mechanisms in pollen allleopathy. Allelopathy J 8(1):11–28

    Google Scholar 

  • Roshchina VV (2002) Rutacridone as a fluorescent dye for the study of pollen. J Fluoresc 12:241–243

    CAS  Google Scholar 

  • Roshchina VV (2003) Autofluorescence of plant secreting cells as a biosensor and bioindicator reaction. J Fluoresc 13:403–420

    CAS  Google Scholar 

  • Roshchina VV (2004a) Сellular models to study the allelopathic mechanisms. Allelopathy J 13:3–16

    Google Scholar 

  • Roshchina VV (2004b) Plant microspores as unicellular models for the study of relations between contractile components and chemosignaling. International symposium in biological motility, Pushchino, 23 May-1 June 2004, Pushchino, 2004, pp 194–196

    Google Scholar 

  • Roshchina VV (2004c) Plant cholinesterase activity as a biosensor for toxins in the environment. In: Silman I, Soreq H, Anglister L, Michaelson DM, Fisher A (eds) Cholinergic mechanisms. Function and dysfunction. Informa Healthcare: London, pp 679–680

    Google Scholar 

  • Roshchina VV (2004d) Plant microospores as unicellular models for the study of relations between contractile components and chemosignaling. In: Poddubnaya ZI (ed) Biological motility. Biological Center RAS, Pushchino, pp 194–196

    Google Scholar 

  • Roshchina VV (2005a) Allelochemicals as fluorescent markers, dyes and probes. Allelopathy J 16:31–46

    Google Scholar 

  • Roshchina VV (2005b) Contractile proteins in chemical signal transduction in plant microspores. Biol Bull Ser Biol 3:281–286

    Google Scholar 

  • Roshchina VV (2005c) Biosensors for the study of allelopathic mechanisms and testing of natural pesticides. In: Bansal GL, Sharma SP (eds) Proceedings of international workshop on protocols and methodologies in allelopathy, April 2–4, 2004 Palampur. College of Basic Sciences. Azad Hind Stores, Palampur (India), pp 75–87

    Google Scholar 

  • Roshchina VV (2006b) Chemosignaling in plant microspore cells. Biol Bull 33:414–420

    Google Scholar 

  • Roshchina VV (2007a) Cellular models as biosensors. In: Roshchina VV, Narwal SS (eds) Cell diagnostics. Science Publisher, Enfield/Plymouth, pp 5–22

    Google Scholar 

  • Roshchina VV (2007b) Luminescent cell analysis in allelopathy. In: Roshchina VV, Narwal SS (eds) Cell diagnostics. Science Publisher, Enfield/Plymouth, pp 103–115

    Google Scholar 

  • Roshchina VV (2008) Fluorescing world of plant secreting cells. Science Publisher, Enfield/Plymouth, p 338

    Google Scholar 

  • Roshchina VV (2010) Chapter 2. Evolutionary сonsiderations of neurotransmitters in microbial, plant and animal cells. In: Lyte M, Freestone PPE (eds) Microbial endocrinology. Interkingdom signaling in infectious disease and health. Springer, New York, pp 17–52

    Google Scholar 

  • Roshchina VV (2012) Vital autofluorescence: application to the study of plant living cells. Int J Spectroscopy 2012–2013(124672):1–14. doi:10.1155/2012/124672

    Google Scholar 

  • Roshchina VV, Karnaukhov VN (2010) The fluorescence analysis of the medicinal drugs’ interaction with unicellular biosensors. Pharmacia (Russia) 3:43–46

    Google Scholar 

  • Roshchina VV, Melnikova EV (1996) Microspectrofluorometry: a new technique to study pollen allelopathy. Allelopathy J 3(1):51–58

    Google Scholar 

  • Roshchina VV, Melnikova EV (1998) Allelopathy and plant generative cells. Participation of acetylcholine and histamine in a signalling at the interactions of pollen and pistil. Allelopathy J 5:171–182

    Google Scholar 

  • Roshchina VV, Melnikova EV (1999) Microspectrofluorimetry of intact secreting cells, with applications to the study of allelopathy. In: Inderjit, Dakshini KMM, Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC Press, Boca Raton, pp 99–126

    Google Scholar 

  • Roshchina VV, Melnikova EV (2001) Chemosensitivity of pollen to ozone and peroxides. Russ Plant Physiol 48:89–99

    Google Scholar 

  • Roshchina VV, Roshchina VD (2003) Ozone and plant cell. Kluwer Academic Publishers, Dordrecht, 240 pp

    Google Scholar 

  • Roshchina VV, Semenova MN (1995) Neurotransmitter systems in plants. Cholinesterase in excreta from flowers and secretory cells of vegetative organs in some species. In: Greene D, Cutler G (eds) Proceedings of the Plant Growth Regulation Society of America, 22: Annual Meeting, July18–20, 1995. Fritz C.D., Minneapolis, pp 353–357

    Google Scholar 

  • Roshchina VV, Vikhlyantsev IM (2008) Ion channels and cytoskeleton in development of plant microspores. Restoration of normal germination with exogenous actin after their blockade. In: Podlubnaya ZA, Malyshev SL (eds) Biological motility: achievements and perspectives, vol 2. Photon-Vek, Pushchino, pp 257–261

    Google Scholar 

  • Roshchina VV, Vikhlyantsev IM (2009) Mechanisms of chemosignalling in allelopathy: role of ion channels and cytoskeleton in development of plant microspores. Allelopathy J 23(1):25–36

    Google Scholar 

  • Roshchina VV, Melnikova EV, Kovaleva LV, Spiridonov NA (1994) Cholinesterase in plant pollen grains. Dokl Biol Sci 337:424–427

    CAS  Google Scholar 

  • Roshchina VV, Melnikova EV, Spiridonov NA, Kovaleva LV (1995) Azulenes, the blue pigments of pollen. Dokl Biol Sci 340:93–96

    Google Scholar 

  • Roshchina VV, Melnikova EV, Kovaleva LV (1996) Autofluorescence in system pollen-pistil of Hippeastrum hybridum. Dokl Biol Sci 349:118–120

    CAS  Google Scholar 

  • Roshchina VV, Melnikova EV, Karnaukhov VN, Golovkin BN (1997a) Application of microspectrofluorimetry in spectral analysis of plant secretory cells. Biol Bull (Russia) 2:167–171

    Google Scholar 

  • Roshchina VV, Melnikova EV, Kovaleva LV (1997b) The changes in the fluorescence during the development of male gametophyte. Russ J Plant Physiol 47:45–53

    Google Scholar 

  • Roshchina VV, Melnikova EV, Mit’kovskaya LI, Karnaukhov VN (1998a) Microspectrofluorimetry for the study of intact plant secretory cells. J General Biol (Russia) 59:531–554

    Google Scholar 

  • Roshchina VV, Melnikova EV, Gordon RYA, Konovalov DA, Kuzin AM (1998b) A study of the radioprotective activity of proazulenes using a chemosensory model of Hippeastrum hybridum pollen. Dokl Biophys 358–360:20–23

    Google Scholar 

  • Roshchina VV, Popov VI, Novoselov VI, Melnikova EV, Gordon RYa, Peshenko IV, Fesenko EE (1998c). Transduction of chemosignal in pollen. Tsitologiya (Cytology, Russia) 40:964–971

    Google Scholar 

  • Roshchina VV, Miller AV, Safronova VG, Karnaukhov VN (2003) Reactive oxygen species and luminescence of intact microspore cells. Biophysics 48(2):259–264

    CAS  Google Scholar 

  • Roshchina VV, Yashin VA, Kononov AV, Yashina AV (2007a) Laser-scanning confocal microscopy (LSCM): study of plant secretory cells. In: Roshchina VV, Narwal SS (eds) Cell diagnostics. Science Publisher, Enfield/Plymouth, pp 93–102

    Google Scholar 

  • Roshchina VV, Yashina AV, Yashin VA, Prizova NK, Vikhlyantsev IM, Vikhlyantseva EF (2007b) Chemosignalling in plant cell communication: modelling with unicellular systems in allelopathy. In: Zinchenko VP (ed) Reception and Intracellular signalling, International symposium 5–7 June 2007, Pushchino, Biological Center of RAS, Pushchino, pp 282–285

    Google Scholar 

  • Roshchina VV, Yashina AV, Yashin VA (2008) Cell communication in pollen allelopathy analyzed with laser-scanning confocal microscopy. Allelopathy J 21:219–226

    Google Scholar 

  • Roshchina VV, Yashina AV, Yashin VA, Prizova NK (2009a) Models to study pollen allelopathy. Allelopathy J 23:3–24

    Google Scholar 

  • Roshchina VV, Yashin VA, Yashina AV, Gol’tyaev MV, Manokhina IA (2009b) Microscopic objects for the study of chemosignaling. In: Zinchenko VP, Kolesnikov SS, Berezhnov AV (eds) Reception and intracellular signalling. Biological Center of RAS, Pushchino, pp 699–703

    Google Scholar 

  • Roshchina VV, Yashin VA, Yashina AV, Gol’tyaev MV (2011a) Colored allelochemicals in modelling of cell-cell allelopathic interactions. Allelopathy J 28(1):1–12

    Google Scholar 

  • Roshchina VV, Yashin VA, Vikhlyantsev IM (2011b) Fluorescence of plant microspores as biosensors. Biol Membr 28(6):1–12

    Google Scholar 

  • Roshchina VV, Yashina AV, Yashin VA, Gol’tyaev MV (2011c) Fluorescence of biologically active compounds in plant secretory cells. In: Narwal SS, Pavlovic P, Jacob J (eds) Research methods in plant science, vol 2, Forestry and agroforestry. Studium Press, Houston, pp 3–25

    Google Scholar 

  • Roshchina VV, Yashina AV, Yashin VA, Gol’tyaev MV (2011) Chapter 1. Fluorescence of biologically active compounds in plant secretory cells. In: Narwal SS, Pavlovic P, John J (eds) Research methods in plant science, vol 2. Forestry and agroforestry. Studium Press, Houston, pp 3–25

    Google Scholar 

  • Roshchina VV, Yashin VA, Yashina AV, Gol’tyaev MV (2012) Microscopy for modelling of cell-сell allelopathic interactions. In: Cheema ZA, Farooq M, Wahid A (eds) Allelopathy. Current trends and future applications. Springer, Heidelberg/Berlin, pp 407–427

    Google Scholar 

  • Roshchina VV, Yashin VA, Švirst NA, Prizova NK, Khaibulaeva LM, Kuchin AV (2013) Secreting cells as models to study the role of acetylcholine in signalling and communications of organisms. In: Zinchenko VP, Berezhnov AV (eds) The book of international conference “reception and intracellular signaling” 27–30 May 2013, vol 2. EMA, Pushchino, pp 790–795

    Google Scholar 

  • Rowley JR, Mühlethaler K, Frey-Wyssling A (1959) A route for the transfer of materials through the pollen grain wall. J Biophys Biochem Cytol 6:537–538

    PubMed  CAS  PubMed Central  Google Scholar 

  • Satiat-Jeunemaitre B, Cole L, Bourett T, Howard R, Hawes C (1996) Brefeldin A effects in plant and fungal cells: something new about vesicle trafficking? J Microsc 181(Pt 2):162–177

    PubMed  CAS  Google Scholar 

  • Scott PM, Harwig J, Chen YK, Kennedy BP (1975) Cytochalasins A and B from strains of Phoma exigua var. exigua and formation of cytochalasin B in potato gangrene. J Gen Microbiol 8:177–180

    Google Scholar 

  • Sharma AD, Sharma R (1999) Anthocyanin-DNA copigmentation complex: mutual protection against oxidative damage. Phytochemistry 52:1313–1318

    Google Scholar 

  • Sinyukhin AM, Britikov EA (1967) Action potential in the reproductive system of plants. Nature 215:1278–1279

    Google Scholar 

  • Sinyukhin AM, Britikov EA (1967) Action potential in the reproductive system of plants. Nature 215:1278–1279

    Google Scholar 

  • Stanley RG, Linskens HF (1974) Pollen: biology, biochemistry and management. Springer, Berlin

    Google Scholar 

  • Strakhovskaya MG, Ivanova EV, Fraikin GY (1993) Stimulatory effect of serotonin on the growth of the yeast Candida guillermondii and the bacterium Streptococcus faecalis. Microbiology (Russia) 62:46–49

    CAS  Google Scholar 

  • Swanson RL, Williamson JE, De Nys R, Kumar N, Bucknall MP, Steinberg PD (2004) Induction of settlement of larvae of the sea urchin Holopneustes purpurascens by histamine from a host alga. Biol Bull 206:161–172

    PubMed  CAS  Google Scholar 

  • Swanson RL, Marshall DJ, Steinberg PD (2007) Larval desperation and histamine: how simple responses can lead to complex changes in larval behaviour. J Exp Biol 210:3228–3235

    PubMed  CAS  Google Scholar 

  • Swanson RL, Marshall DJ, Steinberg PD (2007) Larval desperation and histamine: how simple responses can lead to complex changes in larval behaviour. J Exp Biol 210:3228–3235

    PubMed  CAS  Google Scholar 

  • Swanson RL, Marshall DJ, Steinberg PD (2007) Larval desperation and histamine: how simple responses can lead to complex changes in larval behaviour. J Exp Biol 210:3228–3235

    PubMed  CAS  Google Scholar 

  • Wanga D, Dongb X (2011) A highway for war and peace: the secretory pathway in plant–microbe interactions. Mol Plant 4(4):581–587. doi:10.1093/mp/ssr053

    Google Scholar 

  • Wayne R (2009) Plant cell biology: from astronomy to zoology. Elsevier/Academic Press, Amsterdam, etc., 408 pp

    Google Scholar 

  • Welsh JH (1946) Evidence of a trophic action of acetylcholine in a planarian. Anat Rec 94:421

    PubMed  CAS  Google Scholar 

  • Wu CH, Warren HL (1984a) Natural autofluorescence in fungi and its correlation with viability. Mycologia 76(6):1049–1058

    Google Scholar 

  • Wu CH, Warren HL (1984b) Induced autofluorescence in fungi, and its correlation with viability: potential application of fluorescence microscopy. Phytopathlogy 74(6):1353–1358

    Google Scholar 

  • Young RJ, Laing JC (1990) Biogenic amine binding sites in rabbit spermatozoa. Biochem Int 21:781–787

    PubMed  CAS  Google Scholar 

  • Zanoni DG (1930) Antagonismo pollinico. Revista di Biologia 12:126–133

    Google Scholar 

  • Žižka Z, Gabriel J (2006) Primary fluorescence (autofluorescence) of fruiting bodies of the wood-rotting fungus fomes fomentarius. Folia Microbiol 51(2):109–113

    Google Scholar 

  • Inaba M, Inaba Y (1992) Human body odor. Etiology, treatment, and related factors. Springer, Tokyo/ Berlin/ Heidelberg/New York

    Google Scholar 

  • Knox RB (1984) Pollen-pistil interactions. In: Linskens HF, Heslop-Harrison J (eds) Cellular interaction (Encycl Plant Physiol), vol 17. Springer, Berlin/Heidelberg/New York, pp 508–608

    Google Scholar 

  • Koteeva NK (2005) New structural type of plant cuticle. Doklady RAS 403(2):283–285

    Google Scholar 

  • Kovaleva LV, Zakharova EV, Minkina YV, Voronkov AS (2009) Effects of flavonoids and phytohormones on germination and growth of petunia male gametophyte. Allelopathy J 23(1):51–62

    Google Scholar 

  • Baird C (1995) Environmental chemistry. Freeman & Co, New York, 484 pp

    Google Scholar 

  • Shishov VA, Kirovskaya TA, Kudrin VS, Oleskin AV. (2009) Neuromediator amines, their precursors and products of oxidation in biomass and culture supernatant of Escherichia coli K-12. Appl.Biochem and Microbiol 45(5): 550–554

    CAS  Google Scholar 

  • Sukhada KD, Jayachandra (1980a) Allelopathic effects of Parthenium hysterophorous L. IV. Identification of inhibitors. Plant and Soil 5:67–75

    Google Scholar 

  • Sukhada KD, Jayachandra (1980b) Pollen allelopathy a new phenomenon. New Phytol 84:739–746

    Google Scholar 

  • Thomson ID, Andrews BI, Plowright RC (1982) The effect of a foreign pollen on ovule development in Dervilla lonicera (Caprifoliaceae). New Phytol 90:777–783

    Google Scholar 

  • Nonomura T, Xu L, Wada M, Kawamura S, Miyaiima T, Nishitomi A, Kakutani K, Takikawa Y, Matsuda Y, Toyoda H (2009) Trichome exudates of Lycopersicon pennellii form a chemical barrier to suppress cell-surface germination of Oidium neolycopersiciconida. Plant Sci 176:31–37

    CAS  Google Scholar 

  • Perrine-Walker F, Doumas P, Lucas M, Vaissayre V, Beauchemin NJ, Band LR, Chopard J (2010) Auxin carriers localization drives auxin accumulation in plant cells infected by Frankia in Casuarina glauca actinorhizal nodules. Plant Physiol 154(3):1372–1380

    PubMed  CAS  PubMed Central  Google Scholar 

  • Clarke SC, McAllister MK, Milner-Gulland EJ, Kirkwood GP, Michielsens CGJ, Agnew DJ, Pikitch EK, Nakano H, Shivji MS (2006) Global estimates of shark catches using trade records from commercial markets. Ecol Lett 9(10):1115–1126

    PubMed  Google Scholar 

  • Leveau JHJ, Lindow SE (2005) Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl Environ Microbiol 71:2365–2371

    PubMed  CAS  PubMed Central  Google Scholar 

  • Knox RB, Clarke A, Harrison S, Smith P, Marchaloni JJ (1976) Cell recognition in plants: determinants of the stigma surface and their pollen interactions. Proc Natl Acad Sci USA 73:2788–2792

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Roshchina, V.V. (2014). Modeling of Cell–Cell Contacts. In: Model Systems to Study the Excretory Function of Higher Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8786-4_4

Download citation

Publish with us

Policies and ethics