Skip to main content

Acceptor Models of Secretions and Their Reactions on Exometabolites

  • Chapter
  • First Online:
Model Systems to Study the Excretory Function of Higher Plants
  • 317 Accesses

Abstract

Model systems are also necessary in the analysis of cellular mechanisms in response to secretions released by own cells or those of foreign organisms. It is valuable for understanding of contacts between organisms as a whole. Modeling processes involve a search of suitable acceptor cells, biosensors that react with the components of the secretions and form a physiological response. In studies, some exometabolites are considered chemosignals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anaya AL, Hernandez-Bautista BE, Jimenez-Estrada M, Velasco-Ibarra L (1992) Phenylacetic acid as a phytotoxic compound of corn pollen. J Chem Ecol 18:897–905

    PubMed  CAS  Google Scholar 

  • Ashman TL, Swetz J, Shvitz S (2000) Understanding the basis of pollinator selectivity in sexual dimorphic Fragaria virginiana. Oikos 90:347–356

    Google Scholar 

  • Augustinsson KB (1963) Classification and comparative enzymology of the cholinesterases and methods for their determination. In: Koelle GB (ed) Cholinesterase and anticholinesterase agents, vol 15, Handbuch der Experimentale Pharmacolgie. Springer, Berlin/New York, pp 89–128

    Google Scholar 

  • Aver’yanov AA, Lapikova VP (1988) Fungitoxicity determined by active forms of oxygen in excretions of rice leaves. Soviet Plant Physiol 35:873–881

    Google Scholar 

  • Aver’yanov AA, Lapikova VP, Umnov AM, Dzhavakhiya VG (1987) Generation of superoxide radical by rice leaves in relation to blast resistance. Soviet Plant Physiol 34:301–306

    Google Scholar 

  • Bamel K, Gupta SC, Gupta R (2007) Acetylcholine causes rooting in leaf explants of in vitro raised tomato Lycopersicon esculentum Miller seedlings. Life Sci 80(24–25):2393–2396

    PubMed  CAS  Google Scholar 

  • Barwell CJ (1979) The occurrence of histamine in the red alga of Furcellaria lumbricalis Lamour. Bot Mar 22:399–401

    CAS  Google Scholar 

  • Barwell CJ (1989) Distribution of histamine in the thallus Furcellaria lumbricalis. J Appl Phycol 1:341–344

    Google Scholar 

  • Bhattacharjee S (2011) Sites of generation and physicochemical basis of formation of reactive oxygen species in plant cell. In: Gupta SD (ed) Reactive oxygen species and antioxidants in higher plants. Science Publishers/CRC Press, Enfield, pp 1–30

    Google Scholar 

  • Bhattacharyya В, Howard R, Maity SN, Brossi A, Sharma PN, Wolff JВ (1986) Ring regulation of colchicine binding kinetics and fluorescence. Proc Narl Acad Sci USA 83(7):2052–2055

    CAS  Google Scholar 

  • Blackman RL, Eastop VF (1984) Aphids on the world’s crops, an identification guide. Wiley, New York, p 466

    Google Scholar 

  • Boron WF, Boulpaep EL (2005) Medical physiology: a cellular and molecular approach. Elsevier/Saunders, Philadelphia

    Google Scholar 

  • Brenner ED, Stahlberg R, Mancuso S, Vivanco JM, Baluška F, van Volkenburgh E (2006) Plant neurobiology: an integrated view of plant signaling. Trends Plant Sci 11:413–419

    PubMed  CAS  Google Scholar 

  • Budantsev AY, Roshchina VV (2007) Cholinesterase activity as a biosensor reaction for natural allelochemicals: pesticides and pharmaceuticals. In: Roshchina VV, Narwal SS (eds) Cell diagnostics. Science Publisher, Enfield, pp 127–145

    Google Scholar 

  • Cantiello HF (1997) Role of actin filament organization in cell volume and ion channel regulation. J Exp Zool 279(5):425–435

    PubMed  CAS  Google Scholar 

  • Cantiello HF (1997) Role of actin filament organization in cell volume and ion channel regulation. J Exp Zool 279(5):425–435

    PubMed  CAS  Google Scholar 

  • Cantiello HF (1997) Role of actin filament organization in cell volume and ion channel regulation. J Exp Zool 279(5):425–435

    PubMed  CAS  Google Scholar 

  • Cantiello HF (1997) Role of actin filament organization in cell volume and ion channel regulation. J Exp Zool 279(5):425–435

    PubMed  CAS  Google Scholar 

  • Cantiello HF (1997) Role of actin filament organization in cell volume and ion channel regulation. J Exp Zool 279(5):425–435

    PubMed  CAS  Google Scholar 

  • Changeux JP, Devillers-Thiery A, Chemouilli P (1984) Acetylcholine receptor: an allosteric protein. Science 225:1335–1345

    PubMed  CAS  Google Scholar 

  • Croteau R, Leblanc RM (1978) Photophysical processes in tropolone, α-methoxy-tropone and colchicines. Photochem Photobiol 28(1):33–38

    CAS  Google Scholar 

  • Dobson HEM, Peng YS (1997) Digestion of pollen components by larvae of flower-specialist bee Chelostoma florisomne (Hymenoptera: Megachilidae). J Insect Physiol 43:89–100

    PubMed  CAS  Google Scholar 

  • Dobson HEM, Bergstrom J, Bergstrom G, Groth I (1987) Pollen and flower volatiles in two Rosa species. Phytochemistry 26:3171–3173

    CAS  Google Scholar 

  • Dobson HEM, Groth I, Bergstrom G (1996) Pollen advertisement: chemical contrasts between whole flower and pollen odours. Am J Bot 83:877–885

    CAS  Google Scholar 

  • Dzhabiev TS, Kurkina LA (2007) Photo-induced water oxidation to ozone by algae and a functional chemical model of photosystem II manganese cofactor of natural photosynthesis. Physics and chemistry of the processes aimed at the creation of new technologies, materials and education. (Russia) 6: 94–97

    Google Scholar 

  • Dzhabiev TS, Moiseev DN, Shilov AE (2005) Six-electron oxidation water to ozone by red marine algae. Doklady Russian Acad Sci 402(4):555–557

    Google Scholar 

  • Eisenberg RC (1990) Channels as enzymes. J Membrane Biol 115:1–12

    CAS  Google Scholar 

  • Ekici K, Coşkun H (2002) Histamine content of some commercial vegetable pickles. Proceedings of ICNP-2002 – Trabzon, Turkey, pp 162–164

    Google Scholar 

  • Fahn A (1979) Secretory tissue in plants. Academic Press, London, 302 p

    Google Scholar 

  • Fahn A (1979) Secretory tissue in plants. Academic Press, London, 302 p

    Google Scholar 

  • Fluck RA, Jaffe MJ (1974) Cholinesterases from plant tissues. III. Distribution and subcellular localization in Phaseolus aureus Roxh. Plant Physiol 53:752–758. doi:10.1104/pp.53.5.752

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fluck RA, Jaffe MJ (1976) The acetylcholine system in plants. In: Smith H (ed) Commentaries in plant science. Pergamon Press, Oxford, pp 119–136

    Google Scholar 

  • Fluck RA, Leber PA, Lieser JD, Szczerbicki SK, Varnes JG, Vitale MA, Wolfe EE (2000) Choline conjugates of auxins. I. Direct evidence for the hydrolysis of choline-auxin conjugates by pea cholinesterase. Plant Physiol Biochem 38:301–308

    CAS  Google Scholar 

  • Fluck RA, Leber PA, Lieser JD, Szczerbicki SK, Varnes JG, Vitale MA, Wolfe EE (2000) Choline conjugates of auxins. I. Direct evidence for the hydrolysis of choline-auxin conjugates by pea cholinesterase. Plant Physiol Biochem 38:301–308

    CAS  Google Scholar 

  • Fluck RA, Leber PA, Lieser JD, Szczerbicki SK, Varnes JG, Vitale MA, Wolfe EE (2000) Choline conjugates of auxins. I. Direct evidence for the hydrolysis of choline-auxin conjugates by pea cholinesterase. Plant Physiol Biochem 38:301–308

    CAS  Google Scholar 

  • Fluck RA, Leber PA, Lieser JD, Szczerbicki SK, Varnes JG, Vitale MA, Wolfe EE (2000) Choline conjugates of auxins. I. Direct evidence for the hydrolysis of choline-auxin conjugates by pea cholinesterase. Plant Physiol Biochem 38:301–308

    CAS  Google Scholar 

  • Fluck RA, Leber PA, Lieser JD, Szczerbicki SK, Varnes JG, Vitale MA, Wolfe EE (2000) Choline conjugates of auxins. I. Direct evidence for the hydrolysis of choline-auxin conjugates by pea cholinesterase. Plant Physiol Biochem 38:301–308

    CAS  Google Scholar 

  • Frey NF, Mbengue M, Kwaaitaal M, Nitsch L, Altenbach D, Häweker H, Lozano-Duran R, Njo MF, Beeckman T, Huettel B, Borst JW, Panstruga R, Robatzek S (2012) Plasma membrane calcium ATPases are important components of receptor-mediated signaling in plant immune responses and development. Plant Physiol 159(2):798–809

    Google Scholar 

  • Gandía-Herrero F, Escribano J, García-Carmona F (2005a) Betaxanthins as pigments responsible for visible fluorescence in flowers. Planta 222(4):586–593

    PubMed  Google Scholar 

  • Gandía-Herrero F, García-Carmona F, Escribano J (2005b) Fluorescent pigments: new perspectives in betalain research and applications. Food Res Intl 2005(38):879–884

    Google Scholar 

  • Gechev T, Petrov V, Minkov I (2011) Reactive oxygen species and programmed cell death. In: Gupta SD (ed) Reactive oxygen species and antioxidants in higher plants. Science Publishers, CRC Press, Enfield, pp 65–78

    Google Scholar 

  • Golovkin BN, Rudenskaya RN, Trofimova IA, Shreter AI (2001) Biologically active substances of plant origin, 3 volumes. Nauka, Moscow

    Google Scholar 

  • Gregory P, Ave DA, Bouthyette PY, Tingey WM (1986) Insect-defensive chemistry of potato glandular trichomes. In: Juniper B, Southwood R (eds) Insects and the plant surface. Arnold, London/Victoria/Baltimore, pp 173–183

    Google Scholar 

  • Gupta R, Maheshwari SC (1980) Preliminary characterization of a cholinesterase from roots of Bengal gram – Cicer arietinum L. Plant Cell Physiol 21:1675–1679

    CAS  Google Scholar 

  • Gupta A, Vijayaraghavan MR, Gupta R (1998) The presence of cholinesterase in marine algae. Phytochemistry 49:1875–1877

    CAS  Google Scholar 

  • Gupta A, Thakur SS, Uniyal PL, Gupta R (2001) A survey of bryophytes for presence of cholinesterase activity. Am J Bot 88:2133–2135

    PubMed  CAS  Google Scholar 

  • Harris NN, Javellana J, Davies KM, Lewis DH, Jameson PE, Deroles SC, Calcott KE, Gould KS, Schwinn KE (2012) Betalain production is possible in anthocyanin-producing plant species given the presence of DOPA-dioxygenase and L-DOPA. BMC Plant Biol 12:34. doi:10.1186/1471-2229-12-34

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hartmann E, Gupta R (1989) Acetylcholine as a signaling system in plants. In: Boss WF, Morve DI (eds) Second messengers in plant growth and development. Allan Liss, New York, pp 257–287

    Google Scholar 

  • Heftmann E (1975) Functions of steroids in plants. Phytochemistry 14:891–901

    CAS  Google Scholar 

  • Herout V, Novotnyґ L, Šorm F (1956) Die Isolierung von weiteren kristallinen Substanzen aus Wermut (Artemisia absinthium L.). Collect Czech Chem Comm 21:1485–1492

    CAS  Google Scholar 

  • Hwang JU, Suh S, Yi H, Kim J, Lee Y (1997) Actin filaments modulate both stomatal opening and inward K+−channel activities in guard cells of Vicia faba L. Plant Physiol 115(2):335–342

    PubMed  CAS  PubMed Central  Google Scholar 

  • Imshenetskii AA, Popova LS, Kirillova NF (1974) Acetylcholine decomposing microorganisms. Mikrobiologiya 43:986–991

    CAS  Google Scholar 

  • Imshenetskii AA, Popova LS, Kirillova NF (1974) Acetylcholine decomposing microorganisms. Mikrobiologiya 43:986–991

    CAS  Google Scholar 

  • Imshenetskii AA, Popova LS, Kirillova NF (1974) Acetylcholine decomposing microorganisms. Mikrobiologiya 43:986–991

    CAS  Google Scholar 

  • Inderjit, Mukerji KG (eds) (2006) Allelochemicals: biological control of plant pathogens and diseases. Heidelberg, Springer, 214 pp

    Google Scholar 

  • Inderjit, Cheng HH, Nishimura H (1999) Plant phenolics and terpenoids: transformation, degradation and potential for allelopathic interactions. In: Inderjit, Dakshini KMM, Foy CL (eds) Principles and practices in plant ecology. Allelochemical interactions. CRC Press, Boca Raton, pp 255–266

    Google Scholar 

  • Jacob J, Path RH, Narwal SS (2011) Multistoreyed agroforestry systems: field studies. In: Narwal SS, Pavlovic P, Jacob J (eds) Research methods in plant science, vol 2, Forestry and agroforestry. Studium Press, Houston, pp 187–206

    Google Scholar 

  • Just F, Walz B (1996) The effects of serotonin and dopamine on salivary secretion by isolated cockroach salivary glands. J Exp Biol 1999:407–413

    Google Scholar 

  • Kamo KK, Mahlberg PG (1984) Dopamine biosynthesis at different stages of plant development in Papaver somniferum. J Nat Prod 47:682–686

    PubMed  CAS  Google Scholar 

  • Kamo KK, Mahlberg PG (1984) Dopamine biosynthesis at different stages of plant development in Papaver somniferum. J Nat Prod 47:682–686

    PubMed  CAS  Google Scholar 

  • Karioti A, Bilia AR (2010) Hypericins as potential leads for new therapeutics. Int J Mol Sci 11(2):562–594

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kisnieriene V, Ditchenko TI, Kudryashov AP, Sakalauskas V, Yurin VM, Ruksenas O (2012) The effect of acetylcholine on Characeae K+ channels at rest and during action potential generation. Cent Eur J Biol 7(6):1066–1075. doi:10.2478/s11535-012-0085-5

    CAS  Google Scholar 

  • Knudsen JT, Tollsten L, Bergstrom G (1993) Floral scents – a checklist of volatile compounds isolated by head-space techniques. Phytochemistry 33:253–280

    CAS  Google Scholar 

  • Korobova LN, Beletskii YD, Karnaukhova TB (1988) The experiment of the selection of salt-tolerant forms of sunflower among the selection material based on the content of histamine in seeds. Fiziologiya and Biokhimiya Kulturnikh Rastenii (USSR) 20:403–406

    CAS  Google Scholar 

  • Kovalchuk I (2011) Multiple roles of radicals in plants. In: Gupta SD (ed) Reactive oxygen species and antioxidants in higher plants. Science Publishers, CRC Press, Enfield, pp 31–44

    Google Scholar 

  • Kovaleva LV, Roshchina VV (1997) Does cholinesterase participate in the intercellular interaction in pollen-pistil system? Biol Plantarum 39:207–213

    CAS  Google Scholar 

  • Kuklin AI, Conger BV (1995) Catecholamines in plants. J Plant Growth Regul 14:91–97

    CAS  Google Scholar 

  • Lachenmeier DW (2007) Assessing the authenticity of absinthe using sensory evaluation and HPTLC analysis of the bitter principle absinthin. Food Res Int 40:167–175

    CAS  Google Scholar 

  • Li MH (2008) Effects of nonionic and ionic surfactants on survival, oxidative and cholinesterase activity of planarian. Chemosphere 70:1796–1803

    PubMed  CAS  Google Scholar 

  • Locato V, de Pinto MC, Paradiso A, De Gara L (2011) Reactive oxygen species and ascorbate-glutathione interplay in signaling and stress responses. In: Gupta SD (ed) Reactive oxygen species and antioxidants in higher plants. Science Publishers, CRC Press, Enfield, pp 45–64

    Google Scholar 

  • Lyte M, Ernst S (1992) Catecholamine induced growth of gram negative bacteria. Life Sci 50:203–212

    PubMed  CAS  Google Scholar 

  • Markham KR, Gould KS, Winefield CS, Mitchell KA, Bloor SJ, Boase MR (2000) Anthocyanic vacuolar inclusions–their nature and significance in flower colouration. Phytochemistry 55(4):327–336

    PubMed  CAS  Google Scholar 

  • Marquardt P, Vogg G (1952) Pharmakologische und chemische Untersuchungen uber Wirkstoffe in Bienenpollen. Arzneimittel Forschung 21(353):267–271

    Google Scholar 

  • Mashkovskii MD (2005) Drugs (Lekarstvennye sredstva), 15th edn. Novaya Volna, Moscow

    Google Scholar 

  • Mohapatra BR, Bapuji M (1998) Characterization of acetylcholinesterase from Arthrobacter ilicis associated with the marine sponge (Spirastrella sp.). J Appl Microbiol 84:393–398

    CAS  Google Scholar 

  • Momonoki YS, Momonoki T (1992) The influence of heat stress on acetylcholine content and its hydrolyzing activity in Macroptilium atropurpureum cv. Siratro. Jpn J Crop Sci 61:112–118

    CAS  Google Scholar 

  • Momonoki YS, Momonoki T (1993a) Changes in acetylcholine-hydrolyzing activity in heat-stressed plant cultivars. Jpn J Crop Sci 62:438–448

    CAS  Google Scholar 

  • Momonoki YS, Momonoki T (1993b) Histochemical localization of acetylcholinesterase in leguminous plant, siratro (Macroptilium atropurpureum). Jpn J Crop Sci 62:571–576

    CAS  Google Scholar 

  • Momonoki YS, Oguri S, Whallon JH (1997) Acetylcholine as a signaling system to environmental stimuli in plants. II. Ca2+ movement in the coleoptile node cells of heat-stressed Zea mays seedlings. Jpn J Crop Sci 66(4):682–690

    CAS  Google Scholar 

  • Muarlidharan J, John E, Channamma L, Theerthaprasad D (1996) Changes in esterases in response to blast infection in fingermillet seedlings. Phytochemistry 43(6):1151–1155

    CAS  Google Scholar 

  • Muravnik LE, Ivanova AN (2002) Ultrastructural characteristics of leaf secretory cells from Droseraceae in a connection with the naphthoquinone synthesis. Bot J (Russia) 87(11):16–25

    Google Scholar 

  • Murch SJ (2006) Neurotransmitters neuroregulators and neurotoxins in plants In: Baluska F, Mancuso S, Volkmann D (eds) Communication in plants – neuronal aspects of plant life. Springer, Berlin/Heidelberg, pp 137–151

    Google Scholar 

  • Murphy SD (2002) Biochemical and physiological aspects of pollen allelopathy. In: Inderjit, Mallik AU (eds) Chemical ecology of plants: allelopathy in aquatic and terrestrial ecosystems. Birkhäuser (Springer), Switzerland, pp 245–266

    Google Scholar 

  • Murphy SD (2007) Allelopathic pollen: isolating the allelopathic effects. In: Roshchina VV, Narwal SS (eds) Cell diagnostics: images biophysical and biochemical processes in allelopathy. Science Publishers, Enfield, pp 185–198

    Google Scholar 

  • Mylona PV, Polidoros AN (2011) ROS regulation of antioxidant genes. In: Gupta SD (ed) Reactive oxygen species and antioxidants in higher plants. Science Publishers, CRC Press, Enfield, pp 101–128

    Google Scholar 

  • Narwal SS (ed) (1999a) Allelopathy update, vol 2. Basic and applied aspects. Science Publishers, Enfield

    Google Scholar 

  • Narwal SS (1999b) Allelopathy in weed management. In: Narwal SS (ed) Allelopathy update: basic and applied aspects, vol 2. Science Publishers, Enfield, pp 203–254

    Google Scholar 

  • Nielsen MD, Farestveit B, Andersen AS (2003) Petal color of African violet (Saintpaulia ionantha H. Wendl.) may be determined by four histologically different cell layers. Propag Ornam Plants 3:40–46

    Google Scholar 

  • Nothnagel EA, Sanger JW, Webb WW (1982) Effects of exogenous proteins on cytoplasmic streaming in perfused Chara cells. J Cell Biol 93(3):735–742

    PubMed  CAS  Google Scholar 

  • Oleskin AV (2012) Biopolytics. The political potential of the life sciences. Nova Science Publishers, New York

    Google Scholar 

  • Oleskin AV, Kirovskaya TA, Botvinko IV, Lysak LV (1998a) Effects of serotonin (5-hydroxytryptamine) on the growth and differentiation of microorganisms. Microbiology (Russia) 67:305–312

    CAS  Google Scholar 

  • Oleskin AV, Botvinko IV, Kirovskaya TA (1998b) Microbial endocrinology and biopolitics. Vestnik of Moscow University (Russia). Ser Biol 4:3–10

    Google Scholar 

  • Oleskin AV, Shishov VI, Malikina KD (2010) Symbiotic biofilms and brain neurochemistry. Nova Science Publishers, New York, p 58

    Google Scholar 

  • Peer WA, Murphy AS (2006) Flavonoids as signal molecules: targets of flavonoid action. In: Grotewold E (ed) The science of flavonoids, 2nd edn. Springer, Berlin, pp 239–268

    Google Scholar 

  • Ponchet M, Martin-Tanguy J, Marais A, Martin C (1982) Hydroxycinnamoyl acid amides and aromatic amines in the influorescences of some Araceae species. Phytochemistry 21:2865–2869

    CAS  Google Scholar 

  • Ramakrishna A, Giridhar P, Ravishankar GA (2011) Phytoserotonin. Plant Signal Behav 6(6):800–809

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rayne S (2010) Concentrations and profiles of melatonin and serotonin in fruits and vegetables during ripening: a mini-review. Nat Precedings. doi:10.1038/npre.2010.4722.1

    Google Scholar 

  • Regula I, Devide Z (1980) The presence of serotonin in some species of genus Urtica. Acta Bot Croatia 39:47–50

    CAS  Google Scholar 

  • Rejơn JD, Zienkiewicz A, Rodriguez-Garcia MI, Castro AJ (2012) Profiling and functional classification of esterases in olive (Olea europaea) pollen during germination. Ann Bot 110:1035–1045

    PubMed  PubMed Central  Google Scholar 

  • Roshchina VD (1972) The study of the intracellular water state under treatment by phenols. Sel’skokhozyaistvennaya Biol (USSR) 7:554–558

    CAS  Google Scholar 

  • Roshchina VD (1975) Certain physico-chemical and biological methods for study of plant excretes. In: Grodzinsky AM (ed) Physiologically-biochemical base of interaction between plants in phytocenosis, vol 6. Naukova Dumka, Kiev, pp 109–114

    Google Scholar 

  • Roshchina VV (1989) Biomediators in chloroplasts of higher plants. I. The interaction with photosynthetic membranes. Photosynthetica 23:197–206

    CAS  Google Scholar 

  • Roshchina VV (1990) Biomediators in chloroplasts of higher plants. 4. Reception by photosynthetic membranes. Photosynthetica 24(4):539–549

    CAS  Google Scholar 

  • Roshchina VV (1991) Biomediators in plants. Acetylcholine and biogenic amines in plants. Biological Center AN SSSR, Pushchino, p 192

    Google Scholar 

  • Roshchina VV (1999a) Mechanisms of cell-cell communication. In: Narwal SS (ed) Allelopathy update. 2. Science Publishers, Enfield/New Hampshire, pp 3–25

    Google Scholar 

  • Roshchina VV (1999b) Chemosignaling in pollen. Adv Mod Biol (Russia) 119(6):557–566

    Google Scholar 

  • Roshchina VV (2001a) Neurotransmitters in plant life. Science Publisher, Einfield/New Hampshire/Plymouth

    Google Scholar 

  • Roshchina VV (2001b) Molecular-cellular mechanisms in pollen allleopathy. Allelopathy J 8(1):11–28

    Google Scholar 

  • Roshchina VV (2003) Autofluorescence of plant secreting cells as a biosensor and bioindicator reaction. J Fluoresc 13:403–420

    CAS  Google Scholar 

  • Roshchina VV (2004a) Сellular models to study the allelopathic mechanisms. Allelopathy J 13:3–16

    Google Scholar 

  • Roshchina VV (2004b) Plant microspores as unicellular models for the study of relations between contractile components and chemosignaling. International symposium in biological motility, Pushchino, 23 May-1 June 2004, Pushchino, 2004, pp 194–196

    Google Scholar 

  • Roshchina VV (2004c) Plant cholinesterase activity as a biosensor for toxins in the environment. In: Silman I, Soreq H, Anglister L, Michaelson DM, Fisher A (eds) Cholinergic mechanisms. Function and dysfunction. Informa Healthcare: London, pp 679–680

    Google Scholar 

  • Roshchina VV (2004d) Plant microospores as unicellular models for the study of relations between contractile components and chemosignaling. In: Poddubnaya ZI (ed) Biological motility. Biological Center RAS, Pushchino, pp 194–196

    Google Scholar 

  • Roshchina VV (2005a) Allelochemicals as fluorescent markers, dyes and probes. Allelopathy J 16:31–46

    Google Scholar 

  • Roshchina VV (2005b) Contractile proteins in chemical signal transduction in plant microspores. Biol Bull Ser Biol 3:281–286

    Google Scholar 

  • Roshchina VV (2005c) Biosensors for the study of allelopathic mechanisms and testing of natural pesticides. In: Bansal GL, Sharma SP (eds) Proceedings of international workshop on protocols and methodologies in allelopathy, April 2–4, 2004 Palampur. College of Basic Sciences. Azad Hind Stores, Palampur (India), pp 75–87

    Google Scholar 

  • Roshchina VV (2006a) Plant microspores as biosensors. Trends Mod Biol 126(3):262–274

    Google Scholar 

  • Roshchina VV (2006b) Chemosignaling in plant microspore cells. Biol Bull 33:414–420

    Google Scholar 

  • Roshchina VV (2007a) Cellular models as biosensors. In: Roshchina VV, Narwal SS (eds) Cell diagnostics. Science Publisher, Enfield/Plymouth, pp 5–22

    Google Scholar 

  • Roshchina VV (2007b) Luminescent cell analysis in allelopathy. In: Roshchina VV, Narwal SS (eds) Cell diagnostics. Science Publisher, Enfield/Plymouth, pp 103–115

    Google Scholar 

  • Roshchina VV (2008) Fluorescing world of plant secreting cells. Science Publisher, Enfield/Plymouth, p 338

    Google Scholar 

  • Roshchina VV (2009a) Effects of proteins, oxidants and antioxidants on germination of plant microspores. Allelopathy J 23(1):37–50

    Google Scholar 

  • Roshchina VV (2009b) Acetylcholine and biogenic amines in non-synaptic signalling systems. In: Zinchenko VP, Kolesnikov SS, Berezhnov AV (eds) Reception and intracellular signalling. Biological Center of RAS, Pushchino, pp 694–698

    Google Scholar 

  • Roshchina VV (2010) Chapter 2. Evolutionary сonsiderations of neurotransmitters in microbial, plant and animal cells. In: Lyte M, Freestone PPE (eds) Microbial endocrinology. Interkingdom signaling in infectious disease and health. Springer, New York, pp 17–52

    Google Scholar 

  • Roshchina VV (2012) Vital autofluorescence: application to the study of plant living cells. Int J Spectroscopy 2012–2013(124672):1–14. doi:10.1155/2012/124672

    Google Scholar 

  • Roshchina VV, Karnaukhov VN (2010) The fluorescence analysis of the medicinal drugs’ interaction with unicellular biosensors. Pharmacia (Russia) 3:43–46

    Google Scholar 

  • Roshchina VV, Melnikova EV (1998) Allelopathy and plant generative cells. Participation of acetylcholine and histamine in a signalling at the interactions of pollen and pistil. Allelopathy J 5:171–182

    Google Scholar 

  • Roshchina VV, Melnikova EV (2001) Chemosensitivity of pollen to ozone and peroxides. Russ Plant Physiol 48:89–99

    Google Scholar 

  • Roshchina VD, Roshchina VV (1970) Influence of water-soluble excreta from the woody species leaves on cytoplasm permeability for anthocyanin. In: Grodzinsky AM (ed) Physiologically-biochemical base of interaction between plants in phytocenosis, vol 1. Naukova Dumka, Kiev, pp 257–262

    Google Scholar 

  • Roshchina VD, Roshchina VV (1989) The excretory function of higher plants. Nauka, Moscow, 214 pp

    Google Scholar 

  • Roshchina VV, Roshchina VD (1993) The excretory function of higher plants. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Roshchina VV, Roshchina VD (2003) Ozone and plant cell. Kluwer Academic Publishers, Dordrecht, 240 pp

    Google Scholar 

  • Roshchina VV, Roshchina VD (2012) The excretory function of higher plants (in Russian), 2nd edn. LAP Lambert Academic Publishing GmbH, Saarbrücken, 476 pp

    Google Scholar 

  • Roshchina VV, Semenova MN (1995) Neurotransmitter systems in plants. Cholinesterase in excreta from flowers and secretory cells of vegetative organs in some species. In: Greene D, Cutler G (eds) Proceedings of the Plant Growth Regulation Society of America, 22: Annual Meeting, July18–20, 1995. Fritz C.D., Minneapolis, pp 353–357

    Google Scholar 

  • Roshchina VV, Vikhlyantsev IM (2008) Ion channels and cytoskeleton in development of plant microspores. Restoration of normal germination with exogenous actin after their blockade. In: Podlubnaya ZA, Malyshev SL (eds) Biological motility: achievements and perspectives, vol 2, Vol. Photon-Vek, Pushchino, pp 257–261

    Google Scholar 

  • Roshchina VV, Vikhlyantsev IM (2009) Mechanisms of chemosignalling in allelopathy: role of ion channels and cytoskeleton in development of plant microspores. Allelopathy J 23(1):25–36

    Google Scholar 

  • Roshchina VV, Vikhlyantsev IM (2012) Bioactivity of exogenous cytoskeleton proteins: regulation of development of plant microspores as biosensors. Curr Bioact Compd 8(3):287–290

    CAS  Google Scholar 

  • Roshchina VV, Yashin VA (2013) Secreting cells of Saintpaulia as models in the study of plant cholinergic system. Biol Membr 30(5–6):454–461

    CAS  Google Scholar 

  • Roshchina VV, Melnikova EV, Mit’kovskaya LI, Karnaukhov VN (1998a) Microspectrofluorimetry for the study of intact plant secretory cells. J General Biol (Russia) 59:531–554

    Google Scholar 

  • Roshchina VV, Popov VI, Novoselov VI, Melnikova EV, Gordon RYa, Peshenko IV, Fesenko EE (1998c). Transduction of chemosignal in pollen. Tsitologiya (Cytology, Russia) 40:964–971

    Google Scholar 

  • Roshchina VV, Miller AV, Safronova VG, Karnaukhov VN (2003) Reactive oxygen species and luminescence of intact microspore cells. Biophysics 48(2):259–264

    CAS  Google Scholar 

  • Roshchina VV, Yashin VA, Kononov AV (2004) Autofluorescence of plant microspores studied by confocal microscopy and microspectrofluorimetry. J Fluorescence 14(6):745–750

    CAS  Google Scholar 

  • Roshchina VV, Yashina AV, Yashin VA (2008) Cell communication in pollen allelopathy analyzed with laser-scanning confocal microscopy. Allelopathy J 21:219–226

    Google Scholar 

  • Roshchina VV, Yashina AV, Yashin VA, Prizova NK (2009a) Models to study pollen allelopathy. Allelopathy J 23:3–24

    Google Scholar 

  • Roshchina VV, Yashin VA, Yashina AV, Gol’tyaev MV, Manokhina IA (2009b) Microscopic objects for the study of chemosignaling. In: Zinchenko VP, Kolesnikov SS, Berezhnov AV (eds) Reception and intracellular signalling. Biological Center of RAS, Pushchino, pp 699–703

    Google Scholar 

  • Roshchina VV, Yashin VA, Yashina AV, Gol’tyaev MV (2011a) Colored allelochemicals in modelling of cell-cell allelopathic interactions. Allelopathy J 28(1):1–12

    Google Scholar 

  • Roshchina VV, Yashin VA, Vikhlyantsev IM (2011b) Fluorescence of plant microspores as biosensors. Biol Membr 28(6):1–12

    Google Scholar 

  • Roshchina VV, Yashina AV, Yashin VA, Gol’tyaev MV (2011c) Fluorescence of biologically active compounds in plant secretory cells. In: Narwal SS, Pavlovic P, Jacob J (eds) Research methods in plant science, vol 2, Forestry and agroforestry. Studium Press, Houston, pp 3–25

    Google Scholar 

  • Roshchina VV, Yashina AV, Yashin VA, Gol’tyaev MV (2011) Chapter 1. Fluorescence of biologically active compounds in plant secretory cells. In: Narwal SS, Pavlovic P, John J (eds) Research methods in plant science, vol 2. Forestry and agroforestry. Studium Press, Houston, pp 3–25

    Google Scholar 

  • Roshchina VV, Yashin VA, Yashina AV, Gol’tyaev MV (2012) Microscopy for modelling of cell-сell allelopathic interactions. In: Cheema ZA, Farooq M, Wahid A (eds) Allelopathy. Current trends and future applications. Springer, Heidelberg/Berlin, pp 407–427

    Google Scholar 

  • Roshchina VV, Yashin VA, Švirst NA, Prizova NK, Khaibulaeva LM, Kuchin AV (2013) Secreting cells as models to study the role of acetylcholine in signalling and communications of organisms. In: Zinchenko VP, Berezhnov AV (eds) The book of international conference “reception and intracellular signaling” 27–30 May 2013, vol 2. EMA, Pushchino, pp 790–795

    Google Scholar 

  • Roy S, Bhattacharya S, Das P, Chattopadhyay J (2007) Interaction among non-toxic phytoplankton, toxic phytoplankton and zooplankton: inferences from field observations. J Biol Phys 33:1–17

    PubMed  PubMed Central  Google Scholar 

  • Šaden-Krehula M, Tajic M, Kolbach D (1971) Testosterone, epitestosterone and androstenedione in the pollen of Scotch pine (P. sylvestris L.). Experientia 27:108–109

    PubMed  Google Scholar 

  • Šaden-Krehula M, Kolbah D, Tajic M, Blazevic N (1983) 17-Ketosteroids in Pinus nigra: steroid hormones in the pollen of pine species, IV. Naturwissenschaften 70:520–522

    Google Scholar 

  • Sarkar D, Sharma S (2011) Oxidative burst-mediated ROS signaling pathways regulating tuberization in potato. In: Gupta SD (ed) Reactive oxygen species and antioxidants in higher plants. Science Publishers and CRC Press, Enfield, pp 79–100

    Google Scholar 

  • Sato V, Kawabe T, Hosokawa M, Tatsuzawa F, Doi M (2011) Tissue culture-induced flower-color changes in Saintpaulia caused by excision of the transposon inserted in the flavonoid 3′, 5′ hydroxylase (F3′5′H) promoter. Plant Cell Rep 30(5):929–939

    PubMed  CAS  Google Scholar 

  • Schleuning M, Templin M, Huaman V, Vadillo GP, Becke T, Durka W, Fischer M, Matthies D (2010) Biotropica 42(5):1–9mann

    Google Scholar 

  • Shepherd RW, Bass WT, Houtz RL, Wagner GJ (2005) Phylloplanins of tobacco are defensive proteins deployed on aerial surfaces by short glandular trichomes. Plant Cell 17(6):1851–1861

    PubMed  CAS  PubMed Central  Google Scholar 

  • Solé J, García-Ladona E, Ruardij P, Estrada M (2005) Modelling allelopathy among marine alga. Ecol Model 183:373–384

    Google Scholar 

  • Stanley RG, Linskens HF (1974) Pollen: biology, biochemistry and management. Springer, Berlin

    Google Scholar 

  • Strakhovskaya MG, Belenikina NS, Fraikin GY (1991) Yeast growth activation by UV light in the range of 280–380 nm. Microbiology (Russia) 60:292–297

    CAS  Google Scholar 

  • Suquiama K, Tezuka T (2011) Acetylcholine promotes the emergence and elongation of lateral roots of Raphanus sativus. Plant Signal Behav 6(10):1545–1553

    Google Scholar 

  • Swanson RL, Williamson JE, De Nys R, Kumar N, Bucknall MP, Steinberg PD (2004) Induction of settlement of larvae of the sea urchin Holopneustes purpurascens by histamine from a host alga. Biol Bull 206:161–172

    PubMed  CAS  Google Scholar 

  • Świędrych A, Kukuła KL, Skirycz A, Szopa J (2004) The catecholamine biosynthesis route in potato is affected by stress. Plant Physiol Biochem 42:593–600

    PubMed  Google Scholar 

  • Tretyn A, Kendrick RE (1991) Acetylcholine in plants: presence, metabolism and mechanism of action. Bot Rev 57:33–72. doi:10.1007/BF02858764

    Google Scholar 

  • Tsavkelova EA, Botvinko IV, Kudrin VS, Oleskin AV (2000) Detection of neurotransmitter amines in microorganisms using of high performance liquid chromatography. Dokl Biochem 372:115–117 (in Russian issue 840–842)

    Google Scholar 

  • Tsavkelova EA, Klimova SYU, Cherdyntseva TA, Netrusov AI (2006) Hormones and hormone-like substances of microorganisms: a review. Appl Biochem Microbiol (Russia) 42:229–235

    CAS  Google Scholar 

  • Tzeng DD, DeVay JE (1996) Role of oxygen radicals in plant disease development. Adv Plant Pathol 10:1–34

    Google Scholar 

  • van Alstyne KL, Nelson AV, Vyvyan JR, Cancilla DA (2006) Dopamine functions as an antiherbivore defense in the temperate green alga Ulvaria obscura. Oecologia 148:304–311

    PubMed  Google Scholar 

  • Vogt T, Taylor LP (1995) Flavonol 5-o-glyeosyltransferases associated with Petunia pollen produce gametophyte-specific flavonol diglycosides. Plant Physiol 108:905–911

    Google Scholar 

  • Volkov AG, Carrell H, Markin VS (2009) Biologically closed electrical circuits in Venus flytrap. Plant Physiol 149:1661–1667

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang Y, Chen Z, Zhang B, Hills A, Blatt MR (2013) PYR/PYL/RCAR ABA receptors regulate K+ and Cl- channels through reactive oxygen species-mediated activation of Ca2+ channels at the plasma membrane of intact Arabidopsis guard cells. Plant Physiol. doi:http://dx.doi.org/10.1104/pp.113.219758

  • Werle E, Pechmann E (1949) Über die Diamin-oxydase der Pflanzen und ihre adaptative Bildung durch Bakterien. Liebig Annal Chemie 562:44–60

    CAS  Google Scholar 

  • Werle E, Raub A (1948) Über Vorkommen, Bildung und Abbau biogener Amine bei Pflanzen unter besonderer Beruck-sichtigung des Histamins. Biochem Z 318:538–553

    PubMed  CAS  Google Scholar 

  • Wessler I, Kirkpatrick CJ (2001) The non-neuronal cholinergic system: an emerging drug target in the airways. Pulm Pharmacol Therap 14(6):423–434

    CAS  Google Scholar 

  • Wessler I, Kirkpatrick CJ (2008) Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br J Pharmacol 154(8):1558–1571

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wessler I, Kilbinger H, Bittinger F, Kirkpatrick CJ (2001) The biological role of non-neuronal acetylcholine in plants and humans. Jpn J Pharmacol 85(1):2–10

    PubMed  CAS  Google Scholar 

  • Wessler I, Kaltwasser S, Michel-Schmidt R, Schmidt H, Unger R, Kirkpatrick CJ (2013) Upregulated acetylcholine synthesis during early differentiation in the embryonic stem cell line CGR8. Neurosci Lett 547(1):32–36

    PubMed  CAS  Google Scholar 

  • Wojtaszek P (1997) Oxidative burst: an early plant response to pathogen infection. Biochem J 322:681–692

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wolff J, Knipling L, Cahnmann HJ, Palumbo G (1991) Direct photoaffinity labeling of tubulin with colchicines. Proc Natl Acad Sci U S A 88:2820–2821

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wu H, Wang H, Cheung AY (1995) A pollen tube growth stimulatory glycoprotein is deglycosylated by pollen tubes and displays a glycosylation gradient in the flower. Cell 82:395–403

    PubMed  CAS  Google Scholar 

  • Zhang W, Luo S, Fang F, Chen Q, Hu H, Jia X, Zhai H (2005) Total synthesis of absinthin. J Am Chem Soc 127:18–19

    PubMed  CAS  Google Scholar 

  • Baluška F, Volkmann D, Menzel D (2005) Plant synapses: actin-based domains for cell-to-cell communication. Trends Plant Sci 10:106–111

    PubMed  Google Scholar 

  • Baluška F, Hlavacka A, Mancuso S, Barlow PW (2006) Neurobiological view of plants and their body plan. In: Baluska F, Mancuso S, Volkmann D (eds) Communication in plants - neuronal aspects of plant life. Springer, Berlin/Heidelberg, pp 19–35

    Google Scholar 

  • Ekici K, Coskun H, Tarakci Z, Ondul E, Sekeroglu R (2006) The contribution of herbs to the accumulation of histamine in “otlu” cheese. J Food Biochem 30:362–371

    CAS  Google Scholar 

  • Hsu SC, Johansson KR, Donahue MJ (1986) The bacterial flora of the intestine of Ascaris suum and 5-hydroxytryptamine production. J Parasitology 72:545–549

    CAS  Google Scholar 

  • Kruk ZL, Pycock CJ (1990) Neurotransmitters and drugs. Chapman and Hall, London/ New York/Tokyo

    Google Scholar 

  • Kulma A, Szopa J (2007) Catecholamines are active compounds in plant. Plant Sci 172:433–440

    CAS  Google Scholar 

  • Muravnik LE (2000) The ultrastructure of the secretory cells of glandular hairs in two Drosera species as affected by chemical stimulation. Russ J Plant Physiol 47(4):540–548

    CAS  Google Scholar 

  • Poustka F, Irani NG, Feller A, Lu Y, Pourcel L, Frame K, Grotewold E et al (2007) A trafficking pathway for anthocyanins overlaps with the endoplasmic reticulum-to-vacuole protein sorting route in Arabidopsis and contributes to the formation of vacuolar inclusions. Plant 145(4):1323–1335

    CAS  Google Scholar 

  • Roshchina VV (1992) The action of neurotransmitters on the seed germination. Biol Nauk 9:124–129

    Google Scholar 

  • Roshchina VV (1994) Chemosensory mechanisms in allelopathy. In: Narwal SS, Tauro P (eds) Allelopathy in agriculture and forestry. Science Publishers, Jodhpur, pp 273–285

    Google Scholar 

  • Roshchina VV, Melnikova EV (1998b) Chemosensory reactions at the interaction pollen-pistil. Biol Bull 6:678–685

    Google Scholar 

  • Venis M (1985) Hormone binding sites in plants. Logman, New York/London

    Google Scholar 

  • Volkov AG (2006) Plant electrophysiology: theory and methods. Springer, Berlin. 508c

    Google Scholar 

  • Volkov AG, Pinnock MR, Lowe DC, Gay MS, Markin VS (2011) Complete hunting cycle of Dionaea muscipula: consecutive steps and their electrical properties. J Plant Physiol 168:109–120

    PubMed  CAS  Google Scholar 

  • Freestone PPE, Lyte M (2008) Microbial endocrinology: experimental design issues in the study of interkingdom signalling in infectious disease. Adv Appl Microbiol 64:75–105

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Roshchina, V.V. (2014). Acceptor Models of Secretions and Their Reactions on Exometabolites. In: Model Systems to Study the Excretory Function of Higher Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8786-4_3

Download citation

Publish with us

Policies and ethics