Skip to main content

Gall Morphotypes in the Neotropics and the Need to Standardize Them

  • Chapter
  • First Online:
Neotropical Insect Galls

Abstract

A morphotype can be defined as a specimen that illustrates a morphological variation within a species or, in the case of galls, a characteristic neo-formed plant organ generated by the interaction between a gall-inducing organism and a host plant. Once each gall morphotype is unique and derived from a species-specific interaction, there is a great confidence in using them to identify the different galling systems. In the Neotropics, where the biodiversity is high but somewhat unknown from the taxonomical point of view, the use of morphotypes helps assessing the abundance and richness of galling herbivores. This kind of knowledge would remain inaccessible if its report depended strictly on the taxonomic identification of the involved taxa. An effort on the standardization of the nomenclature used for inventories in the Neotropics revealed that some tridimensional shapes such as the globoid, ellipsoid, and lenticular are quite common, and may be the result of a series of similar events of cell division and expansion. When these morphotypes concomitantly occur on super-hosts of galling herbivores, special attention should be given to the possibility of overestimations, because variables such as the developmental stage of the gall, the age of the host organ by the time of oviposition, as well as morphological variations related to the sex of the inducer may be difficult to be visualized. In specific cases, the phenological and anatomical analyses are crucial to avoid misinterpretations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamson WG, Weis AE (1997) Evolutionary ecology across three trophic levels: goldenrods, gallmakers, and natural enemies. Chicago University Press, Chicago, p 456

    Google Scholar 

  • Allaby M (1999) “Morphotype”. A dictionary of zoology. Encyclopedia.com. http://www.encyclopedia.com. Accessed 2 Apr 2013

  • Arduin M, Kraus JE, Otto P, Venturelli M (1989) Caracterização morfológica e biométrica de galhas foliares em Struthanthus vulgaris Mart. (Loranthaceae). Rev Bras Biol 49:817–823

    Google Scholar 

  • Arduin M, Kraus JE, Venturelli M (1991) Estudo morfológico da galha achatada em folha de Struthanthus vulgaris Mart. (Loranthaceae). Rev Bras Bot 14:147–156

    Google Scholar 

  • Bell AD (2008) Plant form: an illustrated guide to flowering plant morphology. Timber Press, Portland, p 431

    Google Scholar 

  • Carneiro MAA, Borges RAX, Araújo APA, Fernandes GW (2009) Insetos indutores de galhas da porção sul da Cadeia do Espinhaço, MG, Brasil. Rev Bras Entomol 53:570–592

    Article  Google Scholar 

  • Carneiro RGS, Burckhardt D, Isaias RMS (2013) Biology and systematics of gall-inducing triozids (Hemiptera: Psylloidea) associated with Psidium spp. (Myrtaceae). Zootaxa 3620:129–146

    Google Scholar 

  • Costa FV, Fagundes M, Neves FS (2010) Arquitetura da planta e diversidade de galhas associadas à Copaifera langsdorffii (Fabaceae). Ecol Aust 20:9–17

    Google Scholar 

  • Craig TP, Itami JK, Horner JD (2007) Geographic variation in the evolution and coevolution of a tritrophic interaction. Evolution 61:1137–1152

    Article  PubMed  Google Scholar 

  • Crawley MJ (1989) Insect herbivores and plant population dynamics. Annu Rev Entomol 34:531–556

    Article  Google Scholar 

  • Dias GG, Moreira GRP, Ferreira BG, Isaias RMS (2013) Why do the galls induced by Calophya duvauae Scott on Schinus polygamus (Cav.) Cabrera (Anacardiaceae) change colors? Biochem Syst Ecol 48:111–122

    Article  CAS  Google Scholar 

  • Dreger-Jauffret F, Shorthouse JD (1992) Diversity of gall-inducing insects and their galls. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University Press, New York, pp 8–33

    Google Scholar 

  • Egan SP, Hood GR, Ott JR (2011) Natural selection on gall size: variable contributions of individual host plants to population-wide patterns. Evolution 65:3543–3557

    Article  PubMed  Google Scholar 

  • Eigenbrode SD, Jetter R (2002) Attachment to plant surface waxes by an insect predator. Integr Comp Biol 42:1091–1099

    Article  CAS  PubMed  Google Scholar 

  • Eigenbrode SD, Spellie KE (1995) Effects of plant epicuticular lipids on insect herbivores. Annu Rev Entomol 40:171–194

    Article  Google Scholar 

  • Espírito-Santo MM, Fernandes GW (2007) How many species of gall-inducing insects are there on earth, and where are they? Ann Entomol Soc Am 100:95–99

    Google Scholar 

  • Espírito-Santo MM, Faria ML, Fernandes GW (2004) Parasitoid attack and its consequences to the development of the galling psyllid Baccharopelma dracunculifoliae (Hemiptera). Basic Appl Ecol 5:475–484

    Article  Google Scholar 

  • Fernandes GW (1992) Plant family size and age effects on insular gall-forming species richness. Glob Ecol Biogeogr 2:71–74

    Article  Google Scholar 

  • Fernandes GW, Price PW (1988) Biogeographical gradients in galling species richness: test of hypotheses. Oecologia 76:161–167

    Article  Google Scholar 

  • Fernandes GW, Price PW (1991) Comparisons of tropical and temperate galling species richness: the roles of environmental harshness and plant nutrient status. In: Price PW, Lewinsohn TM, Fernandes GW, Benson WW (eds) Plant–animal interactions: evolutionary ecology in tropical and temperate regions. Wiley, New York, pp 91–115

    Google Scholar 

  • Fernandes GW, Martins RP, Tameirão Neto E (1987) Food web relationship involving Anadiplosis sp (Diptera: Cecidomyiidae) leaf galls on Machaerium aculeatum (Leguminosae). Rev Bras Bot 10:117–132

    Google Scholar 

  • Fernandes GW, Araújo RC, Araújo SC, Lombardi JA, Paula AS, Loyola JRR, Cornelissen TG (1997) Insect galls from savanna and rocky fields of the Jequitinhonha Valley, Minas Gerais, Brazil. Naturalia 22:221–244

    Google Scholar 

  • Floate KD, Fernandes GW, Nilsson JA (1996) Distinguishing intrapopulational categories of plants by their insect faunas: galls on rabbitbrush. Oecologia 105:221–229

    Google Scholar 

  • Gagnè RJ (1994) The gall midges of the region neotropical. Comstock, Ithaca, 352 p

    Google Scholar 

  • Gish M, Inbar M (2006) Host location by apterous aphids after escape dropping from the plant. J Insect Behav 19:143–153

    Article  Google Scholar 

  • Gonçalves SJMR, Isaias RMS, Vale FHA, Fernandes GW (2005) Sexual dimorphism of Pseudotectococcus rolliniae Hodgson & Gonçalves 2004 (Hemiptera Cocooidea Eriococcidade) influences gall morphology on Rollinia laurifolia Schltdl. (Annonaceae). Trop Zool 18:161–169

    Article  Google Scholar 

  • Gonçalves SJMR, Moreira GRP, Isaias RMS (2009) A unique seasonal cycle in a leaf gall-inducing insect: the formation of stem galls for dormancy. J Nat Hist 43:843–854

    Article  Google Scholar 

  • Gonçalves-Alvim SJ, Fernandes GW (2001) Biodiversity of galling insects: historical, community and habitat effects in four neotropical savannas. Biodivers Conserv 10:79–98

    Article  Google Scholar 

  • Hardy NB, Cook LG (2010) Gall-induction in insects: evolutionary dead-end or speciation driver? BMC Evol Biol 10:257. http://www.biomedcentral.com/1471-2148/10/257/. Accessed 7 Jun 2013

  • Inbar M, Doostdar H, Sonora RM, Leibee GL, Mayer RT (1998) Elicitors of plant defensive systems reduce insect density and disease incidents. J Chem Ecol 24:135–149

    Article  CAS  Google Scholar 

  • Inbar M, Izhaki I, Koplovich A, Lupo I, Silanikove N, Glasser T, Gerchman Y, Perevolotsky A, Lev-Yadun S (2010) Why do many galls have conspicuous colors? A new hypothesis. Arthropod Plant Interact 4:1–6

    Article  Google Scholar 

  • Irwin JT, Lee RE Jr (2003) Cold winter microenvironments conserve energy and improve overwintering survival and potential fecundity of the goldenrod gall fly, Eurosta solidaginis. Oikos 100:71–78

    Article  Google Scholar 

  • Isaias RMS, Carneiro RGS, Oliveira DC, Santos JC (2013) Illustrated and annotated checklist of Brazilian gall morphotypes. Neotrop Entomol. doi:10.1007/s13744-013-0115-7

    PubMed  Google Scholar 

  • Kamata N, Esaki K, Kato K, Igeta Y, Wada K (2002) Potential impact of global warming on deciduous oak dieback caused by ambrosia fungus Rafaellea sp. carried by ambrosia beetle Platypus quercivorus (Coleoptera: Platypodidae) in Japan. B Entomol Res 92:119–126

    CAS  Google Scholar 

  • Kamata N, Sato S, Kodani J (2006) Guild structure of gall midges on Fagus crenata in relation to snow gradient: present status and prediction of future status as a result of global warming. In: Osaki K, Yukawa J, Ohgushi T, Price PW (eds) Galling arthropods and their associates: ecology and evolution. Springer, Tokyo, 304 p

    Google Scholar 

  • Kraus JE, Sugiura HC, Cutrupi S (1996) Morfologia e ontogenia em galhas entomógenas de Guarea macrophylla subsp. tuberculata (Meliaceae). Fitopatol Bras 21:349–356

    Google Scholar 

  • Kraus JE, Arduin M, Venturelli M (2002) Anatomy and ontogenesis of hymenopteran leaf galls of Struthanthus vulgaris Mart. (Loranthaceae). Rev Bras Bot 25:449–458

    Article  Google Scholar 

  • Maia VC, Fernandes GW (2004) Insect galls from Serra de São José (Tiradentes, MG, Brazil). Rev Bras Biol 6:423–445

    Google Scholar 

  • Maia VC, Magenta MAG, Martins SE (2008) Ocorrência de galhas de insetos em áreas de restinga em Bertioga (São Paulo, Brasil). Biota Neotrop 8:167–197

    Article  Google Scholar 

  • Mani MS (1964) The ecology of plant galls. Dr Junk Pub, The Hague, 434 p

    Book  Google Scholar 

  • Motta LB, Kraus JE, Salatino A, Salatino MLF (2005) Distribution of metabolites in galled and non-galled foliar tissues of Tibouchina pulchra. Biochem Syst Ecol 33:971–981

    Article  CAS  Google Scholar 

  • Moura MZD, Soares GLG, Isaias RMS (2008) Species-specific changes in tissue morphogenesis induced by two arthropod leaf gallers in Lantana camara L. (Verbenaceae). Aust J Bot 56:153–160

    Article  Google Scholar 

  • Moura MZD, Soares GLG, Isaias RMS (2009) Ontogênese da folha e das galhas induzidas por Aceria lantanae Cook (Acarina: Eriophyidae) em Lantana camara L. (Verbenaceae). Rev Bras Bot 32:271–282

    Article  Google Scholar 

  • Oliveira JC, Maia VC (2005) Ocorrência e caracterização de galhas de insetos na restinga de Grumari (Rio de Janeiro, RH, Brasil). Arch Mus Nac 63:669–675

    Google Scholar 

  • Oliveira DC, Drummond MM, Moreira ASFP, Soares GLG, Isaias RMS (2008) Potencialidades morfogênicas de Copaifera langsdorffii Desf. (Fabaceae): super-hospedeira de herbívoros galhadores. Rev Biol Neotrop 5:31–39

    Google Scholar 

  • Price PW, Roininnen H, Tahvanainem J (1987) Plant age and the attack by the bud galler, Euura mucronata. Oecologia 73:334–337

    Article  Google Scholar 

  • Price PW, Fernandes GW, Lara ACF, Brawn J, Gerling D, Barrios H, Wright MG, Ribeiro SP, Rothcliff N (1998) Global patterns in local number of insect galling species. J Biogeogr 25:581–591

    Article  Google Scholar 

  • Radford AE, Dickison WC, Massey JR, Bell CR (1974) Vascular plant systematics. Harper & Row, New York, 891 p

    Google Scholar 

  • Rohfritsch O (1971) Développment cécidien et role due parasite dans quelques in galles d’Arthropodes. Marcellia 37:233–339

    Google Scholar 

  • Rohfritsch O (1992) Patterns in gall development. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University Press, New York, pp 60–86

    Google Scholar 

  • Santos JC, Silveira FAO, Pereira EC, Fernandes GW (2010) Pattern of attack of a galling insect reveals an unexpected preference-performance linkage on medium-sized resources. Rev Bras Entomol 54:96–103

    Article  Google Scholar 

  • Santos JC, Almeida-Cortez JS, Fernandes GW (2011) Richness of gall-inducing insects in the tropical dry forest (Caatinga) of Pernambuco. Rev Bras Entomol 55:45–54

    Article  Google Scholar 

  • Santos JC, Almeida-Cortez JS, Fernandes GW (2012) Richness of gall inducing insects in the Atlantic forests of Pernambuco, Northeastern Brazil. Biota Neotrop 12:196–212

    Article  Google Scholar 

  • Sanver D, Hawkins BA (2000) Galls as habitats: the inquiline communities of insect galls. Basic Appl Ecol 1:3–11

    Article  Google Scholar 

  • Stone GN, Schönrogge K (2003) The adaptive significance of insect gall morphology. Trends Ecol Evol 8:512–522

    Article  Google Scholar 

  • Stone GN, Schönrogge RJ, Atkinson RJ, Bellido D, Pujade-Villar J (2002) The population biology of oak gall wasps (Hymenoptera: Cynipidae). Annu Rev Entomol 47:633–668

    Article  CAS  PubMed  Google Scholar 

  • Valladares F, Sanchez-Gomez D, Zavala MA (2006) Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. J Ecol 94:1103–1116

    Article  Google Scholar 

  • Weis AR, Abrahamson WG (1985) Potential selective pressures by parasitoids on the evolution of a plant-herbivore interaction. Ecology 66:1261–1269

    Article  Google Scholar 

  • Weis AR, Abrahamson WG (1986) Evolution of host-plant manipulation by gallmakers: ecological and genetic factors in the Solidago-Eurosta system. Am Nat 127:681–695

    Article  Google Scholar 

  • Weis AE, Gorman WL (1990) Measuring selection on reaction norms: an exploration of the EurostaSolidago system. Evolution 44:820–831

    Article  Google Scholar 

  • Wiebes-Rijks AA, Shorthouse JD (1992) Ecological relationships of insects inhabiting cynipid galls. In: Shorthouse JD, Rohfristsch O (eds) Biology of insect-induced galls. Oxford University Press, New York, 285 p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosy Mary dos Santos Isaias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

dos Santos Isaias, R.M., da Silva Carneiro, R.G., Santos, J.C., de Oliveira, D.C. (2014). Gall Morphotypes in the Neotropics and the Need to Standardize Them. In: Fernandes, G., Santos, J. (eds) Neotropical Insect Galls. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8783-3_4

Download citation

Publish with us

Policies and ethics