Skip to main content

Galls in Brazilian Mountains: New Reports and Perspectives

  • Chapter
  • First Online:
Neotropical Insect Galls

Abstract

In the last decade, a significant project was undertaken with the objective of studying the patterns of distribution of gall-forming insects across different individual mountains in the Espinhaço mountain range and Serra da Mantiqueira. Three hypotheses were tested that seek to describe the patterns of gall-inducing insects in order to test their “generality”. (1) hypothesis of altitudinal gradient, which predicts that the richness of gall-forming insects diminishes with altitude, (2) hypothesis of plant richness, which predicts that richness of gall-forming insects increases with plant richness, and (3) hypothesis of plant density, which predicts that the richness of gall-forming insects increases with plant density. We have found that the richness of gall-forming insects does not vary linearly with altitude. Gall-inducing insects respond significantly to the number and composition of host plants. The majority of regional richness of gall-forming insects is explained by their beta richness component, suggesting that the composition of the community of gall-forming insects reflects the patterns of distribution of their host plants in the tropics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alados-Arboledas L, Alados I, Foyo-Moreno I, Olmo FJ, Alcántara A (2003) The influence of clouds on surface UV erythemal irradiance. Atmos Res 66:273–290

    Article  Google Scholar 

  • Anslow FS, Shawn MJ (2002) An investigation of local alpine terrestrial lapse rates in the Canadian rockies. In: Proceedings of the 32nd annual Arctic workshop, University of Colorado, 14–16 Mar 2002

    Google Scholar 

  • Barreto HL (1949) Regiões fitogeográficas de Minas Gerais. B Geo 14:14–28

    Google Scholar 

  • Benites VM, Caiafa AN, Mendonça ES, Schaefer CE, Ker JC (2003) Solos e vegetação nos complexos rupestres de altitude da Mantiqueira e do espinhaço. Flora Am 10:76–85

    Google Scholar 

  • Blanche KR (1994) Insects induced galls on Australian vegetation. In: Price PW, Mattson WJ, Baranchikov Y (eds) Gall-forming insects: ecology, physiology and evolution. Department of Agriculture, Washington, DC, pp 59–65

    Google Scholar 

  • Blanche KR (2000) Diversity of insect induced galls along a temperature-rainfall gradient in the tropical savannah region of the Northern territory, Australia. Austral Ecol 25:311–318

    Article  Google Scholar 

  • Blanche KR, Ludwig JA (2001) Species richness of gall-inducing insects and host plants along an altitudinal gradient in Big Bend National Park, Texas. Am Midl Nat 145:219–232

    Article  Google Scholar 

  • Blanche KR, Westoby M (1995) Gall forming insect diversity is linked to soil fertility via host plant taxon. Ecology 76:2334–2337

    Article  Google Scholar 

  • Blanche KR, Westoby M (1996) The effects of the taxon geographical range size of host eucalypt species on the species richness of gall forming insects. Aust J Ecol 21:332–335

    Article  Google Scholar 

  • Brehm G, Homeier J, Fiedler K (2003) Beta diversity of geometrid moths (Lepidoptera: Geometridae) in an Andean montane rain forest in Ecuador. Divers Distrib 9:351–366

    Article  Google Scholar 

  • Bush GL (1994) Sympatric speciation in animals: new wine in old bottles. Trends Ecol Evol 9:285–288

    Article  CAS  PubMed  Google Scholar 

  • Caiafa AN, Silva AF (2005) Composição florística e espectro biológico de um campo de altitude no Parque Estadual da Serra do Brigadeiro, Minas Gerais-Brasil. Rodriguésia 56:163–173

    Google Scholar 

  • Carneiro MAA (2009) Distribuição de Insetos Galhadoes na Porção sul da Cadeia do Espinhaço, Thesis, Universidade Federal de Minas Gerais

    Google Scholar 

  • Carneiro MAA, Fernandes GW, DeSouza OFF (2005) Convergence in the variation of local and regional galling species richness. Neotrop Entomol 34:547–553

    Article  Google Scholar 

  • Carneiro MAA, Souza WVM, Fernandes GW, DeSouza OFF (2006) Sex-mediated herbivory by galling insects on Baccharis concinna (Asteraceae). Rev Bras Entomol 50:394–398

    Article  Google Scholar 

  • Carneiro MAA, Branco CSA, Braga CED, Almada ED, Costa MBM, Fernandes GW, Maia VC (2009a) Are gall midge species (Diptera: Cecidomyiidae) host plant specialists? Rev Bras Entomol 53:365–378

    Google Scholar 

  • Carneiro MAA, Borges RAX, Araújo APA, Fernandes GW (2009b) Insetos indutores de galhas da porção sul da Cadeia do Espinhaço, MG. Rev Bras Entomol 53:570–592

    Article  Google Scholar 

  • Coelho MS, Carneiro MA, Branco C, Borges RAX, Fernandes GW (2013a) Gall-inducing insects from Campos de Altitude, Brazil. Biota Neotrop 4:139–151

    Google Scholar 

  • Coelho MS, Carneiro MA, Branco C, Borges RAX, Fernandes GW (2013b) Gall-inducing insects from Serra do Cabral, Minas Gerais, Brazil. Biota Neotrop 3:102–109

    Google Scholar 

  • Crist TO, Veech JA, Gering JC, Summerville KS (2003) Partitioning species diversity across landscapes and regions: a hierarchical analysis of a, b, and c-diversity. Am Nat 162:734–743

    Article  PubMed  Google Scholar 

  • Cuevas-Reyes P, Siebe C, Martínez-Ramos M, Oyama K (2003) Species richness of gall-forming insects in a tropical rain forest: correlations with plant diversity and soil fertility. Biodivers Conserv 12:411–422

    Article  Google Scholar 

  • Cuevas-Reyes P, Quesada M, Siebe C, Oyama K (2004a) Spatial patterns of herbivory by gall-forming insects: a test of the soil fertility hypothesis in a Mexican tropical dry forest. Oikos 107:181–189

    Article  Google Scholar 

  • Cuevas-Reyes P, Quesada M, Hanson P, Dirzo R, Oyama K (2004b) Diversity of gall-inducing insects in a Mexican tropical dry forest: the importance of plant species richness, life-forms, host plant age and plant density. J Ecol 92:707–716

    Article  Google Scholar 

  • Dalbem RV, Mendonça MS (2006) Diversity of galling arthropods and host plants in a subtropical forest of Porto Alegre, Southern Brazil. Neotrop Entomol 35:616–624

    Article  PubMed  Google Scholar 

  • Dreger-Jauffret F, Shorthouse JD (1992) Diversity of gall-inducing insects and their galls. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University Press, Oxford, pp 8–33

    Google Scholar 

  • Edwards C, Read J, Sanson G (2000) Characterising sclerophylly: some mechanical properties of leaves from health and forest. Oecologia 123:158–167

    Article  Google Scholar 

  • Fernandes GW (1990) Hypersensitivity: a neglected plant resistance mechanism against insect herbivores. Environ Entomol 19:1173–1182

    Google Scholar 

  • Fernandes GW, Lara ACF (1993) Diversity of Indonesian gall-forming herbivores along altitudinal gradients. Biodivers Conserv 1:186–192

    Google Scholar 

  • Fernandes GW, Price PW (1988) Biogeographical gradients in galling species richness: tests of hypotheses. Oecologia 76:161–167

    Article  Google Scholar 

  • Fernandes GW, Price PW (1991) Comparison of tropical and temperate galling species richness: the roles of environmental harshness and plant nutrient status. In: Price PW, Lewinsohn TM, Fernandes GW, Benson WW (eds) Plant-animal interactions: evolutionary ecology in tropical and temperate regions. Wiley, New York, pp 91–115

    Google Scholar 

  • Fernandes GW, Price PW (1992) The adaptive significance of insect gall distribution: survivorship of species in xeric and mesic habitats. Oecologia 90:14–20

    Article  Google Scholar 

  • Fernandes GW, Carneiro MAA, Lara ACF, Allain LR, Julião GR, Andrade GI, Reis TR, Silva IM (1996) Galling insects on neotropical species of Baccharis (asteraceae). Trop Zool 9:315–332

    Article  Google Scholar 

  • Ferri MG (1980) Vegetação Brasileira. Editora da Universidade de São Paulo, São Paulo

    Google Scholar 

  • Filgueiras TS (2002) Herbaceous plant communities. In: Oliveira PS, Marquis RJ (eds) The cerrados of Brazil: ecology and natural history of a neotropical savanna. Columbia University Press, New York, pp 121–139

    Google Scholar 

  • Floate KD, Fernandes GW, Nilsson JA (1996) Distinguishing intrapopulational categories of plants by their insect faunas: galls on rabbitbrush. Oecologia 105:221–229

    Google Scholar 

  • Gagné RJ (1994) The gall midges of the Neotropical region. Cornell University Press, New York

    Google Scholar 

  • Giulietti AM, Menezes NL, Pirani JR, Meguro ML, Wanderley MGL (1987) Flora da Serra do Cipó: Caracterização e lista de espécies. Bol Bot Univ São Paulo 9:1–152

    Google Scholar 

  • Giulietti AM, Pirani JR, Harley RM (1997) Espinhaço range region. Eastern Brazil. In: Davis SD, Heywood VH, Herrera-Macbryde O, Villa-Lobos J, Hamilton AC (eds) Centres of plant diversity. A guide and strategies for the conservation. The Americas, Cambridge, pp 397–404

    Google Scholar 

  • Gonçalves-Alvim SJ, Fernandes GW (2001a) Biodiversity of galling insects: historical, community and habitat effects in four neotropical savannas. Biodivers Conserv 10:79–98

    Article  Google Scholar 

  • Gonçalves-Alvim SJ, Fernandes GW (2001b) Comunidades de insetos galhadores (Insecta) em diferentes fisionomias do cerrado em Minas Gerais, Brasil. Rev Bras Zool 18:289–305

    Article  Google Scholar 

  • Hawkins BA, Compton SG (1992) African fig wasp communities: undersaturation and latitudinal gradients in species richness. J Anim Ecol 61:361–372

    Article  Google Scholar 

  • Hodkinson ID (2005) Terrestrial insects along elevation gradients: species and community responses to altitude. Biol Rev 80:489–513

    Article  PubMed  Google Scholar 

  • Jankowski JE, Ciecka AL, Meyer NY, Rabenold KN (2009) Beta diversity along environmental gradients: implications of habitat specialization in tropical montane landscapes. J Anim Ecol 78:315–327

    Article  PubMed  Google Scholar 

  • Julião GR, Amaral MEC, Fernandes GW (2002) Galhas de insetos e suas plantas hospedeiras no Pantanal sul mato-grossense. Naturalia 27:47–74

    Google Scholar 

  • Julião GR, Amaral MEC, Fernandes GW, Oliveira EG (2004) Edge effect and species-area relationships in the gall-forming insect fauna of natural forest patches in the Brazilian Pantanal. Biodivers Conserv 13:2055–2066

    Article  Google Scholar 

  • Julião GR, Venticinque EM, Fernandes GW, Kraus JE (2005) Richness and abundance of gall-forming insects in the Mamirauá Varzea, a flooded Amazonian forest. Uakari 1:39–42

    Google Scholar 

  • Lande R (1996) Statistics and partitioning of species diversity and similarity among multiple communities. Oikos 76:5–13

    Article  Google Scholar 

  • Lara ACF, Fernandes GW (1996) The highest diversity of galling insects: Serra do Cipó, Brazil. Biodivers Lett 3:111–114

    Article  Google Scholar 

  • Lara ACF, Fernandes GW, Gonçalves-Alvim SJ (2002) Tests of hypotheses on patterns of gall distribution along an altitudinal gradient. Trop Zool 15:219–232

    Article  Google Scholar 

  • Larew HG (1982) A comparative anatomical study of galls caused by the major cecidogenetic groups, with special emphasis on the nutritive tissue. Thesis, Oregon State University

    Google Scholar 

  • Lieberman D, Lieberman M, Peralta R, Hartshorn GS (1996) Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. J Ecol 84:137–152

    Article  Google Scholar 

  • Lomolino MV (2001) Elevation gradients of species-density: historical and prospective views. Glob Ecol Biogeogr 10:3–13

    Article  Google Scholar 

  • Lomolino M, Riddle B, Brown J (2006) Biogeography. Sinauer Associates, Sunderland

    Google Scholar 

  • Loreau M (2000) Are communities saturated? On the relationship between α, β and γ diversity. Ecol Lett 3:73–76

    Article  Google Scholar 

  • MacArthur RH (1972) Geographical ecology: patterns in the distribution of species. Harper and Row, New York

    Google Scholar 

  • Mani MS (1964) The ecology of plant galls. Dr. Junk, The Hague

    Book  Google Scholar 

  • Martinelli G (1996) Campos de altitude. Editora Index, Rio de Janeiro

    Google Scholar 

  • Medianero E, Ibáñez A, Nieves-Aldrey JL (2010) The importance of beta diversity in local gall-inducing arthropod distribution. Neotrop Entomol 39:365–370

    Article  PubMed  Google Scholar 

  • Mendonça MS (2001) Gall-inducing insect diversity patterns: the resource synchronisation hypothesis. Oikos 95:171–176

    Article  Google Scholar 

  • Mendonça MS (2007) Plant diversity and galling arthropod diversity searching for taxonomic patterns in an animal-plant interaction in the neotropics. Bol Soc Argent Bot 42:347–357

    Google Scholar 

  • Moreira AAN, Camelier C (1977) Relevo. Geografia do Brasil: Região Sudeste, Rio de Janeiro. Fundação Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro

    Google Scholar 

  • Müller RN, Kalisz PJ, Kimmerer TW (1987) Intraspecific variation in production of astringent phenolics over a vegetation-resource availability gradient. Oecologia 72:211–215

    Article  Google Scholar 

  • Myers N, Mittermeir CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Nyman T, Julkunen-Titto R (2000) Manipulation of the phenolic chemistry of willow by gall-inducing sawflies. Proc Natl Acad Sci U S A 97:13184–13187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oliveira-Filho A, Ratter JA (2002) Vegetation physiognomies and woody flora of the Cerrado Biome. In: Oliveira PS, Marquis RJ (eds) The cerrados of Brazil: ecology and natural history of a neotropical savanna. Columbia University Press, New York, pp 91–120

    Google Scholar 

  • Oyama K, Pérez-Pérez MA, Cuevas-Reyes P, Luna-Reyes R (2003) Regional and local species richness of gall-inducing in- sects in two tropical rain forests in Mexico. J Trop Ecol 19:595–598

    Article  Google Scholar 

  • Pereira MCA (1994) Estrutura das comunidades vegetais de afloramentos rochosos dos campos rupestres do Parque Nacional da Serra do Cipó, MG. dissertation, Universidade Federal de Minas Gerais

    Google Scholar 

  • Price PW (2005) Macroevolutionary theory on macroecological patterns. University Press, Cambridge

    Google Scholar 

  • Price PW, Waring GL, Fernandes GW (1987) Hypotheses on the adaptative nature of galls. Proc Entomol Soc Wash 88:361–363

    Google Scholar 

  • Price PW, Roininen H, Zinovjev A (1997) Adaptive radiation of gall-inducing sawflies in relation to architecture and geographic range of willow host plants. In: Csóka G, Mattson WJ, Stone GN, Price PW (eds) Biology of gall-inducing arthropods. USDA Tech, St. Paul, pp 196–203

    Google Scholar 

  • Price PW, Fernandes GW, Lara ACF, Brawn J, Gerling D, Barrios H, Wright MG, Ribeiro SP, Rothcliff N (1998) Global patterns in local number of insect galling species. J Biogeogr 25:581–591

    Article  Google Scholar 

  • Raman A, Schaefer CW, Withers TM (2005) Biology, ecology, and evolution of gall-inducing arthropods. Science, Enfield

    Google Scholar 

  • Ribeiro SP, Basset Y (2007) Gall-forming and free-feeding herbivory along vertical gradients in a lowland tropical rainforest: the importance of leaf sclerophylly. Ecography 30:663–672

    Article  Google Scholar 

  • Ribeiro KT, Nascimento JS, Madeira JA, Ribeiro LC (2009) Aferição dos limites da Mata Atlântica na Serra do Cipó, MG, Brasil, visando maior compreensão e proteção de um mosaico vegetacional fortemente ameaçado. Nat Conservação 7:30–49

    Google Scholar 

  • Rizzini CT (1963) Nota prévia sobre a divisão fitogeográfica do Brasil. Separata da Revista Brasileira de Geografia. Instituto Brasileiro de Geografia Estatística, Rio de Janeiro

    Google Scholar 

  • Rizzini CT (1979) Tratado de fitogeografia do Brasil. HUCITEC, São Paulo

    Google Scholar 

  • Rosenzweig M (1995) Species diversity in space and time. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Safford HD (1999) Brazilian Páramos I. An introduction to the physical environment and vegetation of the campos de altitude. J Biogeogr 26:693–712

    Article  Google Scholar 

  • Semir J (1991) Revisão taxônomica de Lychnophora mart. (Vernoniaceae: Compositae). Thesis, UNICAMP

    Google Scholar 

  • Silva JF, Farinas MR, Felfili JM, Klink CA (2006) Spatial heterogeneity, land use and conservation in the cerrado region of Brazil. J Biogeogr 33:536–548

    Article  Google Scholar 

  • Smith AP, Young TP (1987) Tropical alpine plant ecology. Annu Rev Ecol Syst 18:137–158

    Article  Google Scholar 

  • Stone GN, Schönrogge K, Atkinson RJ, Bellido D, Pujade-Villar J (2002) The population biology of oak gall wasps (Hymenoptera: Cynipidae). Annu Rev Entomol 47:633–668

    Article  CAS  PubMed  Google Scholar 

  • Strong DR, Lawton JH, Southwood TRE (1984) Insects on plants. Blackwell, Oxford

    Google Scholar 

  • Vásquez GJA, Givnish TJ (1998) Altitudinal gradients in tropical forest composition, structure, and diversity in the Sierra de Manantlan. J Ecol 86:999–1020

    Article  Google Scholar 

  • Veech JA, Summerville KS, Crist TO, Gering JC (2002) The additive partitioning of diversity: recent revival of an old idea. Oikos 99:3–9

    Article  Google Scholar 

  • Veldtman R, Mcgeoch MA (2003) Gall-forming insect species richness along a nonscleromorphic vegetation rainfall gradient in South Africa: the importance of plant community composition. Austral Ecol 28:1–13

    Article  Google Scholar 

  • Waring GL, Price PW (1989) Parasitoid pressure and the radiation of a gallforming group (Cecidomyiidae: Asphondylia spp.) on creosote bush (Larrea tridentata). Oecologia 79:293–299

    Article  CAS  PubMed  Google Scholar 

  • Waring GL, Price PW (1990) Plant water stress and gall formation (Cecidomyiidae: Asphondylia spp.) on creosote bush. Ecol Entomol 15:87–95

    Article  Google Scholar 

  • Weis AE, Walton R, Crego CL (1988) Reactive plant tissue sites and the population biology of gall makers. Annu Rev Entomol 33:467–486

    Article  Google Scholar 

  • Whitcomb RFH, Blocker AL, Lynn DE (1994) Biogeography of leafhopper specialists of the shortgrass prairie. Am Entomol 40:19–35

    Google Scholar 

  • Wright MG, Samways MJ (1996) Gall insect species richness in African Fynbos and Karoo vegetation: the importance of plant species richness. Biodivers Lett 3:151–155

    Article  Google Scholar 

  • Wright MG, Samways MJ (1998) Insect species richness tracking plant species richness in a diverse flora: gall-insect in the Cape Floristic, South Africa. Oecologia 115:427–433

    Article  Google Scholar 

  • Yukawa J, Tokuda M, Uechi N, Sato S (2001) Species richness of galling arthropods in Manaus, Amazon and the surroundings of the Iguassu falls. Esaka 41:11–15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Antonio A. Carneiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Carneiro, M.A.A., Coelho, M.S., Fernandes, G.W. (2014). Galls in Brazilian Mountains: New Reports and Perspectives. In: Fernandes, G., Santos, J. (eds) Neotropical Insect Galls. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8783-3_16

Download citation

Publish with us

Policies and ethics