Skip to main content

Baccharis: A Neotropical Model System to Study Insect Plant Interactions

  • Chapter
  • First Online:
Neotropical Insect Galls

Abstract

The genus Baccharis is composed of ca. 500 species which are distributed primarily in tropical America. It is dioecious and highly diverse in chemistry, architecture, phenology and occupy many different niches across several gradients of light, temperature, humidity, altitude and succession. It is host to the most speciose galling fauna, with more than 121 galling species on 40 host plant. This system provides an ideal scenario to test several ecological hypotheses, including the long standing plant sexual differences on timing and intensity of energy allocation, vigor, architecture and herbivore attack. Moreover its wide distribution enables to test latitudinal and altitudinal gradients on gall attack. We review the studies performed on these Neotropical shrubs related to galling insects. These studies have been crucial for the establishment of generalities and testing of ecological and evolutionary theories across the Americas, as well as to generate new ideas and hypotheses. For these reasons and power of the field and experimental observations we suggest that the galling insects on their Baccharis hosts may represent a Neotropical model system for studies on insect plant interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad MJ, Bermejo P (2007) Baccharis (Compositae): a review update. Arkivoc 7:76–96

    Google Scholar 

  • Abrahamson WG, Weis AE (1997) Evolutionary ecology across three trophic levels: goldenrods, gallmakers and natural enemies. Princeton University, Princeton

    Google Scholar 

  • Agostini F, Santos ACA, Rossato M, Pansera MR, Zattera F, Wasum R, Serafini LA (2005) Studies on the essential oils from several Baccharis (Asteraceae) from Southern Brazil. Rev Bras Farmacogn 15:215–219

    Article  CAS  Google Scholar 

  • Ågren J (1987) Intersexual differences in phenology and damage by herbivores and pathogens in dioecious Rubus chamaemorus L. Oecologia 72:161–169

    Article  Google Scholar 

  • Araújo AM, Fernandes GW, Bedê LC (1995) Influência do sexo e fenologia de Baccharis dracunculifolia DC. (Asteraceae) sobre insetos herbívoros. Rev Bras Entomol 39:347–353

    Google Scholar 

  • Araújo APA, Carneiro MAA, Fernandes GW (2003) Efeitos do sexo, do vigor e do tamanho da planta hospedeira sobre a distribuição de insetos indutores de galhas em Baccharis pseudomyriocephala Teodoro (Asteraceae). Rev Bras Entomol 47:483–490

    Article  Google Scholar 

  • Araújo APA, Paula JD, Carneiro MAA, Schoereder JH (2006) Effects of host plant architecture on colonization by galling insects. Austral Ecol 31:343–348

    Article  Google Scholar 

  • Argandoña VH, Faini F (1993) Oleanolic acid content in Baccharis linearis and its effects on Heliothis zea larvae. Phytochemistry 33:1377–1379

    Article  Google Scholar 

  • Askew RR (1960) The biology of the British species of the genus Olnx Föster (Hymenoptera: Eulophidae), with a note on seasonal colour forms in the Chalcidoidea. Proc R Entomol Soc Lond 36:103–112

    Google Scholar 

  • Banskota AH, Tezuka Y, Kadota S (2001) Recent progress in pharmacological research of propolis. Phytother Res 15:561–571

    Article  CAS  PubMed  Google Scholar 

  • Barroso GM (1976) Compositae-subtribo Baccharidinae-Hoffman: estudo das espécies ocorrentes no Brasil. Rodriguesia 40:3–273

    Google Scholar 

  • Blanche KR (2000) Diversity of insect-induced galls along a temperature–rainfall gradient in the tropical Savannah region of the Northern Territory, Australia. Austral Ecol 25:311–318

    Article  Google Scholar 

  • Boecklen WJ, Hoffman MT (1993) Sex-biased herbivory in Ephedra trifurca: the importance of sex-by environment interactions. Oecologia 96:49–55

    Article  Google Scholar 

  • Boecklen WJ, Price PW, Mopper S (1990) Sex and drugs and herbivores: sex-biased herbivory in arroyo willow (Salix lasiolepis). Ecology 71:581–588

    Article  CAS  Google Scholar 

  • Boecklen WJ, Mopper S, Price PW (1994) Sex-biased herbivory in arroyo willow: are there general patterns among herbivores? Oikos 71:267–272

    Article  Google Scholar 

  • Boldt PE (1989) Baccharis (Asteraceae), a review of its taxonomy, phytochemistry, ecology, economic status, natural enemies and the potential for its biological control in the United States. USDA, Agricultural Research Service. Grassland, Soil and Water Research Laboratory, Temple

    Google Scholar 

  • Burckhardt D, Espírito-Santo MM, Fernandes GW, Malenovský I (2004) Gall-inducing jumping plant-lice of the Neotropical genus Baccharopelma (Hemiptera, Psylloidea) associated with Baccharis (Asteraceae). J Nat Hist 38:2051–2071

    Article  Google Scholar 

  • Carneiro MAA, Fernandes GW, De Souza OFF (2005) Convergence in the variation of local and regional galling species richness. Neotrop Entomol 34:547–553

    Article  Google Scholar 

  • Carneiro MAA, Fernandes GW, De Souza OFF, Souza WVM (2006) Sex-mediated herbivory by galling insects on Baccharis concinna (Asteraceae). Rev Bras Entomol 50:394–398

    Article  Google Scholar 

  • Carneiro MAA, Branco CSA, Braga CED, Almada ED, Costa MBM, Maia VC, Fernandes GW (2009a) Are gall midge species (Diptera, Cecidomyiidae) host-plant specialists? Rev Bras Entomol 53:365–378

    Google Scholar 

  • Carneiro MAA, Borges RAX, Araújo APA, Fernandes GW (2009b) Insetos indutores de galhas da porção sul da Cadeia do Espinhaço, MG. Rev Bras Entomol 53:570–592

    Article  Google Scholar 

  • Chan GC, Cheung K, Sze DM (2012) The immuno modulatory and anticancer properties of propolis. Clin Rev Allergy Immunol. doi:10.1007/s12016-012-8322-2

    Google Scholar 

  • Coelho MS, Almada ED, Fernandes GW, Carneiro MAA, Santos RM, Sánchez-Azofeifa A (2009) Gall inducing arthropods from a seasonally dry tropical forest in Serra do Cipó, Brazil. Rev Bras Entomol 53:404–414

    Article  Google Scholar 

  • Collevatti RG, Sperber CF (1997) The gall maker Neopelma baccharidis Burck. (Homoptera: Psyllidae) on Baccharis dracunculifolia DC. (Asteraceae): individual, local, and regional patterns. Ann Soc Entomol Brasil 26:45–53

    Article  Google Scholar 

  • Cornelissen T, Stiling P (2005) Sex-biased herbivory: a meta-analysis of the effects of gender on plant-herbivore interactions. Oikos 111:488–500

    Article  Google Scholar 

  • Cornell HV (1983) The secondary chemistry and complex morphology of galls formed by the Cynipidae (Hymenoptera): why and how? Am Midl Nat 136:581–597

    Article  Google Scholar 

  • Costa FV, Fagundes MF, Neves FS (2010) Arquitetura da planta e diversidade de galhas associadas à Copaifera langsdorffii (Fabaceae). Ecol Aust 20:9–17

    Google Scholar 

  • Costa FV, Neves FS, Silva JO, Fagundes M (2011) Relationship between plant development, tannin concentration and insects associated with Copaifera langsdorffii (Fabaceae). Arthropod Plant Interact 5:9–18

    Article  Google Scholar 

  • Cox CB, Moore PD (1993) Biogeography: an ecological and evolutionary approach. Blackwell, Berlin

    Google Scholar 

  • Craig TP, Horner JD, Itami JK (1997) Hybridization studies on the host races of Eurosta solidaginis: implications for sympatric speciation. Evolution 51:1552–1560

    Article  Google Scholar 

  • Danell K, Elmqvist T, Ericson L, Salomonson A (1985) Sexuality in willows and preference by bark-eating voles, defence or not? Oikos 44:82–90

    Article  Google Scholar 

  • Danell K, Hjältén J, Ericson L, Elmqvist T (1991) Vole feeding on male and female willow shoots along a gradient of plant productivity. Oikos 62:145–152

    Article  Google Scholar 

  • Elmqvist T, Cates RG, Harper JK, Garfjell H (1991) Flowering in males and females of a Utah willow, Salix rigida and effects on growth, tannins, phenolic glycosides and sugars. Oikos 61:65–72

    Article  CAS  Google Scholar 

  • Espírito-Santo MM, Fernandes GW (1998) Abundance of Neopelma baccharidis (Homoptera: Psyllidae) galls on the dioecious shrub Baccharis dracunculifolia (Asteraceae). Environ Entomol 27:870–876

    Google Scholar 

  • Espírito-Santo MM, Fernandes GW (2002) Host plant effects on the development and survivorship of the galling insect Neopelma baccharidis (Homoptera: Psyllidae). Aust Ecol 27:249–257

    Article  Google Scholar 

  • Espírito-Santo MM, Fernandes GW, Allain LR, Reis TRF (1999) Tannins in Baccharis dracunculifolia (Asteraceae): effects of seasonality, water availability and plant sex. Acta Bot Bras 13:167–174

    Google Scholar 

  • Espírito-Santo MM, Madeira BG, Neves FS, Faria ML, Fagundes M, Fernandes GW (2003) Sexual differences in reproductive phenology and their consequences for the demography of Baccharis dracunculifolia (Asteraceae), a dioecious tropical shrub. Ann Bot 91:13–19

    Article  PubMed  Google Scholar 

  • Espírito-Santo MM, Faria ML, Fernandes GW (2004) Parasitoid attack and its consequences to the development of the galling psyllid Baccharopelma dracunculifoliae. Basic Appl Ecol 5:475–484

    Article  Google Scholar 

  • Espírito-Santo MM, Neves FS, Andrade-Neto FR, Fernandes GW (2007) Plant architecture and meristem dynamics as the mechanism determining the diversity of gall-inducing insects. Oecologia 153:353–364

    Article  PubMed  Google Scholar 

  • Espírito-Santo MM, Neves FS, Fernandes GW, Silva JO (2012) Plant phenology and absence of sex-biased gall attack on three species of Baccharis. Plos ONE 7(10):e46896. doi:10.1371/journal.pone.0046896

    Article  PubMed Central  PubMed  Google Scholar 

  • Fagundes M, Fernandes GW (2011) Insect herbivores associated with Baccharis dracunculifolia (Asteraceae): responses of gall-forming and free-feeding insects to latitudinal variation. Rev Biol Trop 59:1419–1432

    PubMed  Google Scholar 

  • Fagundes M, Faria ML, Fernandes GW (2001) Efeitos da distribuição de Baccharis dracunculifolia (Asteraceae) na abundância e no parasitismo de galhas de Neopelma baccharidis (Homoptera: Psyllidae). Unimontes Cientific 1:1–7

    Google Scholar 

  • Fagundes M, Neves FS, Fernandes GW (2005) Direct and indirect interactions involving ants, insect herbivores, parasitoids, and the host plant Baccharis dracunculifolia (Asteraceae). Ecol Entomol 30:28–35

    Article  Google Scholar 

  • Faria ML, Fernandes GW (2001) Vigour of a dioecious shrub and attack by a galling herbivore. Ecol Entomol 26:36–45

    Article  Google Scholar 

  • Felt EP (1940) Plant galls and gall makers. Comstock, Ithaca

    Google Scholar 

  • Fernandes GW (1990) Hypersensitivity: a neglected plant resistance mechanism against insect herbivores. Environ Entomol 19:1173–1182

    Google Scholar 

  • Fernandes GW (1992) Plant family size and age effects on insular gall-forming species richness. Glob Ecol Biogeogr Letts 2:71–74

    Article  Google Scholar 

  • Fernandes GW, Lara ACF (1993) Diversity of Indonesian gall-forming herbivores along altitudinal gradients. Biodivers Letts 1:186–192

    Article  Google Scholar 

  • Fernandes GW, Price PW (1988) Biogeographical gradients in galling species richness: tests of hypotheses. Oecologia 76:161–167

    Article  Google Scholar 

  • Fernandes GW, Price PW (1991) Comparison of tropical and temperate galling species richness: the role of environmental harshness and plant nutrient status. In: Price PW, Lewinsohn T, Fernandes GW, Benson WW (eds) Plant–animal interactions: evolutionary ecology in tropical and temperate regions. Wiley, New York, pp 91–115

    Google Scholar 

  • Fernandes GW, Price PW (1992) The adaptive significance of insect gall distribution: survivorship of species in xeric and mesic habitat. Oecologia 90:14–20

    Article  Google Scholar 

  • Fernandes GW, Tameirão-Neto E, Martins RP (1988) Occorrência e caracterização de galhas entomógenas na vegetação do Campus-Pampulha, UFMG, Belo Horizonte – MG. Rev Bras Zool 5:11–29

    Article  Google Scholar 

  • Fernandes GW, Carneiro MAA, Lara ACF, Allain LA, Andrade GI, Julião G, Reis TC, Silva IM (1996) Galling insects on neotropical species of Baccharis (Asteraceae). Trop Zool 9:315–332

    Article  Google Scholar 

  • Fernandes GW, Araújo RC, Araújo SC, Lombardi JA, Paula AS, Loyola R, Cornelissen TG (1997) Insect galls from Jequitinhonha Valley, Minas Gerais, Brazil. Naturalia 22:221–224

    Google Scholar 

  • Fernandes GW, Saraiva C, Cornelissen TG, Price PW (2000) Diversity and morphology of insect galls on Chrysothamnus nauseous (Asteraceae) in North Arizona. Bios 8:39–48

    Google Scholar 

  • Ferracini VL, Paraiba LC, Leitão-Filho HF, Silva AGD, Nascimento LR, Marsaioli AJ (1995) Essential oils of seven Brazilian Baccharis species. J Essent Oil Res 7:355–367

    Article  CAS  Google Scholar 

  • Floate KD, Whitham TG (1995) Insects as traits in plant systematics: their use in discriminating between hybrid cottonwoods. Can J Bot 73:1–13

    Article  Google Scholar 

  • Floate KD, Fernandes GW, Nilsson JA (1996) Distinguishing intrapopulational categories of plants by their insect faunas: galls on rabbit brush. Oecologia 105:221–229

    Google Scholar 

  • Gehring CA, Whitham TG (1992) Reduced mycorrhizae on Juniperus monosperma with mistletoe: the influence of environmental stress and tree gender on a plant parasite and a plant–fungal mutualism. Oecologia 89:298–303

    Google Scholar 

  • Gomes V, Fernandes GW (2002) Germinação de aquênios de Baccharis dracunculifolia D. C. (Asteraceae). Acta Bot Bras 16:421–427

    Article  Google Scholar 

  • Hartley SE, Lawton JH (1992) Host-plant manipulation by gall-insects: a test of the nutrition hypothesis. J Anim Ecol 61:113–119

    Article  Google Scholar 

  • Hawkins BA, Compton SG (1992) African fig wasp communities: undersaturation and latitudinal gradients in species richness. J Anim Ecol 61:361–372

    Article  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335

    Article  Google Scholar 

  • Hjältén J (1992) Plant sex and hare feeding preferences. Oecologia 89:253–256

    Google Scholar 

  • Inbar M, Izhaki I, Koplovich A, Lupo I, Silanikove N, Glasser T, Gerchman Y, Perevolotsky A, Lev-Yadun A (2010) Why do many galls have conspicuous colors? A new hypothesis. Arthropod Plant Interact 4:1–6

    Article  Google Scholar 

  • Jarvis BB, Midiwo JO, Bean GA, Abdoul-Nasr MB, Barras CS (1988) The mystery of trichothecene antibiotics in Baccharis species. J Nat Prod 51:736–744

    Article  CAS  PubMed  Google Scholar 

  • Jarvis BB, Mokhtari-Rejali N, Schenkel EP, Barros CS, Matzenbacher NI (1991) Tricothecene mycotoxins from Brazilian Baccharis species. Phytochemistry 30:789–797

    Article  CAS  Google Scholar 

  • Julião GR, Amaral MEC, Fernandes GW (2002) Galhas de insetos e suas plantas hospedeiras do Pantanal sul-mato-grossense. Naturalia 27:47–74

    Google Scholar 

  • Kumazawa S, Yoneda M, Shibata I, Kanaeda J, Hamasaka T, Nakayama T (2003) Direct evidence for the plant origin of Brazilian propolis by the observation of honeybee behavior and phytochemical analysis. Chem Pharm Bull 51:740–742

    Article  CAS  PubMed  Google Scholar 

  • Lara ACF, Fernandes GW (1996) The highest diversity of galling insects: Serra do Cipó, Brazil. Biodivers Letts 3:111–114

    Article  Google Scholar 

  • Lawton JH (1983) Plant architecture and the diversity of phytophagous insects. Annu Rev Entomol 28:23–29

    Article  Google Scholar 

  • Lee JA (1981) Variation in the infection of Silene dioica (L.) by Ustilago violacea (Pers) in Northwest England. New Phytol 87:81–89

    Article  Google Scholar 

  • Madeira BG, Cornelissen TG, Faria ML, Fernandes GW (1997) Insect herbivore preference for sex and modules in Baccharis concinna (Asteraceae). In: Raman A (ed) Ecology and evolution of plant-feeding insects in natural and man-made environments. International Scientific Publications, New Delhi, pp 135–145

    Google Scholar 

  • Maia VC (2011) Characterization of insect galls, gall makers, and associated fauna of Platô Bacaba (Porto de Trombetas, Pará, Brazil). Biota Neotrop 4. Available online at: http://www.scielo.br/scielo.php?pid=S1676-6032011000 400003&script=sci_arttext. Accessed August 2012

  • Mani MS (1964) The ecology of plant galls. Junk, The Hague

    Book  Google Scholar 

  • Mani MS (1992) Introduction to cecidology. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University Press, Oxford, pp 3–7

    Google Scholar 

  • Manos PS, Doyle JJ, Nixon KC (1999) Phylogeny, biogeography, and processes of molecular differentiation in Quercus subgenus Quercus (Fagaceae). Mol Phylogenet Evol 12:333–349

    Article  CAS  PubMed  Google Scholar 

  • Marquis RJ, Lill JT, Piccini A (2002) Effect of plant architecture on colonization and damage by leaftying caterpillars of Quercus alba. Oikos 99:531–537

    Article  Google Scholar 

  • Nesom G (1988) Baccharis monoica (Compositae: Asteraceae), a monoecious species of the B. salicifolia complex from Mexico and Central America. Phytologia 65:160–164

    Google Scholar 

  • Price PW (1991) The plant vigor hypothesis and herbivore attack. Oikos 62:244–251

    Article  Google Scholar 

  • Price PW, Craig TP, Roininen H (1995) Working toward theory on galling sawfly population dynamics. In: Cappuccino N, Price PW (eds) Population dynamics: new approaches and synthesis. Academic, San Diego, pp 321–338

    Chapter  Google Scholar 

  • Price PW, Fernandes GW, Floate RD (1996) Gall-inducing insect herbivores in multitrophic systems. In: Gange A, Brown VK (eds) Multitrophic interactions in terrestrial systems. Blackwell, England, pp 239–255

    Google Scholar 

  • Ribeiro-Mendes HN, Marques ESA, Silva IM, Fernandes GW (2002) Influence of host-plant sex and habitat on survivorship of insect galls within the geographical range of the host plant. Trop Zool 15:5–15

    Article  Google Scholar 

  • Rohfritsch O (1992) Patterns in gall development. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University Press, Oxford, pp 60–86

    Google Scholar 

  • Safford HD (1999) Brazilian páramos I. An introduction to the physical environment and vegetation of the campos de altitude. J Biogeogr 26:693–712

    Article  Google Scholar 

  • Santos JC, Almeida-Cortez JS, Fernandes GW (2011) Richness of gall-inducing insects in the tropical dry forest (Caatinga) of Pernambuco. Rev Bras Entomol 55:45–54

    Article  Google Scholar 

  • Shorthouse JD, Rohfritsch O (1992) Biology of insect-induced galls. Oxford University, New York

    Google Scholar 

  • Steeves TA, Sussex IM (1989) Patterns in plant development. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Stone GN, Schönrogge K (2003) The adaptive significance of insect gall morphology. Trends Ecol Evol 18:512–522

    Article  Google Scholar 

  • Stone GN, Schönrogge K, Atkinson RJ, Bellido D, Pujade-Villar J (2002) The population biology of oak gall wasps (Hymenoptera: Cynipidae). Annu Rev Entomol 47:633–668

    Article  CAS  PubMed  Google Scholar 

  • Sussex IA, Kerk NM (2001) The evolution of plant architecture. Curr Opin Plant Biol 4:33–37

    Article  CAS  PubMed  Google Scholar 

  • Teixeira EW, Negri G, Meira RM, Message D, Salatino A (2005) Plant origin of green propolis: bee behavior, plant anatomy and chemistry. Evid Based Complement Alternat Med 2:85–92

    Article  PubMed Central  PubMed  Google Scholar 

  • Varga S, Kytöviita MM (2008) Sex-specific responses to mycorrhiza in a dioecious species. Am J Bot 95:1225–1232

    Article  PubMed  Google Scholar 

  • Veldtman R, McGeoch MA (2003) Gall-forming insect species richness along a non-scleromorphic vegetation rainfall gradient in South Africa: the importance of plant community composition. Aust Ecol 28:1–13

    Article  Google Scholar 

  • Verdi LG, Brighente MC, Pizzolatti MG (2005) Gênero Baccharis (Asteraceae): Aspectos químicos, econômicos biológicos. Quim Nova 28:85–94

    Article  CAS  Google Scholar 

  • Waring GL, Price PW (1990) Plant water stress and gall formation (Cecidomyiidae: Asphondylia spp.) on creosote bush. Ecol Entomol 15:87–95

    Article  Google Scholar 

  • Weis AE, Walton R, Greco CL (1988) Reactive plant tissue sites and the population biology of gall makers. Annu Rev Entomol 33:467–486

    Article  Google Scholar 

  • Wollenweber E, Valantvetschera KM, Fernandes GW (2006) Chemodiversity of exudate flavonoids in Baccharis concinna and three further South-American Baccharis species. Nat Prod Commun 1:627–632

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geraldo Wilson Fernandes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fernandes, G.W., Silva, J.O., Espírito-Santo, M.M., Fagundes, M., Oki, Y., Carneiro, M.A.A. (2014). Baccharis: A Neotropical Model System to Study Insect Plant Interactions. In: Fernandes, G., Santos, J. (eds) Neotropical Insect Galls. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8783-3_13

Download citation

Publish with us

Policies and ethics