Skip to main content

Wnt Pathway at a Glance: From the Deep of the Crypts to the Current Ways of Targeting

  • Chapter
  • First Online:
Stem Cells in Cancer: Should We Believe or Not?

Abstract

Wnt/β-catenin signalling pathway is crucial for the formation of many tissues and organs during development. In recent years, this pathway has also been found to regulate the biology of stem cells in the intestine and probably in other organs in adult life. Abnormal activation of Wnt/β-catenin signalling, which controls the expression of a high number of genes, is critical for the initiation and progression of most colorectal cancers. In line with this, the gene expression signature induced by activation of the Wnt/β-catenin pathway defines the intestinal stem cells present at the bottom of the crypts and also colon cancer stem cells. This supports the importance of inhibitors of the Wnt/β-catenin pathway as potential agents in colorectal cancer therapy. However, the complexity, wide activity in the organism modulating the biology of several cell types, and characteristics of this pathway have delayed the identification of suitable targets and so, the development of such inhibitors that are only now reaching the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clevers H, Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149:1192–1205

    PubMed  CAS  Google Scholar 

  2. Petersen CP, Reddien PW (2009) Wnt signaling and the polarity of the primary body axis. Cell 139:1056–1068

    PubMed  CAS  Google Scholar 

  3. Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    PubMed  CAS  Google Scholar 

  4. Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–850

    PubMed  CAS  Google Scholar 

  5. Miller JR (2002) The Wnts. Genome Biol 3:reviews3001.1-3001.15

    Google Scholar 

  6. Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T et al (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423:448–452

    PubMed  CAS  Google Scholar 

  7. Takada R, Satomi Y, Kurata T, Ueno N, Norioka S, Kondoh H et al (2006) Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev Cell 11:791–801

    PubMed  CAS  Google Scholar 

  8. Harterink M, Korswagen HC (2012) Dissecting the Wnt secretion pathway: key questions on the modification and intracellular trafficking of Wnt proteins. Acta Physiol (Oxf) 204:8–16

    CAS  Google Scholar 

  9. van den Heuvel M, Harryman-Samos C, Klingensmith J, Perrimon N, Nusse R (1993) Mutations in the segment polarity genes wingless and porcupine impair secretion of the wingless protein. EMBO J 12:5293–5302

    PubMed Central  PubMed  Google Scholar 

  10. Grzeschik KH, Bornholdt D, Oeffner F, Konig A, del Carmen Boente M, Enders H et al (2007) Deficiency of PORCN, a regulator of Wnt signaling, is associated with focal dermal hypoplasia. Nat Genet 39:833–835

    PubMed  CAS  Google Scholar 

  11. Wang X, Reid Sutton V, Omar Peraza-Llanes J, Yu Z, Rosetta R, Kou YC et al (2007) Mutations in X-linked PORCN, a putative regulator of Wnt signaling, cause focal dermal hypoplasia. Nat Genet 39:836–838

    PubMed  CAS  Google Scholar 

  12. Banziger C, Soldini D, Schutt C, Zipperlen P, Hausmann G, Basler K (2006) Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell 125:509–522

    PubMed  CAS  Google Scholar 

  13. Bartscherer K, Pelte N, Ingelfinger D, Boutros M (2006) Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell 125:523–533

    PubMed  CAS  Google Scholar 

  14. Port F, Kuster M, Herr P, Furger E, Banziger C, Hausmann G et al (2008) Wingless secretion promotes and requires retromer-dependent cycling of Wntless. Nat Cell Biol 10:178–185

    PubMed  CAS  Google Scholar 

  15. Belenkaya TY, Wu Y, Tang X, Zhou B, Cheng L, Sharma YV et al (2008) The retromer complex influences Wnt secretion by recycling wntless from endosomes to the trans-Golgi network. Dev Cell 14:120–131

    PubMed  CAS  Google Scholar 

  16. Janda CY, Waghray D, Levin AM, Thomas C, Garcia KC (2012) Structural basis of Wnt recognition by Frizzled. Science 337:59–64

    PubMed Central  PubMed  CAS  Google Scholar 

  17. Herr P, Hausmann G, Basler K (2012) WNT secretion and signalling in human disease. Trends Mol Med 18:483–493

    PubMed  CAS  Google Scholar 

  18. Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y et al (2002) Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108:837–847

    PubMed  CAS  Google Scholar 

  19. Hart M, Concordet JP, Lassot I, Albert I, del los Santos R, Durand H et al (1999) The F-box protein beta-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cell. Curr Biol 9:207–210

    PubMed  CAS  Google Scholar 

  20. Chitalia VC, Foy RL, Bachschmid MM, Zeng L, Panchenko MV, Zhou MI et al (2008) Jade-1 inhibits Wnt signalling by ubiquitylating beta-catenin and mediates Wnt pathway inhibition by pVHL. Nat Cell Biol 10:1208–1216

    PubMed Central  PubMed  CAS  Google Scholar 

  21. Bhanot P, Brink M, Samos CH, Hsieh JC, Wang Y, Macke JP et al (1996) A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382:225–230

    PubMed  CAS  Google Scholar 

  22. Dann CE, Hsieh JC, Rattner A, Sharma D, Nathans J, Leahy DJ (2001) Insights into Wnt binding and signalling from the structures of two Frizzled cysteine-rich domains. Nature 412:86–90

    PubMed  CAS  Google Scholar 

  23. Tamai K, Semenov M, Kato Y, Spokony R, Liu C, Katsuyama Y et al (2000) LDL-receptor-related proteins in Wnt signal transduction. Nature 407:530–535

    PubMed  CAS  Google Scholar 

  24. Chen W, ten Berge D, Brown J, Ahn S, Hu LA, Miller WE et al (2003) Dishevelled 2 recruits beta-arrestin 2 to mediate Wnt5A-stimulated endocytosis of Frizzled 4. Science 301:1391–1394

    PubMed  CAS  Google Scholar 

  25. MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17:9–26

    PubMed Central  PubMed  CAS  Google Scholar 

  26. Li VS, Ng SS, Boersema PJ, Low TY, Karthaus WR, Gerlach JP et al (2012) Wnt signaling through inhibition of beta-catenin degradation in an intact Axin1 complex. Cell 149:1245–1256

    PubMed  CAS  Google Scholar 

  27. Cavallo RA, Cox RT, Moline MM, Roose J, Polevoy GA, Clevers H et al (1998) Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature 395:604–608

    PubMed  CAS  Google Scholar 

  28. Roose J, Molenaar M, Peterson J, Hurenkamp J, Brantjes H, Moerer P et al (1998) The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature 395:608–612

    PubMed  CAS  Google Scholar 

  29. van de Wetering M, Cavallo R, Dooijes D, van Beest M, van Es J, Loureiro J et al (1997) Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88:789–799

    PubMed  Google Scholar 

  30. Stadeli R, Hoffmans R, Basler K (2006) Transcription under the control of nuclear Arm/beta-catenin. Curr Biol 16:R378–R385

    PubMed  Google Scholar 

  31. Vlad A, Rohrs S, Klein-Hitpass L, Muller O (2008) The first five years of the Wnt targetome. Cell Signal 20:795–802

    PubMed  CAS  Google Scholar 

  32. Lustig B, Jerchow B, Sachs M, Weiler S, Pietsch T, Karsten U et al (2002) Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol Cell Biol 22:1184–1193

    PubMed Central  PubMed  CAS  Google Scholar 

  33. Kawano Y, Kypta R (2003) Secreted antagonists of the Wnt signalling pathway. J Cell Sci 116:2627–2634

    PubMed  CAS  Google Scholar 

  34. Mao B, Wu W, Davidson G, Marhold J, Li M, Mechler BM et al (2002) Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling. Nature 417:664–667

    PubMed  CAS  Google Scholar 

  35. Zhang W, Drake MT (2012) Potential role for therapies targeting DKK1, LRP5, and serotonin in the treatment of osteoporosis. Curr Osteoporos Rep 10:93–100

    PubMed  Google Scholar 

  36. Hao HX, Xie Y, Zhang Y, Charlat O, Oster E, Avello M et al (2012) ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature 485:195–200

    PubMed  CAS  Google Scholar 

  37. Koo BK, Spit M, Jordens I, Low TY, Stange DE, van de Wetering M et al (2012) Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature 488:665–669

    PubMed  CAS  Google Scholar 

  38. Behrens J, Jerchow BA, Wurtele M, Grimm J, Asbrand C, Wirtz R et al (1998) Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science 280:596–599

    PubMed  CAS  Google Scholar 

  39. Zeng W, Wharton KA Jr, Mack JA, Wang K, Gadbaw M, Suyama K et al (2000) Naked cuticle encodes an inducible antagonist of Wnt signalling. Nature 403:789–795

    PubMed  CAS  Google Scholar 

  40. Wharton KA Jr, Zimmermann G, Rousset R, Scott MP (2001) Vertebrate proteins related to Drosophila Naked Cuticle bind Dishevelled and antagonize Wnt signaling. Dev Biol 234:93–106

    PubMed  CAS  Google Scholar 

  41. Tago K, Nakamura T, Nishita M, Hyodo J, Nagai S, Murata Y et al (2000) Inhibition of Wnt signaling by ICAT, a novel beta-catenin-interacting protein. Genes Dev 14:1741–1749

    PubMed Central  PubMed  CAS  Google Scholar 

  42. Li FQ, Mofunanya A, Harris K, Takemaru K (2008) Chibby cooperates with 14-3-3 to regulate beta-catenin subcellular distribution and signaling activity. J Cell Biol 181:1141–1154

    PubMed Central  PubMed  CAS  Google Scholar 

  43. de Lau WB, Snel B, Clevers HC (2012) The R-spondin protein family. Genome Biol 13:242

    PubMed Central  PubMed  Google Scholar 

  44. Kazanskaya O, Glinka A, del Barco Barrantes I, Stannek P, Niehrs C, Wu W (2004) R-Spondin2 is a secreted activator of Wnt/beta-catenin signaling and is required for Xenopus myogenesis. Dev Cell 7:525–534

    PubMed  CAS  Google Scholar 

  45. Fearon ER, Spence JR (2012) Cancer biology: a new RING to Wnt signaling. Curr Biol 22:R849–R851

    PubMed  CAS  Google Scholar 

  46. Jaks V, Barker N, Kasper M, van Es JH, Snippert HJ, Clevers H et al (2008) Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet 40:1291–1299

    PubMed  CAS  Google Scholar 

  47. Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, van den Born M et al (2009) Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457:608–611

    PubMed  CAS  Google Scholar 

  48. Barker N, Clevers H (2010) Lineage tracing in the intestinal epithelium. Curr Protoc Stem Cell Biol Chapter 5:Unit5A.4

    Google Scholar 

  49. Semenov MV, Habas R, Macdonald BT, He X (2007) SnapShot: noncanonical Wnt signaling pathways. Cell 131:1378

    PubMed  Google Scholar 

  50. Veeman MT, Slusarski DC, Kaykas A, Louie SH, Moon RT (2003) Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Curr Biol 13:680–685

    PubMed  CAS  Google Scholar 

  51. Gao C, Chen YG (2010) Dishevelled: the hub of Wnt signaling. Cell Signal 22:717–727

    PubMed  CAS  Google Scholar 

  52. Habas R, Kato Y, He X (2001) Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1. Cell 107:843–854

    PubMed  CAS  Google Scholar 

  53. Rosso SB, Sussman D, Wynshaw-Boris A, Salinas PC (2005) Wnt signaling through Dishevelled, Rac and JNK regulates dendritic development. Nat Neurosci 8:34–42

    PubMed  CAS  Google Scholar 

  54. Habas R, Dawid IB, He X (2003) Coactivation of Rac and Rho by Wnt/Frizzled signaling is required for vertebrate gastrulation. Genes Dev 17:295–309

    PubMed Central  PubMed  CAS  Google Scholar 

  55. Sheldahl LC, Slusarski DC, Pandur P, Miller JR, Kuhl M, Moon RT (2003) Dishevelled activates Ca2+ flux, PKC, and CamKII in vertebrate embryos. J Cell Biol 161:769–777

    PubMed Central  PubMed  CAS  Google Scholar 

  56. De A (2011) Wnt/Ca2+ signaling pathway: a brief overview. Acta Biochim Biophys Sin (Shanghai) 43:745–756

    CAS  Google Scholar 

  57. Kuhl M, Sheldahl LC, Park M, Miller JR, Moon RT (2000) The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet 16:279–283

    PubMed  CAS  Google Scholar 

  58. Saneyoshi T, Kume S, Amasaki Y, Mikoshiba K (2002) The Wnt/calcium pathway activates NF-AT and promotes ventral cell fate in Xenopus embryos. Nature 417:295–299

    PubMed  CAS  Google Scholar 

  59. Westfall TA, Hjertos B, Slusarski DC (2003) Requirement for intracellular calcium modulation in zebrafish dorsal-ventral patterning. Dev Biol 259:380–391

    PubMed  CAS  Google Scholar 

  60. Lu W, Yamamoto V, Ortega B, Baltimore D (2004) Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth. Cell 119:97–108

    PubMed  CAS  Google Scholar 

  61. Liu Y, Shi J, Lu CC, Wang ZB, Lyuksyutova AI, Song XJ et al (2005) Ryk-mediated Wnt repulsion regulates posterior-directed growth of corticospinal tract. Nat Neurosci 8:1151–1159

    PubMed  CAS  Google Scholar 

  62. Schmitt AM, Shi J, Wolf AM, Lu CC, King LA, Zou Y (2006) Wnt-Ryk signalling mediates medial-lateral retinotectal topographic mapping. Nature 439:31–37

    PubMed  CAS  Google Scholar 

  63. Ho HY, Susman MW, Bikoff JB, Ryu YK, Jonas AM, Hu L et al (2012) Wnt5a-Ror-Dishevelled signaling constitutes a core developmental pathway that controls tissue morphogenesis. Proc Natl Acad Sci U S A 109:4044–4051

    PubMed Central  PubMed  CAS  Google Scholar 

  64. Yamaguchi TP, Bradley A, McMahon AP, Jones S (1999) A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 126:1211–1223

    PubMed  CAS  Google Scholar 

  65. DeChiara TM, Kimble RB, Poueymirou WT, Rojas J, Masiakowski P, Valenzuela DM et al (2000) Ror2, encoding a receptor-like tyrosine kinase, is required for cartilage and growth plate development. Nat Genet 24:271–274

    PubMed  CAS  Google Scholar 

  66. Takeuchi S, Takeda K, Oishi I, Nomi M, Ikeya M, Itoh K et al (2000) Mouse Ror2 receptor tyrosine kinase is required for the heart development and limb formation. Genes Cells 5:71–78

    PubMed  CAS  Google Scholar 

  67. Sugimura R, Li L (2010) Noncanonical Wnt signaling in vertebrate development, stem cells, and diseases. Birth Defects Res C Embryo Today 90:243–256

    PubMed  CAS  Google Scholar 

  68. Barker N, van Oudenaarden A, Clevers H (2012) Identifying the stem cell of the intestinal crypt: strategies and pitfalls. Cell Stem Cell 11:452–460

    PubMed  CAS  Google Scholar 

  69. Marshman E, Booth C, Potten CS (2002) The intestinal epithelial stem cell. Bioessays 24:91–98

    PubMed  Google Scholar 

  70. Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M et al (2011) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469:415–418

    PubMed Central  PubMed  CAS  Google Scholar 

  71. Korinek V, Barker N, Moerer P, van Donselaar E, Huls G, Peters PJ et al (1998) Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet 19:379–383

    PubMed  CAS  Google Scholar 

  72. Pinto D, Gregorieff A, Begthel H, Clevers H (2003) Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev 17:1709–1713

    PubMed Central  PubMed  CAS  Google Scholar 

  73. Kuhnert F, Davis CR, Wang HT, Chu P, Lee M, Yuan J et al (2004) Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1. Proc Natl Acad Sci U S A 101:266–271

    PubMed Central  PubMed  CAS  Google Scholar 

  74. Ireland H, Kemp R, Houghton C, Howard L, Clarke AR, Sansom OJ et al (2004) Inducible Cre-mediated control of gene expression in the murine gastrointestinal tract: effect of loss of beta-catenin. Gastroenterology 126:1236–1246

    PubMed  CAS  Google Scholar 

  75. Fevr T, Robine S, Louvard D, Huelsken J (2007) Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol Cell Biol 27:7551–7559

    PubMed Central  PubMed  CAS  Google Scholar 

  76. Kim KA, Kakitani M, Zhao J, Oshima T, Tang T, Binnerts M et al (2005) Mitogenic influence of human R-spondin1 on the intestinal epithelium. Science 309:1256–1259

    PubMed  CAS  Google Scholar 

  77. de Lau W, Barker N, Low TY, Koo BK, Li VS, Teunissen H et al (2011) Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 476:293–297

    PubMed  Google Scholar 

  78. van der Flier LG, Clevers H (2009) Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 71:241–260

    PubMed  Google Scholar 

  79. Medema JP, Vermeulen L (2011) Microenvironmental regulation of stem cells in intestinal homeostasis and cancer. Nature 474:318–326

    PubMed  CAS  Google Scholar 

  80. Snippert HJ, Clevers H (2011) Tracking adult stem cells. EMBO Rep 12:113–122

    PubMed Central  PubMed  CAS  Google Scholar 

  81. Schuijers J, Clevers H (2012) Adult mammalian stem cells: the role of Wnt, Lgr5 and R-spondins. EMBO J 31:2685–2696

    PubMed Central  PubMed  CAS  Google Scholar 

  82. Spangrude GJ, Heimfeld S, Weissman IL (1988) Purification and characterization of mouse hematopoietic stem cells. Science 241:58–62

    PubMed  CAS  Google Scholar 

  83. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    PubMed  CAS  Google Scholar 

  84. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    PubMed  CAS  Google Scholar 

  85. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW et al (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A 104:10158–10163

    PubMed Central  PubMed  CAS  Google Scholar 

  86. O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110

    PubMed  Google Scholar 

  87. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P et al (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A 104:973–978

    PubMed Central  PubMed  CAS  Google Scholar 

  88. Potten CS, Kovacs L, Hamilton E (1974) Continuous labelling studies on mouse skin and intestine. Cell Tissue Kinet 7:271–283

    PubMed  CAS  Google Scholar 

  89. Bjerknes M, Cheng H (1981) The stem-cell zone of the small intestinal epithelium. V. Evidence for controls over orientation of boundaries between the stem-cell zone, proliferative zone, and the maturation zone. Am J Anat 160:105–112

    PubMed  CAS  Google Scholar 

  90. Cheng H, Leblond CP (1974) Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. Am J Anat 141:537–561

    PubMed  CAS  Google Scholar 

  91. Munoz J, Stange DE, Schepers AG, van de Wetering M, Koo BK, Itzkovitz S et al (2012) The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent ‘ + 4’ cell markers. EMBO J 31:3079–3091

    PubMed Central  PubMed  CAS  Google Scholar 

  92. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–265

    PubMed  CAS  Google Scholar 

  93. Jung P, Sato T, Merlos-Suarez A, Barriga FM, Iglesias M, Rossell D et al (2011) Isolation and in vitro expansion of human colonic stem cells. Nat Med 17:1225–1227

    PubMed  CAS  Google Scholar 

  94. Yui S, Nakamura T, Sato T, Nemoto Y, Mizutani T, Zheng X et al (2012) Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5(+) stem cell. Nat Med 18:618–623

    PubMed  CAS  Google Scholar 

  95. Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW et al (1997) Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science 275:1784–1787

    PubMed  CAS  Google Scholar 

  96. Miyoshi Y, Ando H, Nagase H, Nishisho I, Horii A, Miki Y et al (1992) Germ-line mutations of the APC gene in 53 familial adenomatous polyposis patients. Proc Natl Acad Sci U S A 89:4452–4456

    PubMed Central  PubMed  CAS  Google Scholar 

  97. Powell SM, Zilz N, Beazer-Barclay Y, Bryan TM, Hamilton SR, Thibodeau SN et al (1992) APC mutations occur early during colorectal tumorigenesis. Nature 359:235–237

    PubMed  CAS  Google Scholar 

  98. Miyaki M, Konishi M, Kikuchi-Yanoshita R, Enomoto M, Igari T, Tanaka K et al (1994) Characteristics of somatic mutation of the adenomatous polyposis coli gene in colorectal tumors. Cancer Res 54:3011–3020

    PubMed  CAS  Google Scholar 

  99. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B et al (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275:1787–1790

    PubMed  CAS  Google Scholar 

  100. Rubinfeld B, Albert I, Porfiri E, Munemitsu S, Polakis P (1997) Loss of beta-catenin regulation by the APC tumor suppressor protein correlates with loss of structure due to common somatic mutations of the gene. Cancer Res 57:4624–4630

    PubMed  CAS  Google Scholar 

  101. Liu W, Dong X, Mai M, Seelan RS, Taniguchi K, Krishnadath KK et al (2000) Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating beta-catenin/TCF signalling. Nat Genet 26:146–147

    PubMed  CAS  Google Scholar 

  102. van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A et al (2002) The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111:241–250

    PubMed  Google Scholar 

  103. Van der Flier LG, Sabates-Bellver J, Loving I, Haegebarth A, De Palo M, Anti M et al (2007) The intestinal Wnt/TCF signature. Gastroenterology 132:628–632

    PubMed  Google Scholar 

  104. Vermeulen L, De Sousa EMF, van der Heijden M, Cameron K, de Jong JH, Borovski T et al (2010) Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 12:468–476

    PubMed  CAS  Google Scholar 

  105. Kemper K, Prasetyanti PR, De Lau W, Rodermond H, Clevers H, Medema JP (2012) Monoclonal antibodies against Lgr5 identify human colorectal cancer stem cells. Stem Cells 30:2378–2386

    PubMed  CAS  Google Scholar 

  106. Merlos-Suarez A, Barriga FM, Jung P, Iglesias M, Cespedes MV, Rossell D et al (2011) The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell 8:511–524

    PubMed  CAS  Google Scholar 

  107. de Sousa EM, Vermeulen L, Richel D, Medema JP (2011) Targeting Wnt signaling in colon cancer stem cells. Clin Cancer Res 17:647–653

    PubMed  Google Scholar 

  108. Muzny BM, Chang K, Dinh HH, Drummond JA, Fowler G, Kovar CL, Lewis LR (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487:330–337

    CAS  Google Scholar 

  109. Brown AM (2001) Wnt signaling in breast cancer: have we come full circle? Breast Cancer Res 3:351–355

    PubMed Central  PubMed  CAS  Google Scholar 

  110. Khramtsov AI, Khramtsova GF, Tretiakova M, Huo D, Olopade OI, Goss KH (2010) Wnt/beta-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. Am J Pathol 176:2911–2920

    PubMed Central  PubMed  Google Scholar 

  111. Geyer FC, Lacroix-Triki M, Savage K, Arnedos M, Lambros MB, MacKay A et al (2011) β-Catenin pathway activation in breast cancer is associated with triple-negative phenotype but not with CTNNB1 mutation. Mod Pathol 24:209–231

    PubMed  CAS  Google Scholar 

  112. Lucero OM, Dawson DW, Moon RT, Chien AJ (2010) A re-evaluation of the “oncogenic” nature of Wnt/beta-catenin signaling in melanoma and other cancers. Curr Oncol Rep 12:314–318

    PubMed Central  PubMed  CAS  Google Scholar 

  113. Roma J, Almazan-Moga A, Sanchez de Toledo J, Gallego S (2012) Notch, wnt, and hedgehog pathways in rhabdomyosarcoma: from single pathways to an integrated network. Sarcoma 2012:695603

    PubMed Central  PubMed  Google Scholar 

  114. Biechele TL, Kulikauskas RM, Toroni RA, Lucero OM, Swift RD, James RG et al (2012) Wnt/beta-catenin signaling and AXIN1 regulate apoptosis triggered by inhibition of the mutant kinase BRAFV600E in human melanoma. Sci Signal 5:ra3

    PubMed Central  PubMed  Google Scholar 

  115. Naito AT, Sumida T, Nomura S, Liu ML, Higo T, Nakagawa A et al (2012) Complement C1q activates canonical Wnt signaling and promotes aging-related phenotypes. Cell 149:1298–1313

    PubMed Central  PubMed  CAS  Google Scholar 

  116. Takahashi-Yanaga F, Kahn M (2010) Targeting Wnt signaling: can we safely eradicate cancer stem cells? Clin Cancer Res 16:3153–3162

    PubMed  CAS  Google Scholar 

  117. Polakis P (2012) Drugging Wnt signalling in cancer. EMBO J 31:2737–2746

    PubMed Central  PubMed  CAS  Google Scholar 

  118. Garber K (2009) Drugging the Wnt pathway: problems and progress. J Natl Cancer Inst 101:548–550

    PubMed  Google Scholar 

  119. White BD, Chien AJ, Dawson DW (2012) Dysregulation of Wnt/beta-catenin signaling in gastrointestinal cancers. Gastroenterology 142:219–232

    PubMed Central  PubMed  CAS  Google Scholar 

  120. Lepourcelet M, Chen YN, France DS, Wang H, Crews P, Petersen F et al (2004) Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell 5:91–102

    PubMed  CAS  Google Scholar 

  121. Minke KS, Staib P, Puetter A, Gehrke I, Gandhirajan RK, Schlosser A et al (2009) Small molecule inhibitors of WNT signaling effectively induce apoptosis in acute myeloid leukemia cells. Eur J Haematol 82:165–175

    PubMed  CAS  Google Scholar 

  122. Gandhirajan RK, Staib PA, Minke K, Gehrke I, Plickert G, Schlosser A et al (2010) Small molecule inhibitors of Wnt/beta-catenin/lef-1 signaling induces apoptosis in chronic lymphocytic leukemia cells in vitro and in vivo. Neoplasia 12:326–335

    PubMed Central  PubMed  CAS  Google Scholar 

  123. Wei W, Chua MS, Grepper S, So S (2010) Small molecule antagonists of Tcf4/beta-catenin complex inhibit the growth of HCC cells in vitro and in vivo. Int J Cancer 126:2426–2436

    PubMed  CAS  Google Scholar 

  124. Chen Z, Venkatesan AM, Dehnhardt CM, Dos Santos O, Delos Santos E, Ayral-Kaloustian S et al (2009) 2,4-Diamino-quinazolines as inhibitors of beta-catenin/Tcf-4 pathway: potential treatment for colorectal cancer. Bioorg Med Chem Lett 19:4980–4983

    PubMed  CAS  Google Scholar 

  125. Emami KH, Nguyen C, Ma H, Kim DH, Jeong KW, Eguchi M et al (2004) A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proc Natl Acad Sci U S A 101:12682–12687

    PubMed Central  PubMed  CAS  Google Scholar 

  126. McMillan M, Kahn M (2005) Investigating Wnt signaling: a chemogenomic safari. Drug Discov Today 10:1467–1474

    PubMed  CAS  Google Scholar 

  127. Shan J, Zheng JJ (2012) Virtual ligand screening combined with NMR to identify Dvl PDZ domain inhibitors targeting the Wnt signaling. Methods Mol Biol 928:17–28

    PubMed Central  PubMed  CAS  Google Scholar 

  128. Trosset JY, Dalvit C, Knapp S, Fasolini M, Veronesi M, Mantegani S et al (2006) Inhibition of protein-protein interactions: the discovery of druglike beta-catenin inhibitors by combining virtual and biophysical screening. Proteins 64:60–67

    PubMed  CAS  Google Scholar 

  129. Thorne CA, Hanson AJ, Schneider J, Tahinci E, Orton D, Cselenyi CS et al (2010) Small-molecule inhibition of Wnt signaling through activation of casein kinase 1alpha. Nat Chem Biol 6:829–836

    PubMed Central  PubMed  CAS  Google Scholar 

  130. Chen B, Dodge ME, Tang W, Lu J, Ma Z, Fan CW et al (2009) Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat Chem Biol 5:100–107

    PubMed Central  PubMed  CAS  Google Scholar 

  131. Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA et al (2009) Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461:614–620

    PubMed  CAS  Google Scholar 

  132. Waaler J, Machon O, von Kries JP, Wilson SR, Lundenes E, Wedlich D et al (2011) Novel synthetic antagonists of canonical Wnt signaling inhibit colorectal cancer cell growth. Cancer Res 71:197–205

    PubMed  CAS  Google Scholar 

  133. Waaler J, Machon O, Tumova L, Dinh H, Korinek V, Wilson SR et al (2012) A novel tankyrase inhibitor decreases canonical Wnt signaling in colon carcinoma cells and reduces tumor growth in conditional APC mutant mice. Cancer Res 72:2822–2832

    PubMed  CAS  Google Scholar 

  134. Gonsalves FC, Klein K, Carson BB, Katz S, Ekas LA, Evans S et al (2011) An RNAi-based chemical genetic screen identifies three small-molecule inhibitors of the Wnt/wingless signaling pathway. Proc Natl Acad Sci U S A 108:5954–5963

    PubMed Central  PubMed  CAS  Google Scholar 

  135. Janssens N, Janicot M, Perera T (2006) The Wnt-dependent signaling pathways as target in oncology drug discovery. Invest New Drugs 24:263–280

    PubMed Central  PubMed  CAS  Google Scholar 

  136. Tarapore RS, Siddiqui IA, Mukhtar H (2012) Modulation of Wnt/beta-catenin signaling pathway by bioactive food components. Carcinogenesis 33:483–491

    PubMed Central  PubMed  CAS  Google Scholar 

  137. Castellone MD, Teramoto H, Williams BO, Druey KM, Gutkind JS (2005) Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science 310:1504–1510

    PubMed  CAS  Google Scholar 

  138. Lu D, Cottam HB, Corr M, Carson DA (2005) Repression of beta-catenin function in malignant cells by nonsteroidal antiinflammatory drugs. Proc Natl Acad Sci U S A 102:18567–18571

    PubMed Central  PubMed  CAS  Google Scholar 

  139. Palmer HG, Gonzalez-Sancho JM, Espada J, Berciano MT, Puig I, Baulida J et al (2001) Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of beta-catenin signaling. J Cell Biol 154:369–387

    PubMed Central  PubMed  CAS  Google Scholar 

  140. Aguilera O, Pena C, Garcia JM, Larriba MJ, Ordonez-Moran P, Navarro D et al (2007) The Wnt antagonist DICKKOPF-1 gene is induced by 1alpha,25-dihydroxyvitamin D3 associated to the differentiation of human colon cancer cells. Carcinogenesis 28:1877–1884

    PubMed  CAS  Google Scholar 

  141. Shah S, Islam MN, Dakshanamurthy S, Rizvi I, Rao M, Herrell R et al (2006) The molecular basis of vitamin D receptor and beta-catenin crossregulation. Mol Cell 21:799–809

    PubMed  Google Scholar 

  142. Xu H, McCann M, Zhang Z, Posner GH, Bingham V, El-Tanani M et al (2009) Vitamin D receptor modulates the neoplastic phenotype through antagonistic growth regulatory signals. Mol Carcinog 48:758–772

    PubMed  CAS  Google Scholar 

  143. Egan JB, Thompson PA, Vitanov MV, Bartik L, Jacobs ET, Haussler MR et al (2010) Vitamin D receptor ligands, adenomatous polyposis coli, and the vitamin D receptor FokI polymorphism collectively modulate beta-catenin activity in colon cancer cells. Mol Carcinog 49:337–352

    PubMed Central  PubMed  CAS  Google Scholar 

  144. He W, Kang YS, Dai C, Liu Y (2011) Blockade of Wnt/beta-catenin signaling by paricalcitol ameliorates proteinuria and kidney injury. J Am Soc Nephrol 22:90–103

    PubMed Central  PubMed  CAS  Google Scholar 

  145. Kaler P, Augenlicht L, Klampfer L (2009) Macrophage-derived IL-1beta stimulates Wnt signaling and growth of colon cancer cells: a crosstalk interrupted by vitamin D3. Oncogene 28:3892–3902

    PubMed Central  PubMed  CAS  Google Scholar 

  146. Shah S, Hecht A, Pestell R, Byers SW (2003) Trans-repression of beta-catenin activity by nuclear receptors. J Biol Chem 278:48137–48145

    PubMed  CAS  Google Scholar 

  147. Filipovich A, Gehrke I, Poll-Wolbeck SJ, Kreuzer KA (2011) Physiological inhibitors of Wnt signaling. Eur J Haematol 86:453–465

    PubMed  CAS  Google Scholar 

  148. Curtin JC, Lorenzi MV (2010) Drug discovery approaches to target Wnt signaling in cancer stem cells. Oncotarget 1:563–577

    Google Scholar 

  149. Wend P, Holland JD, Ziebold U, Birchmeier W (2010) Wnt signaling in stem and cancer stem cells. Semin Cell Dev Biol 21:855–863

    PubMed  CAS  Google Scholar 

  150. Tenbaum SP, Ordonez-Moran P, Puig I, Chicote I, Arques O, Landolfi S et al (2012) β-catenin confers resistance to PI3K and AKT inhibitors and subverts FOXO3a to promote metastasis in colon cancer. Nat Med 18:892–901

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Muñoz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Barbáchano, A., Larriba, M.J., Ferrer-Mayorga, G., Muñoz, A., González-Sancho, J.M. (2014). Wnt Pathway at a Glance: From the Deep of the Crypts to the Current Ways of Targeting. In: Grande, E., Antón Aparicio, L. (eds) Stem Cells in Cancer: Should We Believe or Not?. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8754-3_4

Download citation

Publish with us

Policies and ethics