Ship Design pp 69-292 | Cite as

Selection of Main Dimensions and Calculation of Basic Ship Design Values

  • Apostolos PapanikolaouEmail author


This chapter deals with the determination of the main ship dimensions (length, beam, draft, side depth), following the estimation of ship’s displacement and the selection of other basic ship design quantities and hull form characteristics (hull form coefficients, powering, weight components, stability and trim, freeboard, load line), as required in the first phase of ship design, that is, the Concept Design. The various effects of specific selections of ship’s main dimensions etc. on the ship’s hydrodynamic performance, stability and trim, structural weight and construction cost, utilization of spaces, and transport economy are elaborated. The selection procedure is supported by statistical data and empirical design formulas, design tables and diagrams allowing direct applications to individual ship designs. Additional reference material is given in Appendix A.


  1. Abicht W et al (1974) Annalen der 75 Jahre Schiffbautechnische Gesellschaft (STG), p 187 ff.Google Scholar
  2. Alissafaki A (2013) Research on alternative methodologies in estimating the Energy Efficiency Design Index (EEDI) for Ro-Ro cargo ships & Ro-Ro/Passenger ships. MSc thesis, Ship Design Laboratory, National Technical University of AthensGoogle Scholar
  3. Antoniou A, Perras P (1984) Ship design—special chapters, (in Greek: Mελέτη του Πλοίου—Eιδικά Κεφάλαια). Rev. 2. Foivos, AthensGoogle Scholar
  4. Buxton IL (1976) Engineering economy and ship design. The British Ship Research Association (BSRA), 2nd editionGoogle Scholar
  5. Dudszus A, Danckwardt E (1982) Schiffstechnik—Einführung und Grundbegriffe (in German). VEB Technik, BerlinGoogle Scholar
  6. Friis AM, Andersen P, Jensen JJ (2002) Ship design (Part I & II). Section of Maritime Engineering, Dept. of Mechanical Engineering, Technical University of Denmark, ISBN 87-89502-56-6Google Scholar
  7. Froude W (1868) Experiments on the surface-friction experienced by a plane moving through water. In: British Association for the Advancement of Science Report, 42nd Meeting. (“Law of Comparison” in Memorandum to Mr. E. J. Reed, Chief Constructor of the Royal Navy, dated Dec. 1868, “The Papers of William Froude”, 1810–1879, RINA, 1955.)Google Scholar
  8. Germanischer Lloyd Ed. Board (2009) Rules and guidelines: I—ship technology, part 0—classifications and surveys, part 1—seagoing vessels, IACS Common Structural Rules and Complementary Rules, information on recent IMO legislation, publ. GL Hamburg (
  9. Guldhammer HE (1979) CRS-diagrams for design calculations of the stability of ships. Ocean Eng 6(6):581–592CrossRefGoogle Scholar
  10. Harvald SA (1984) Resistance and propulsion of ships. Wiley Interscience, HobokenGoogle Scholar
  11. Henschke W (1964) Schiffbautechnisches Handbuch (in German) vol II. VEB Technik, BerlinGoogle Scholar
  12. Hollenbach U (June 1999) Estimating resistance and propulsion for single-screw and twin-screw ships in preliminary design. Proc. of the 10th ICCAS Conference, CambridgeGoogle Scholar
  13. Holtrop J (Nov 1984) A statistical reanalysis of resistance and propulsion data. J Int Shipbuild Prog 31(363):272–276Google Scholar
  14. Horn F (1930) Ship towing tests (in German: Schiffsschleppversuche), Sonderdruck aus Handbuch der Experimentalphysik, vol 4, part 3, Akademische Verlagsgesellschaft, LeipzigGoogle Scholar
  15. Kelvin L (1887) Ship waves, Transactions Inst. Mech. Engineers, LondonGoogle Scholar
  16. Koutroukis G, Pavlou A (2011) Innovative container ship design concept E-4, VISIONS European Academic Competition 3rd place, NTUA-SDLGoogle Scholar
  17. Holtrop J, Mennen GGJ (July 1982) An approximate power prediction method. J Int Shipbuild Progr 29(335):166–170Google Scholar
  18. IHS (2011) Fairplay World Shipping Encyclopedia version 12.01.
  19. International Convention on Load Lines ICLL (1988) IMO Protocol relating to the International Convention on Load Lines 1966Google Scholar
  20. International Maritime Organization, IMO (2008a) MSC.1/Circ.1281 Explanatory notes to the international code on intact stabilityGoogle Scholar
  21. International Maritime Organization, IMO (2008b) Res. MEPC.173(58) Guidelines for ballast water sampling (G2)Google Scholar
  22. International Maritime Organization, IMO (2008c) Res. MSC.267(85) Adoption of the International Code on Intact Stability (2008 IS CODE)Google Scholar
  23. International Maritime Organization, IMO (2013a), MARPOL 73/78, Consolidated Edition 2013Google Scholar
  24. International Maritime Organization, IMO (2013b) SOLAS, Consolidated Edition, 2013, Consolidated text of the International Convention for the Safety of Life at Sea, 1974, and its Protocol of 1988: articles, annexes and certificatesGoogle Scholar
  25. International Towing Tank Conference (2008) ITTC symbols and terminology list, version 2008.
  26. Kelvin Lord (1887) Ship Waves, Transactions Inst. Mech. Engineers, LondonGoogle Scholar
  27. Lamb T (ed) (2003) Ship design and construction. In: SNAME, revision of the book: D’ Arcangelo AM (ed) (1969) Ship design and construction. SNAME, New YorkGoogle Scholar
  28. Lewis EV (ed) (1988) Principles of naval architecture, Vol I—III. In: SNAME, revision of the book: Comstock DP (ed) (1967) Principles of naval architecture. SNAME, New YorkGoogle Scholar
  29. Loukakis T, Perras P (1982) Ship hydrostatics and stability (in Greek: Yδροστατική & Eυστάθεια Πλοίου). Sellountos, AthensGoogle Scholar
  30. Meier-Peter H, Bernhardt F (eds) (2009) Compendium marine engineering: operation-monitoring-maintenance. Seehafen, Hamburg (5.1.2, ISBN 978-3-87743-822-0)Google Scholar
  31. Paik JK, Kim DK, Kim MS (2009) Ultimate strength performance of Suezmax tanker structures: pre-CSR versus CSR designs. Int J Marit Eng 151, Part A2, 2000Google Scholar
  32. Papanikolaou A (1982) Buoyancy and stability—floating and underwater vehicles (in English) University Lecture Notes, Look Lab. Rep. No. 52, University of HawaiiGoogle Scholar
  33. Papanikolaou A (2002) Developments and potential of advanced marine vehicles concepts. Bulletin of the KANSAI Society of Naval Architects, no. 55, pp 50–54Google Scholar
  34. Papanikolaou A (2004) Entwurf und Sicherheit von Ro-Ro Fähren, Handbuch der Werften, Band XXVI (in German)—Design and Safety of Ro-Ro Passenger Ships. Lecture notes (in English), postgraduate school, Kasetsart University-Bangkok, EU Programme ASIA link ASI/B7-301/98/679-044Google Scholar
  35. Papanikolaou A (2009a) Ship design—methodologies of preliminary ship design (in Greek: Mελέτη Πλοίου—Mεθοδολογίες Προμελέτης Πλοίου). SYMEON, Athens, Vol 1, ISBN 978-960-9600-09-01 & Vol. 2, ISBN 978-969-9400-11-4Google Scholar
  36. Papanikolaou A, Anastassopoulos K (2002) Ship design and outfitting I (support course material), rev. 2 (in Greek: Mελέτη και Eξοπλισμός Πλοίου I, Mεθοδολογία Προμελέτης, Συλλογή Bοηθημάτων) National Technical University of Athens, AthensGoogle Scholar
  37. Rawson KJ, Tupper EC (1994) Basic ship theory, vols I & II, 4th edn. Longman, Scientific & Technical (in Greek. edited by Papanikolaou, NTUA 2002)Google Scholar
  38. Schneekluth H (1985) Ship design (in German). Koehler, HerfordGoogle Scholar
  39. SOLAS (2009) International Maritime Organization, IMO, SOLAS, Consolidated Edition, 2009, ISBN: 978-92-801-1505-5Google Scholar
  40. Strohbusch E (1971) Entwerfen von Schiffen I—IV. University Lecture Notes (in German), Technical University BerlinGoogle Scholar
  41. Tagg R, Bartzis P, Papanikolaou A, Spyrou K, Luetzen M (July 2001) “Updated Vertical Extent of Collision Damage”, Proc. 2nd Int. Conf. On Collision and Grounding of Ships, CopenhagenGoogle Scholar
  42. Taylor DW (1943) Speed and power of ships. Wiley, New YorkGoogle Scholar
  43. Völker H (1974) Entwerfen von Schiffen (in German) Handbuch der Werften, vol XII, HANSA. HamburgGoogle Scholar
  44. Watson D (1988) Practical ship design. ElsevierElsevier Ocean Engineering Book Series, ISBN 0080429998Google Scholar
  45. Watson DGM, Gilfillan AW (1976) Some ship design methods. Trans. RINA, London, pp 279–324Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.School of Naval Architecture & Marine Engineering—Ship Design LaboratoryNational Technical University of AthensZografou—AthensGreece

Personalised recommendations