Quinol Oxidases

  • Allison E. McDonaldEmail author
  • Greg C. Vanlerberghe
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 39)


Quinol oxidases catalyze the four-electron reduction of oxygen to water using electrons provided by a quinol. Examples of such oxidases can be found in all kingdoms of life and within several unrelated protein families including the heme-copper oxidase family, the cytochrome bd family and the di-iron carboxylate family. In prokaryotes, there are examples of quinol oxidases from each of these families. However, only quinol oxidases of the di-iron carboxylate type are found in eukaryotes. These include the mitochondrial-localized alternative oxidase and the plastid-localized plastoquinol terminal oxidase. The quinol oxidases differ in terms of their impact on energy conservation. In general, quinol oxidases may aid in maintaining metabolic homeostasis by providing some additional flexibility in systems coupling energy and carbon metabolism.


Alternative Oxidase Cyclic Electron Transport Carotenoid Biosynthetic Pathway Quinol Oxidase Prochlorococcus Marinus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



– Alternative oxidase;


– Cytochrome;


– Electron paramagnetic resonance;


– Fourier transform infrared spectroscopy;


– Dioxygen reductases;


– Plastoquinol terminal oxidase;


– Reactive oxygen species



Both authors acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) and A.E.M. acknowledges the support of the Faculty of Science, Wilfrid Laurier University.


  1. Abramson J, Rijstama S, Larsson G, Jasaitis A, Svensson-Ek M, Laakkonen L, Puustinen A, Iwata S, Wikström M (2000) The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site. Nat Struct Biol 7:910–917PubMedCrossRefGoogle Scholar
  2. Albury MS, Affourtit C, Crichton PG, Moore AL (2002) Structure of the plant alternative oxidase: site-directed mutagenesis provides new information on the active site and membrane topology. J Biol Chem 277:1190–1194PubMedCrossRefGoogle Scholar
  3. Albury MS, Elliott C, Moore AL (2010) Ubiquinol-binding site in the alternative oxidase: mutagenesis reveals features important for substrate binding and inhibition. Biochim Biophys Acta 1797:1933–1939PubMedCrossRefGoogle Scholar
  4. Amirsadeghi S, Robson CA, McDonald AE, Vanlerberghe GC (2006) Changes in plant mitochondrial electron transport alter cellular levels of reactive oxygen species and susceptibility to cell death signaling molecules. Plant Cell Physiol 47:1509–1519PubMedCrossRefGoogle Scholar
  5. Arnholdt-Schmitt B, Costa JH, de Melo DF (2006) AOX – a functional marker for efficient cell reprogramming under stress? Trends Plant Sci 11:281–287PubMedCrossRefGoogle Scholar
  6. Baughn A, Malamy M (2004) The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature 29:441–444CrossRefGoogle Scholar
  7. Bernroitner M, Zamocky M, Pairer M, Furtmüller PG, Peschek GA, Obinger C (2008) Heme-copper oxidases and their electron donors in cyanobacterial respiratory electron transport. Chem Biodivers 5:1927–1961PubMedCrossRefGoogle Scholar
  8. Berthold DA, Stenmark P (2003) Membrane-bound diiron carboxylate proteins. Annu Rev Plant Biol 54:497–517PubMedCrossRefGoogle Scholar
  9. Berthold DA, Voevodskaya N, Stenmark P, Gräsland A, Nordlund P (2002) EPR studies of the mitochondrial alternative oxidase: evidence for a diiron carboxylate center. J Biol Chem 277:43608–43614PubMedCrossRefGoogle Scholar
  10. Borisov VB, Forte E, Sarti P, Giuffrè A (2011a) Catalytic intermediates of cytochrome bd terminal oxidase at steady-state: ferryl and oxy-ferrous species dominate. Biochim Biophys Acta 1807:503–509PubMedCrossRefGoogle Scholar
  11. Borisov VB, Gennis RB, Hemp J, Verkhovsky MI (2011b) The cytochrome bd respiratory oxygen reductases. Biochim Biophys Acta 1807:1398–1413PubMedCentralPubMedCrossRefGoogle Scholar
  12. Brochier-Armanet C, Talla E, Gribaldo S (2009) The multiple evolutionary histories of dioxygen reductases: implications for the origin and evolution of aerobic respiration. Mol Biol Evol 26:285–297PubMedCrossRefGoogle Scholar
  13. Bundschuh FA, Hoffmeier K, Ludwig B (2008) Two variants of the assembly factor Surf1 target specific terminal oxidases in Paracoccus denitrificans. Biochim Biophys Acta 1777:1336–1343PubMedCrossRefGoogle Scholar
  14. Cardol P, Bailleul B, Rappaport F, Derelle E, Béal D, Breyton C, Bailey S, Wollman FA, Grossman A, Moreau H, Finazzi G (2008) An original adaptation of photosynthesis in the marine green alga Ostreococcus. Proc Natl Acad Sci U S A 105:7881–7886PubMedCentralPubMedCrossRefGoogle Scholar
  15. Carol P, Stevenson D, Bisanz C, Breitenbach J, Sandmann G, Mache R, Coupland G, Kuntz M (1999) Mutations in the Arabidopsis gene immutans cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. Plant Cell 11:57–68PubMedCentralPubMedCrossRefGoogle Scholar
  16. Carré JE, Affourtit C, Moore AL (2011) Interaction of purified alternative oxidase from thermogenic Arum maculatum with pyruvate. FEBS Lett 585:397–401PubMedCrossRefGoogle Scholar
  17. Chai T-T, Simmonds D, Day DA, Colmer TD, Finnegan PM (2010) Photosynthetic performance and fertility are repressed in GmAOX2b antisense soybean. Plant Physiol 152:1638–1649PubMedCentralPubMedCrossRefGoogle Scholar
  18. Chaudhuri M, Ott RD, Hill GC (2006) Trypanosome alternative oxidase: from molecule to function. Trends Parasitol 22:484–491PubMedCrossRefGoogle Scholar
  19. Clifton R, Millar AH, Whelan J (2006) Alternative oxidases in Arabidopsis: a comparative analysis of differential expression in the gene family provides new insights into function of non-phosphorylating bypasses. Biochim Biophys Acta 1757:730–741PubMedCrossRefGoogle Scholar
  20. Considine MJ, Holtzapffel RC, Day DA, Whelan J, Millar AH (2002) Molecular distinction between alternative oxidase from monocots and dicots. Plant Physiol 129:949–953PubMedCentralPubMedCrossRefGoogle Scholar
  21. Contreras-Zentella M, Mendoza G, Membrillo-Hernández J, Escamilla JE (2003) A novel double heme substitution produces a functional bo3 variant of the quinol oxidase aa3 of Bacillus cereus. Purification and partial characterization. J Biol Chem 278:31473–31478PubMedCrossRefGoogle Scholar
  22. Crichton PG, Affourtit C, Albury MS, Carré JE, Moore AL (2005) Constitutive activity of Sauromatum guttatum alternative oxidase in Schizosaccharomyces pombe implicates residues in addition to conserved cysteines in α-keto acid activation. FEBS Lett 579:331–336PubMedCrossRefGoogle Scholar
  23. Cvetkovska M, Vanlerberghe GC (2012) Coordination of a mitochondrial superoxide burst during the hypersensitive response to bacterial pathogen in Nicotiana tabacum. Plant Cell Environ 35:1121–1136Google Scholar
  24. Dunn AK, Karr EA, Wang Y, Batton AR, Ruby EG, Stabb EV (2010) The alternative oxidase (AOX) gene in Vibrio fischeri is controlled by NsrR and upregulated in response to nitric oxide. Mol Microbiol 77:44–55PubMedCentralPubMedCrossRefGoogle Scholar
  25. Ederli L, Morettini R, Borgogni A, Wasternack C, Miersch O, Reale L, Ferranti F, Tosti N, Pasqualini S (2006) Interaction between nitric oxide and ethylene in the induction of alternative oxidase in ozone-treated tobacco plants. Plant Physiol 142:595–608PubMedCentralPubMedCrossRefGoogle Scholar
  26. Elhafez D, Murcha MW, Clifton R, Soole KL, Day DA, Escobar MA, Geisler DA, Rasmusson AG (2006) Reorganization of the alternative pathways of the Arabidopsis respiratory chain by nitrogen supply: opposing effects of ammonium and nitrate. Plant J 45:775–788CrossRefGoogle Scholar
  27. Finnegan PM, Soole KL, Umbach AL (2004) Alternative mitochondrial electron transport proteins in higher plants. In: Day DA, Millar AH, Whelan J (eds) Plant mitochondria: from gene to function. Kluwer Academic Publishers, Great Britian, pp 163–230CrossRefGoogle Scholar
  28. Fu A, Park S, Rodermel S (2005) Sequences required for the activity of PTOX (immutans), a plastid terminal oxidase: in vitro and in planta mutagenesis of iron-binding sites and a conserved sequence that corresponds to exon 8. J Biol Chem 280:42489–42496PubMedCrossRefGoogle Scholar
  29. Fu A, Alura M, Rodermel SR (2009) Conserved active site sequences in Arabidopsis plastid terminal oxidase (PTOX). J Biol Chem 284:22625–22632PubMedCentralPubMedCrossRefGoogle Scholar
  30. García-Horsman JA, Barquera B, Rumbley J, Ma J, Gennis RB (1994) The superfamily of heme-copper respiratory oxidases. J Bacteriol 176:5587–5600PubMedCentralPubMedGoogle Scholar
  31. Gelhaye E, Rouhier N, Gérard J, Jolivet Y, Gualberto J, Navrot N, Ohlsson P-I, Wingsle G, Hirasawa M, Knaff DB, Wang H, Dizengremel P, Meyer Y, Jacquot J-P (2004) A specific form of thioredoxin h occurs in plant mitochondria and regulates the alternative oxidase. Proc Natl Acad Sci U S A 101:14545–14550PubMedCentralPubMedCrossRefGoogle Scholar
  32. Giraud E, Ho LHM, Clifton R, Carroll A, Estavillo G, Tan Y-F, Howell KA, Ivanova A, Pogson BJ, Millar AH, Whelan J (2008) The absence of alternative oxidase 1a in Arabidopsis results in acute sensitivity to combined light and drought stress. Plant Physiol 147:595–610PubMedCentralPubMedCrossRefGoogle Scholar
  33. Giuffrè A, Borisov VB, Mastronicola D, Sarti P, Forte E (2011) Cytochrome bd oxidase and nitric oxide: from reaction mechanisms to bacterial physiology. FEBS Lett 586:622–629PubMedCrossRefGoogle Scholar
  34. Gomes CM, Le Gall J, Xavier AV, Teixeira M (2001) Could a diiron-containing four-helix-bundle protein have been a primitive oxygen reductase? Chem Bio Chem 2:583–587PubMedCrossRefGoogle Scholar
  35. Grant N, Onda Y, Kakizaki Y, Ito K, Watling J, Robinson S (2009) Two Cys or not two Cys? That is the question; alternative oxidase in the thermogenic plant sacred lotus. Plant Physiol 150:987–995PubMedCentralPubMedCrossRefGoogle Scholar
  36. Gribaldo S, Talla E, Brochier-Armanet C (2009) Evolution of the haem copper oxidases superfamily: a rooting tale. Trends Biochem Sci 34:375–381PubMedCrossRefGoogle Scholar
  37. Grossman AR, Mackey KRM, Bailey S (2010) A perspective on photosynthesis in the oligotrophic oceans: hypotheses concerning alternate routes of electron flow. J Phycol 46:629–634CrossRefGoogle Scholar
  38. Hansen LD, Church JN, Matheson S, McCarlie VW, Thygerson T, Criddle RS, Smith BN (2002) Kinetics of plant growth and metabolism. Thermochem Acta 388:415–425CrossRefGoogle Scholar
  39. Hart SE, Schlarb-Ridley BG, Bendall DS, Howe CJ (2005) Terminal oxidases of cyanobacteria. Biochem Soc Trans 33:832–835PubMedCrossRefGoogle Scholar
  40. Hemp J, Gennis R (2008) Diversity of the heme-copper superfamily in archaea: insights from genomics and structural modeling. Results Probl Cell Differ 45:1–31PubMedCrossRefGoogle Scholar
  41. Hemp J, Han H, Roh JH, Kaplan S, Martinez TJ, Gennis RB (2007) Comparative genomics and site-directed mutagenesis support the existence of only one input channel for protons in the C-family (cbb3 oxidase) of heme-copper oxygen reductases. Biochemistry 46:9963–9972PubMedCrossRefGoogle Scholar
  42. Hildebrandt TM, Grieshaber MK (2008) Redox regulation of mitochondrial sulfide oxidation in the lugworm, Arenicola marina. J Exp Biol 211:2617–2623PubMedCrossRefGoogle Scholar
  43. Holtzapffel RC, Castelli J, Finnegan PM, Millar AH, Whelan J, Day DA (2003) A tomato alternative oxidase protein with altered regulatory properties. Biochim Biophys Acta 1606:153–162PubMedCrossRefGoogle Scholar
  44. Jarmuszkiewicz W, Behrendt M, Navet R, Sluse FE (2002) Uncoupling protein and alternative oxidase of Dictyostelium discoideum: occurrence, properties and protein expression during vegetative life and starvation-induced early development. FEBS Lett 532:459–464PubMedCrossRefGoogle Scholar
  45. Jasaitis A, Borisov V, Belevich N, Morgan J, Konstantinov A, Verkhovsky M (2000) Electrogenic reactions of cytochrome bd. Biochem 39:13800–13809CrossRefGoogle Scholar
  46. Jones SA, Gibson T, Maltby RC, Stewart V, Cohen PS, Conway T (2011) Anaerobic respiration of Escherichia coli in the mouse intestine. Infect Immun 79:4218–4226PubMedCentralPubMedCrossRefGoogle Scholar
  47. Josse E-M, Simkin AJ, Gaffe J, Laboure A-M, Kuntz M, Carol P (2000) A plastid terminal oxidase associated with carotenoid desaturation during chromoplast differentiation. Plant Physiol 123:1427–1436PubMedCentralPubMedCrossRefGoogle Scholar
  48. Kelly M, Poole R, Yates M, Kennedy C (1990) Cloning and mutagenesis of genes encoding the cytochrome bd terminal oxidase complex in Azotobacter vinelandii: mutants deficient in the cytochrome d complex are unable to fix nitrogen in air. J Bacteriol 172:6010–6019PubMedCentralPubMedGoogle Scholar
  49. Kido Y, Maréchal A, Kita K, Moore AL, Rich PR (2009) Three redox states of Trypanosoma brucei alternative oxidase identified by infrared spectroscopy and electrochemistry. J Biol Chem 284:31827–31833PubMedCentralPubMedCrossRefGoogle Scholar
  50. Kido Y, Shiba T, Inaoka DK, Sakamoto K, Nara T, Aoki T, Honma T, Tanaka A, Inoue M, Matsuoka S, Moore A, Harada S, Kita K (2010) Crystallization and preliminary analysis of cyanide-insensitive alternative oxidase from Trypanosoma brucei brucei. Acta Crystallogr F66:275–278Google Scholar
  51. Kobayashi K, Tagawa S, Mogi T (2009) Electron transfer processes in subunit I mutants of cytochrome bo quinol oxidase in Escherichia coli. Biosci Biotechnol Biochem 73:1599–1603PubMedCrossRefGoogle Scholar
  52. Lennon AM, Prommeenate P, Nixon PJ (2003) Location, expression and orientation of the putative chlororespiratory enzymes, Ndh and immutans, in higher-plant plastids. Planta 218:254–260PubMedCrossRefGoogle Scholar
  53. Mathy G, Cardol P, Dinant M, Blomme A, Gérin S, Cloes M, Ghysels B, DePauw E, Leprince P, Remacle C, Sluse-Goffart C, Franck F, Matagne RF, Sluse FE (2010) Proteomic and functional characterization of a Chlamydomonas reinhardtii mutant lacking the mitochondrial alternative oxidase 1. J Proteome Res 9:2825–2838PubMedCrossRefGoogle Scholar
  54. McDonald AE, Vanlerberghe GC (2006) Origins, evolutionary history, and taxonomic distribution of alternative oxidase and plastoquinol terminal oxidase. Comp Biochem Physiol Part D 1:357–364Google Scholar
  55. McDonald AE, Amirsadeghi S, Vanlerberghe GC (2003) Prokaryotic orthogues of mitochondrial alternative oxidase and plastid terminal oxidase. Plant Mol Biol 53:865–876PubMedCrossRefGoogle Scholar
  56. Millar AH, Wiskich JT, Whelan J, Day DA (1993) Organic acid activation of the alternative oxidase of plant mitochondria. FEBS Lett 329:259–262PubMedCrossRefGoogle Scholar
  57. Missall TA, Lodge JK, McEwen JE (2004) Mechanisms of resistance to oxidative and nitrosative stress: implications for fungal survival in mammalian hosts. Eukaryot Cell 3:835–846PubMedCentralPubMedCrossRefGoogle Scholar
  58. Moore AL, Albury MS (2008) Further insights into the structure of the alternative oxidase: from plants to parasites. Biochem Soc Trans 36:1022–1026PubMedCrossRefGoogle Scholar
  59. Moore AL, Carré JE, Affourtit C, Albury MS, Crichton PG, Kita K, Heathcote P (2008) Compelling EPR evidence that the alternative oxidase is a diiron carboxylate protein. Biochim Biophys Acta 1777:327–330PubMedCrossRefGoogle Scholar
  60. Moseley JL, Chang C-W, Grossman AR (2006) Genome-based approaches to understanding phosphorus deprivation responses and PSR1 control in Chlamydomonas reinhardtii. Eukaryot Cell 5:26–44PubMedCentralPubMedCrossRefGoogle Scholar
  61. Nakamura K, Sakamoto K, Kido Y, Fujimoto Y, Suzuki T, Suzuki M, Yabu Y, Ohta N, Tsuda A, Onuma M, Kita K (2005) Mutational analysis of the Trypanosoma vivax alternative oxidase: the E(X)6Y motif is conserved in both mitochondrial alternative oxidase and plastid terminal oxidase and is indispensable for enzyme activity. Biochem Biophys Res Commun 334:593–600PubMedCrossRefGoogle Scholar
  62. Nomura CT, Persson S, Shen G, Inoue-Sakamoto K, Bryant DA (2006) Characterization of two cytochrome oxidase operons in the marine cyanobacterium Synechococcus sp. PCC 7002: inactivation of ctaDI affects the PS I:PS II ratio. Photosynth Res 87:215–228PubMedCrossRefGoogle Scholar
  63. Ogasawara H, Ishida Y, Yamada K, Yamamoto K, Ishihama A (2007) PdhR (pyruvate dehydrogenase complex regulator) controls the respiratory electron transport system in Escherichia coli. J Bacteriol 189:5534–5541PubMedCentralPubMedCrossRefGoogle Scholar
  64. Okegawa Y, Kobayashi Y, Shikanai T (2010) Physiological links among alternative electron transport pathways that reduce and oxidize plastoquinone in Arabidopsis. Plant J 63:458–468CrossRefGoogle Scholar
  65. Otten MF, Stork DM, Reijnders WN, Westerhoff HV, Van Spanning RJ (2001) Regulation of expression of terminal oxidases in Paracoccus denitrificans. Eur J Biochem 268:2486–2497PubMedCrossRefGoogle Scholar
  66. Peltier G, Cournac L (2002) Chlororespiration. Annu Rev Plant Biol 53:523–550PubMedCrossRefGoogle Scholar
  67. Peng X, Yamamoto S, Vertès AA, Keresztes G, Inatomi K, Inui M, Yukawa H (2012) Global transcriptome analysis of the tetrachloroethene-dechlorinating bacterium Desulfitobacterium hafniense Y51 in the presence of various electron donors and terminal electron acceptors. J Ind Microbiol Biotechnol 39(2):255–268Google Scholar
  68. Pereira MM, Santana M, Teixeira M (2001) A novel scenario for the evolution of haem-copper oxygen reductases. Biochim Biophys Acta 1505:185–208PubMedCrossRefGoogle Scholar
  69. Pils D, Gregor W, Schmetterer G (1997) Evidence for in vivo activity of three distinct respiratory terminal oxidases in the cyanobacterium Synechocystis sp. strain PCC6803. FEMS Microbiol Lett 152:83–88CrossRefGoogle Scholar
  70. Pisciotta JM, Zou Y, Baskakov IV (2011) Role of the photosynthetic electron transfer chain in electrogenic activity of cyanobacteria. Appl Microbiol Biotechnol 91:377–385PubMedCrossRefGoogle Scholar
  71. Purvis AC, Shewfelt RL (1993) Does the alternative pathway ameliorate chilling injury in sensitive plant tissues? Physiol Plant 88:712–718CrossRefGoogle Scholar
  72. Quiles M (2006) Stimulation of chlororespiration by heat and high light intensity in oat leaves. Plant Cell Environ 29:1463–1470PubMedCrossRefGoogle Scholar
  73. Raghavendra AS, Padmasree K (2003) Beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. Trends Plant Sci 8:546–553PubMedCrossRefGoogle Scholar
  74. Rhoads DM, Umbach AL, Sweet CR, Lennon AM, Rauch GS, Siedow JN (1998) Regulation of the cyanide-resistant alternative oxidase of plant mitochondria: identification of the cysteine residue involved in α-keto acid stimulation and intersubunit disulfide bond formation. J Biol Chem 273:30750–30756PubMedCrossRefGoogle Scholar
  75. Rosso D, Ivanov AG, Fu A, Geisler-Lee J, Hendrickson L, Geisler M, Stewart G, Krol M, Hurry V, Rodermel SR, Maxwell DP, Hüner NPA (2006) Immutans does not act as a stress-induced safety valve in the protection of the photosynthetic apparatus of Arabidopsis during steady-state photosynthesis. Plant Physiol 142:574–585PubMedCentralPubMedCrossRefGoogle Scholar
  76. Rosso D, Bode R, Li W, Krol M, Saccon D, Wang S, Schillaci LA, Rodermel SR, Maxwell DP, Hüner NPA (2009) Photosynthetic redox imbalance governs leaf sectoring in the Arabidopsis thaliana variegation mutants immutans, spotty, var1, and var2. Plant Cell 21:3473–3492PubMedCentralPubMedCrossRefGoogle Scholar
  77. Rumeau D, Peltier G, Cournac L (2007) Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Plant Cell Environ 30:1041–1051PubMedCrossRefGoogle Scholar
  78. Sakajo S, Minagawa N, Yoshimoto Y (1997) Effects of nucleotides on cyanide-resistant respiratory activity in mitochondria isolated from antimycin a-treated yeast Hansenula anomala. Biosci Biotech Biochem 61:397–399Google Scholar
  79. Schäfer G, Purschke W, Schmidt C (1996) On the origin of respiration: electron transport proteins from archaea to man. FEMS Microbiol Rev 18:173–188PubMedCrossRefGoogle Scholar
  80. Shepherd M, Sanguinetti G, Cook GM, Poole RK (2010) Compensations for diminished terminal oxidase activity in Escherichia coli: cytochrome bd-II-mediated respiration and glutamate metabolism. J Biol Chem 285:18464–18472PubMedCentralPubMedCrossRefGoogle Scholar
  81. Sieger SM, Kristensen BK, Robson CA, Amirsadeghi S, Eng EWY, Abdel-Mesih A, Møller IM, Vanlerberghe GC (2005) The role of alternative oxidase in modulating carbon use efficiency and growth during macronutrient stress in tobacco cells. J Exp Bot 56:1499–1515PubMedCrossRefGoogle Scholar
  82. Stenmark P, Nordlund P (2003) A prokaryotic alternative oxidase present in the bacterium Novosphingobium aromaticivorans. FEBS Lett 552:189–192PubMedCrossRefGoogle Scholar
  83. Stepien P, Johnson GN (2009) Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: role of the plastid terminal oxidase as an alternative electron sink. Plant Physiol 149:1154–1165PubMedCentralPubMedCrossRefGoogle Scholar
  84. Streb P, Josse E-M, Gallouët E, Baptist F, Kuntz M, Cornic G (2005) Evidence for alternative electron sinks to photosynthetic carbon assimilation in the high mountain plant species Ranunculus glacialis. Plant Cell Environ 28:1123–1135CrossRefGoogle Scholar
  85. Theodorou ME, Plaxton WC (1993) Metabolic adaptations of plant respiration to nutritional phosphate deprivation. Plant Physiol 101:339–344PubMedCentralPubMedGoogle Scholar
  86. Umbach AL, Siedow JN (1993) Covalent and noncovalent dimers of the cyanide-resistant alternative oxidase protein in higher plant mitochondria and their relationship to enzyme activity. Plant Physiol 103:845–854PubMedCentralPubMedGoogle Scholar
  87. Umbach AL, Siedow JN (2000) The cyanide-resistant alternative oxidase from the fungi Pichia stipis and Neurospora crassa are monomeric and lack regulatory features of the plant enzyme. Arch Biochem Biophys 378:234–245PubMedCrossRefGoogle Scholar
  88. Umbach AL, Gonzàlez-Meler MA, Sweet CR, Siedow JN (2002) Activation of the plant mitochondrial alternative oxidase: insights from site-directed mutagenesis. Biochim Biophys Acta 1554:118–128PubMedCrossRefGoogle Scholar
  89. Umbach AL, Ng VS, Siedow JN (2006) Regulation of plant alternative oxidase activity: a tale of two cysteines. Biochim Biophys Acta 1757:135–142PubMedCrossRefGoogle Scholar
  90. Vanlerberghe GC, Day DA, Wiskich JT, Vanlerberghe AE, McIntosh L (1995) Alternative oxidase activity in tobacco leaf mitochondria: dependence on tricarboxylic acid cycle-mediated redox regulation and pyruvate activation. Plant Physiol 109:353–361PubMedCentralPubMedGoogle Scholar
  91. Vanlerberghe GC, McIntosh L, Yip JYH (1998) Molecular localization of a redox-modulated process regulating plant mitochondrial electron transport. Plant Cell 10:1551–1560PubMedCentralPubMedCrossRefGoogle Scholar
  92. Vanlerberghe GC, Cvetkovska M, Wang J (2009) Is the maintenance of homeostatic mitochondrial signaling during stress a physiological role for alternative oxidase. Physiol Plant 137:392–406PubMedCrossRefGoogle Scholar
  93. Vemuri GN, Eiteman MA, McEwen JE, Olsson L, Nielsen J (2007) Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 104:2402–2407PubMedCentralPubMedCrossRefGoogle Scholar
  94. Wang J, Rajakulendran N, Amirsadeghi S, Vanlerberghe GC (2011) Impact of mitochondrial alternative oxidase on the response of Nicotiana tabacum to cold temperature. Physiol Plant 142:339–351PubMedCrossRefGoogle Scholar
  95. Watling JR, Robinson SA, Seymour RS (2006) Contribution of the alternative pathway to respiration during thermogenesis in flowers of the sacred lotus. Plant Physiol 140:1367–1373PubMedCentralPubMedCrossRefGoogle Scholar
  96. Woyda-Ploszczyca AM, Sluse FE, Jarmuszkiewicz W (2009) Regulation of Acanthamoeba castellanii alternative oxidase activity by mutual exclusion of purine nucleotides; ATP’s inhibitory effect. Biochim Biophys Acta 1787:264–271PubMedCrossRefGoogle Scholar
  97. Wu D, Wright DA, Wetzel C, Voytas DF, Rodermel SR (1999) The immutans variegation locus of Arabidopsis defines a mitochondrial alternative oxidase homolog that functions during early chloroplast biogenesis. Plant Cell 11:43–55PubMedCentralPubMedCrossRefGoogle Scholar
  98. Yamamoto H, Peng L, Fukao Y, Shikanai T (2011) An Src homology 3 domain-like fold protein forms a ferredoxin binding site for the chloroplast NADH dehydrogenase-like complex in Arabidopsis. Plant Cell 23:1480–1493PubMedCentralPubMedCrossRefGoogle Scholar
  99. Zhang J, Barquera B, Gennis RB (2004) Gene fusions with beta-lactamase show that subunit I of the cytochrome bd quinol oxidase from E. coli has nine transmembrane helices with the O2 reactive site near the periplasmic surface. FEBS Lett 561:58–62PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2014

Authors and Affiliations

  1. 1.Department of BiologyWilfrid Laurier UniversityWaterlooCanada
  2. 2.Department of Biological Sciences and Department of Cell and Systems BiologyUniversity of Toronto ScarboroughTorontoCanada

Personalised recommendations