Chlorosomes: Structure, Function and Assembly

  • Jakub PšenčíkEmail author
  • Sarah J. Butcher
  • Roman Tuma
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 39)


Chlorosomes are light-harvesting complexes found in photosynthetic bacteria belonging to three diverse phyla: Chlorobi, Chloroflexi and Acidobacteria. They are composed of bacteriochlorophylls with minor contributions from proteins, lipids, carotenoids and quinones. Proteins are confined to the surface of the chlorosome while most bacteriochlorophyll molecules are found within the interior where they assemble into aggregates. These aggregates consist of lamellar structures, in which bacteriochlorophylls form curved layers while hydrophobic esterifying alcohols of bacteriochlorophylls from adjacent layers interdigitate and hold the system together. Such an arrangement supports strong excitonic coupling between the pigments within a layer and enables efficient excitation energy transfer. This chapter surveys general features of the chlorosome, including structure, energy transfer, photoprotective mechanisms and assembly.


Soret Band Excitation Energy Transfer Lamellar Spacing Linear Dichroism Lamellar System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



– Bacteriochlorophyll;

Cba –



– Circular dichroism;


– Chloroflexus;

Chl. –




We are indebted Dr. Jan Alster, Prof. Egbert J. Boekema, Dr. Niels-Ulrik Frigaard, Dr. Martin Hohmann-Marriott and Dr. Gert T. Oostergetel (in alphabetical order) for providing us with the figures used in this chapter. We are grateful to Dr. Jan Alster, Dr. Juan Arellano and Dr. Tomáš Mančal for critical reading of this text and valuable discussions. We are also indebted to all our collaborators over the years that have made this chapter possible.


  1. Alster J, Zupcanova A, Vacha F, Psencik J (2008) Effect of quinones on formation and properties of bacteriochlorophyll c aggregates. Photosynth Res 95:183–189PubMedGoogle Scholar
  2. Alster J, Polivka T, Arellano JB, Chabera P, Vacha F, Psencik J (2010) Beta-carotene to bacteriochlorophyll c energy transfer in self-assembled aggregates mimicking chlorosomes. Chem Phys 373:90–97Google Scholar
  3. Alster J, Kabelac M, Tuma R, Psencik J, Burda JV (2012) Computational study of short-range interactions in bacteriochlorophyll aggregates. Comp Theor Chem 998:87–97Google Scholar
  4. Arellano JB, Melo TB, Borrego CM, Garcia-Gil J, Naqvi KR (2000a) Nanosecond laser photolysis studies of chlorosomes and artificial aggregates containing bacteriochlorophyll e: evidence for the proximity of carotenoids and bacteriochlorophyll a in chlorosomes from Chlorobium phaeobacteroides strain CL1401. Photochem Photobiol 72:669–675PubMedGoogle Scholar
  5. Arellano JB, Psencik J, Borrego CM, Ma YZ, Guyoneaud R, Garcia-Gil J, Gillbro T (2000b) Effect of carotenoid biosynthesis inhibition on the chlorosome organization in Chlorobium phaeobacteroides strain CL1401. Photochem Photobiol 71:715–723PubMedGoogle Scholar
  6. Arellano JB, Borrego CM, Martinez-Planells A, Garcia-Gil LJ (2001) Effect of carotenoid deficiency on cells and chlorosomes of Chlorobium phaeobacteroides. Arch Microbiol 175:226–233PubMedGoogle Scholar
  7. Arellano JB, Melo TB, Borrego CM, Naqvi KR (2002) Bacteriochlorophyll e monomers, but not aggregates, sensitize singlet oxygen: implications for a self-protection mechanism in chlorosomes. Photochem Photobiol 76:373–380PubMedGoogle Scholar
  8. Arellano JB, Torkkeli M, Tuma R, Laurinmäki P, Melo TB, Ikonen TP, Butcher SJ, Serimaa RE, Psencik J (2008) Hexanol-induced order-disorder transitions in lamellar self-assembling aggregates of bacteriochlorophyll c in Chlorobium tepidum chlorosomes. Langmuir 24:2035–2041PubMedGoogle Scholar
  9. Balaban TS, Tamiaki H, Holzwarth AR (2005) Chlorins programmed for self-assembly. Top Curr Chem 258:1–38Google Scholar
  10. Beatty JT, Overmann J, Lince MT, Manske AK, Lang AS, Blankenship RE, Van Dover CL, Martinson TA, Plumley FG (2005) An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proc Natl Acad Sci U S A 102:9306–9310PubMedCentralPubMedGoogle Scholar
  11. Blankenship RE, Matsuura K (2003) Antenna complexes from green photosynthetic bacteria. In: Green BR, Parson WW (eds) Light-harvesting antennas in photosynthesis. Kluwer Academic Publishers, Dordrecht, pp 195–217Google Scholar
  12. Blankenship RE, Cheng P, Causgrove TP, Brune DC, Wang SH, Chon J, Wang J (1993) Redox regulation of energy transfer efficiency in antennas of green photosynthetic bacteria. Photochem Photobiol 57:103–107PubMedGoogle Scholar
  13. Blankenship RE, Olson JM, Miller M (1995) Antenna complexes from green photosynthetic bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publisher, Dordrecht, pp 399–435Google Scholar
  14. Borrego CM, Garcia-Gil LJ (1995) Rearrangement of light harvesting bacteriochlorophyll homologues as a response of green sulfur bacteria to low light intensities. Photosynth Res 45:21–30PubMedGoogle Scholar
  15. Borrego CM, Gerola PD, Miller M, Cox RP (1999a) Light intensity effects on pigment composition and organisation in the green sulfur bacterium Chlorobium tepidum. Photosynth Res 59:159–166Google Scholar
  16. Borrego CM, Arellano JB, Abella CA, Gillbro T, Garcia-Gil J (1999b) The molar extinction coefficient of bacteriochlorophyll e and the pigment stoichiometry in Chlorobium phaeobacteroides. Photosynth Res 60:257–264Google Scholar
  17. Brune DC, Nozawa T, Blankenship RE (1987) Antenna organization in green photosynthetic bacteria. 1. Oligomeric bacteriochlorophyll c as a model for the 740 nm absorbing bacteriochlorophyll c in Chloroflexus aurantiacus chlorosomes. Biochemistry 26:8644–8652PubMedGoogle Scholar
  18. Bryant DA, Vassilieva EV, Frigaard NU, Li H (2002) Selective protein extraction from Chlorobium tepidum chlorosomes using detergents. Evidence that CsmA forms multimers and binds bacteriochlorophyll a. Biochemistry 41:14403–14411PubMedGoogle Scholar
  19. Bryant DA, Costas AMG, Maresca JA, Chew AGM, Klatt CG, Bateson MM, Tallon LJ, Hostetler J, Nelson WC, Heidelberg JF, Ward DM (2007) Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic acidobacterium. Science 317:523–526PubMedGoogle Scholar
  20. Carbonera D, Bordignon E, Giacometti G, Agostini G, Vianelli A, Vannini C (2001) Fluorescence and absorption detected magnetic resonance of chlorosomes from green bacteria Chlorobium tepidum and Chloroflexus aurantiacus. A comparative study. J Phys Chem B 105:246–255Google Scholar
  21. Causgrove TP, Brune DC, Blankenship RE (1992) Förster energy transfer in chlorosomes of green photosynthetic bacteria. J Photochem Photobiol B 15:171–179PubMedGoogle Scholar
  22. Chew AGM, Frigaard NU, Bryant DA (2007) Bacteriochlorophyllide c C-8(2) and C-12(1) methyltransferases are essential for adaptation to low light in Chlorobaculum tepidum. J Bacteriol 189:6176–6184PubMedCentralGoogle Scholar
  23. Chung S, Bryant DA (1996) Characterization of the csmD and csmE genes from Chlorobium tepidum. The CsmA, CsmC, CsmD, and CsmE proteins are components of the chlorosome envelope. Photosynth Res 50:41–59PubMedGoogle Scholar
  24. Cohen-Bazire G, Pfennig N, Kunisawa R (1964) The fine structure of green bacteria. J Cell Biol 22:207–225PubMedCentralPubMedGoogle Scholar
  25. Costas AMG, Tsukatani Y, Romberger SP, Oostergetel GT, Boekema EJ, Golbeck JH, Bryant DA (2011) Ultrastructural analysis and identification of envelope proteins of “Candidatus Chloracidobacterium thermophilum” chlorosomes. J Bacteriol 193:6701–6711Google Scholar
  26. Costas AMG, Tsukatani Y, Rijpstra WI, Schouten S, Welander PV, Summons RE, Bryant DA (2012) Identification of the bacteriochlorophylls, carotenoids, quinones, lipids, and hopanoids of “Candidatus Chloracidobacterium thermophilum”. J Bacteriol 194:1158–1168Google Scholar
  27. Didraga C, Klugkist JA, Knoester J (2002) Optical properties of helical cylindrical molecular aggregates: the homogeneous limit. J Phys Chem B 106:11474–11486Google Scholar
  28. Dostal J, Mancal T, Augulis R, Vacha F, Psencik J, Zigmantas D (2012) Two-dimensional electronic spectroscopy reveals ultrafast energy diffusion in chlorosomes. J Am Chem Soc 134:11611–11617PubMedGoogle Scholar
  29. Egawa A, Fujiwara T, Mizoguchi T, Kakitani Y, Koyama Y, Akutsu H (2007) Structure of the light-harvesting bacteriochlorophyll c assembly in chlorosomes from Chlorobium limicola determined by solid-state NMR. Proc Natl Acad Sci U S A 104:790–795PubMedCentralPubMedGoogle Scholar
  30. Eisen JA, Nelson KE, Paulsen IT, Heidelberg JF, Wu M, Dodson RJ, Deboy R, Gwinn ML, Nelson WC, Haft DH, Hickey EK, Peterson JD, Durkin AS, Kolonay JL, Yang F, Holt I, Umayam LA, Mason T, Brenner M, Shea TP, Parksey D, Nierman WC, Feldblyum TV, Hansen CL, Craven MB, Radune D, Vamathevan J, Khouri H, White O, Gruber TM, Ketchum KA, Venter JC, Tettelin H, Bryant DA, Fraser CM (2002) The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc Natl Acad Sci U S A 99:9509–9514PubMedCentralPubMedGoogle Scholar
  31. Feng J, Ruckenstein E (2006) Morphology transitions of AB diblock copolymer melts confined in nanocylindrical tubes. J Chem Phys 125:1164911Google Scholar
  32. Fetisova ZG, Mauring K (1992) Experimental evidence of oligomeric organization of antenna bacteriochlorophyll c in green bacterium Chloroflexus aurantiacus by spectral hole burning. FEBS Lett 307:371–374PubMedGoogle Scholar
  33. Fetisova ZG, Mauring K, Taisova AS (1994) Strongly exciton-coupled BChl e chromophore system in the chlorosomal antenna of intact cells of the green bacterium Chlorobium phaeovibrioides: a spectral hole burning study. Photosynth Res 41:205–210PubMedGoogle Scholar
  34. Foidl M, Golecki JR, Oelze J (1997) Phototrophic growth and chlorosome formation in Chloroflexus aurantiacus under conditions of carotenoid deficiency. Photosynth Res 54:219–226Google Scholar
  35. Foidl M, Golecki JR, Oelze J (1998) Chlorosome development in Chloroflexus aurantiacus. Photosynth Res 55:109–114Google Scholar
  36. Frese R, Oberheide U, van Stokkum IHM, van Grondelle R, Foidl M, Oelze J, van Amerongen H (1997) The organization of bacteriochlorophyll c in chlorosomes from Chloroflexus aurantiacus and the structural role of carotenoids and protein – an absorption, linear dichroism, circular dichroism and Stark spectroscopy study. Photosynth Res 54:115–126Google Scholar
  37. Frigaard NU, Bryant D (2004) Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria. Arch Microbiol 182:265–276PubMedGoogle Scholar
  38. Frigaard NU, Bryant DA (2006) Chlorosomes: antenna organelles in photosynthetic green bacteria. In: Shively JM (ed) Complex intracellular structures in prokaryotes, vol 2, Microbiology monographs. Springer, Berlin, pp 79–114Google Scholar
  39. Frigaard NU, Matsuura K (1999) Oxygen uncouples light absorption by the chlorosome antenna and photosynthetic electron transfer in the green sulfur bacterium Chlorobium tepidum. Biochim Biophys Acta 1412:108–117PubMedGoogle Scholar
  40. Frigaard NU, Takaichi S, Hirota M, Shimada K, Matsuura K (1997) Quinones in chlorosomes of green sulfur bacteria and their role in the redox-dependent fluorescence studied in chlorosome-like bacteriochlorophyll c aggregates. Arch Microbiol 167:343–349Google Scholar
  41. Frigaard NU, Matsuura K, Hirota M, Miller M, Cox RP (1998) Studies of the location and function of isoprenoid quinones in chlorosomes from green sulfur bacteria. Photosynth Res 58:81–90Google Scholar
  42. Frigaard NU, Chew AGM, Li H, Maresca JA, Bryant DA (2003) Chlorobium tepidum: insights into the structure, physiology, and metabolism of a green sulfur bacterium derived from a complete genome sequence. Photosynth Res 78:93–117PubMedGoogle Scholar
  43. Frigaard NU, Li H, Milks KJ, Bryant DA (2004) Nine mutants of Chlorobium tepidum each unable to synthesize a different chlorosome protein still assemble functional chlorosomes. J Bacteriol 186:646–653PubMedCentralPubMedGoogle Scholar
  44. Frigaard NU, Li H, Martinsson P, Das SK, Frank HA, Aartsma TJ, Bryant DA (2005) Isolation and characterization of carotenosomes from a bacteriochlorophyll c-less mutant of Chlorobium tepidum. Photosynth Res 86:101–111PubMedGoogle Scholar
  45. Fuciman M, Chabera P, Zupcanova A, Hribek P, Arellano JB, Vacha F, Psencik J, Polivka T (2010) Excited state properties of aryl carotenoids. Phys Chem Chem Phys 12:3112–3120PubMedGoogle Scholar
  46. Furumaki S, Vacha F, Habuchi S, Tsukatani Y, Bryant DA, Vacha M (2011) Absorption linear dichroism measured directly on a single light-harvesting system: the role of disorder in chlorosomes of green photosynthetic bacteria. J Am Chem Soc 133:6703–6710PubMedGoogle Scholar
  47. Ganapathy S, Oostergetel GT, Wawrzyniak PK, Reus M, Chew AGM, Buda F, Boekema EJ, Bryant DA, Holzwarth AR, de Groot HJM (2009) Alternating syn-anti bacteriochlorophylls form concentric helical nanotubes in chlorosomes. Proc Natl Acad Sci U S A 106:8525–8530PubMedCentralPubMedGoogle Scholar
  48. Gounaris K, Barber J (1983) Monogalactosyldia-cyglycerol: the most abundant polar lipid in nature. Trends Biochem Sci 8:378–381Google Scholar
  49. Halfen LN, Pierson BK, Francis GW (1972) Carotenoids of a gliding organism containing bacteriochlorophylls. Arch Mikrobiol 82:240–246Google Scholar
  50. Hamley IW (1998) The Physics of Block Copolymers. Oxford University Press, OxfordGoogle Scholar
  51. Hildebrandt P, Tamiaki H, Holzwarth AR, Schaffner K (1994) Resonance Raman-spectroscopic study of metallochlorin aggregates. Implications for the supramolecular structure in chlorosomal BChl c antennae of green bacteria. J Phys Chem 98:2192–2197Google Scholar
  52. Hirota M, Moriyama T, Shimada K, Miller M, Olson JM, Matsuura K (1992) High degree of organization of bacteriochlorophyll c in chlorosome-like aggregates spontaneously assembled in aqueous solution. Biochim Biophys Acta 1099:271–274Google Scholar
  53. Hohmann-Marriott MF, Blankenship RE (2007) Hypothesis on chlorosome biogenesis in green photosynthetic bacteria. FEBS Lett 581:800–803PubMedGoogle Scholar
  54. Holzwarth AR, Schaffner K (1994) On the structure of bacteriochlorophyll molecular aggregates in the chlorosomes of green bacteria. A molecular modelling study. Photosynth Res 41:225–233PubMedGoogle Scholar
  55. Hu XC, Damjanovic A, Ritz T, Schulten K (1998) Architecture and mechanism of the light-harvesting apparatus of purple bacteria. Proc Natl Acad Sci U S A 95:5935–5941PubMedCentralPubMedGoogle Scholar
  56. Ikonen TP, Li H, Psencik J, Laurinmäki PA, Butcher SJ, Frigaard NU, Serimaa RE, Bryant DA, Tuma R (2007) X-ray scattering and electron cryomicroscopy study on the effect of carotenoid biosynthesis to the structure of Chlorobium tepidum chlorosomes. Biophys J 93:620–628PubMedCentralPubMedGoogle Scholar
  57. Imhoff JF (1995) Taxonomy and physiology of phototrophic purple bacteria and green sulfur bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 1–15Google Scholar
  58. Imhoff JF (2003) Phylogenetic taxonomy of the family Chlorobiaceae on the basis of 16S rRNA and fmo (Fenna Matthews-Olson protein) gene sequences. Int J Sys Evol Microbiol 53:941–951Google Scholar
  59. Imhoff JF, Thiel V (2010) Phylogeny and taxonomy of Chlorobiaceae. Photosynth Res 104:123–136PubMedGoogle Scholar
  60. Jochum T, Reddy CM, Eichhofer A, Buth G, Szmytkowski J, Kalt H, Moss D, Balaban TS (2008) The supramolecular organization of self-assembling chlorosomal bacteriochlorophyll c, d, or e mimics. Proc Natl Acad Sci U S A 105:12736–12741PubMedCentralPubMedGoogle Scholar
  61. Kakitani Y, Koyama Y, Shimoikeda Y, Nakai T, Utsumi H, Shimizu T, Nagae H (2009) Stacking of bacteriochlorophyll c macrocycles in chlorosome from Chlorobium limicola as revealed by intermolecular C-13 magnetic-dipole correlation, X-ray diffraction, and quadrupole coupling in Mg-25 NMR. Bio-chemistry 48:74–86Google Scholar
  62. Kim H, Li H, Maresca JA, Bryant DA, Savikhin S (2007) Triplet exciton formation as a novel photoprotection mechanism in chlorosomes of Chlorobium tepidum. Biophys J 93:192–201PubMedCentralPubMedGoogle Scholar
  63. Klappenbach JA, Pierson BK (2004) Phylogenetic and physiological characterization of a filamentous anoxygenic photoautotrophic bacterium ‘Candidatus Chlorothrix halophila’ gen. nov., sp nov., recovered from hypersaline microbial mats. Arch Microbiol 181:17–25PubMedGoogle Scholar
  64. Klinger P, Arellano JB, Vacha FE, Hala J, Psencik J (2004) Effect of carotenoids and monogalactosyl diglyceride on bacteriochlorophyll c aggregates in aqueous buffer: implications for the self-assembly of chlorosomes. Photochem Photobiol 80:572–578PubMedGoogle Scholar
  65. Knudsen E, Jantzen E, Bryn K, Ormerod JG, Sirevag R (1982) Quantitative and structural characteristics of lipids in Chlorobium and Chloroflexus. Arch Microbiol 132:149–154Google Scholar
  66. Krasnovsky AA Jr, Litvin FF (1975) Mechanisms of delayed luminescence of photosynthetic pigments. Bull USSR Acad Sci Phys 39:1968–1971Google Scholar
  67. Krasnovsky AA, Lopez J, Cheng P, Liddell PA, Blankenship RE, Moore TA, Gust D (1994) Generation and quenching of singlet molecular-oxygen by aggregated bacteriochlorophyll d in model systems and chlorosomes. Photosynth Res 40:191–198PubMedGoogle Scholar
  68. Larsen KL, Cox RP, Miller M (1994) Effects of illumination intensity on bacteriochlorophyll c homolog distribution in Chloroflexus aurantiacus grown under controlled conditions. Photosynth Res 41:151–156PubMedGoogle Scholar
  69. Li H, Bryant DA (2009) Envelope proteins of the CsmB/CsmF and CsmC/CsmD motif families influence the size, shape, and composition of chlorosomes in Chlorobaculum tepidum. J Bacteriol 191:7109–7120PubMedCentralPubMedGoogle Scholar
  70. Li H, Frigaard NU, Bryant DA (2006) Molecular contacts for chlorosome envelope proteins revealed by cross-linking studies with chlorosomes from Chlorobium tepidum. Biochemistry 45:9095–9103PubMedGoogle Scholar
  71. Li H, Jubelirer S, Costas AMG, Frigaard NU, Bryant DA (2009) Multiple antioxidant proteins protect Chlorobaculum tepidum against oxygen and reactive oxygen species. Arch Microbiol 191:853–867PubMedGoogle Scholar
  72. Linnanto JM, Korppi-Tommola JEI (2008) Investigation on chlorosomal antenna geometries: tube, lamella and spiral-type self-aggregates. Photosynth Res 96:227–245PubMedGoogle Scholar
  73. Maresca JA, Graham JE, Bryant DA (2008) The biochemical basis for structural diversity in the carotenoids of chlorophototrophic bacteria. Photosynth Res 97:121–140PubMedGoogle Scholar
  74. Martinez-Planells A, Arellano JB, Borrego CM, Lopez-Iglesias C, Gich F, Garcia-Gil JS (2002) Determination of the topography and biometry of chlorosomes by atomic force microscopy. Photosynth Res 71:83–90PubMedGoogle Scholar
  75. Martiskainen J, Linnanto J, Kananavicius R, Lehtovuori V, Korppi-Tommola J (2009) Excitation energy transfer in isolated chlorosomes from Chloroflexus aurantiacus. Chem Phys Lett 477:216–220Google Scholar
  76. Matsuura K, Hirota M, Shimada M, Mimuro M (1993) Spectral forms and orientation of bacteriochlorophylls c and a in chlorosomes of green photosynthetic bacterium Chloroflexus aurantiacus. Photochem Photobiol 57:92–97Google Scholar
  77. Melo TB, Frigaard NU, Matsuura K, Naqvi KR (2000) Electronic energy transfer involving carotenoid pigments in chlorosomes of two green bacteria: Chlorobium tepidum and Chloroflexus aurantiacus. Spectrochim Acta A Mol Biol Spectrosc 56:2001–2010Google Scholar
  78. Mimuro M, Hirota M, Nishimura Y, Moriyama T, Yamazaki I, Shimada K, Matsuura K (1994) Molecular organization of bacteriochlorophyl in chlorosomes of the green photosynthetic bacterium Chloroflexus aurantiacus: studies of fluorescence depolarization accompanied by energy transfer processes. Photosynth Res 41:181–191PubMedGoogle Scholar
  79. Miyatake T, Tamiaki H (2005) Self-aggregates of bacteriochlorophylls c, d and e in a light-harvesting antenna system of green photosynthetic bacteria: effect of stereochemistry at the chiral 3-(1-hydroxyethyl) group on the supramolecular arrangement of chlorophyllous pigments. J Photochem Photobiol C 6:89–107Google Scholar
  80. Miyatake T, Tamiaki H (2010) Self-aggregates of natural chlorophylls and their synthetic analogues in aqueous media for making light-harvesting systems. Coord Chem Rev 254:2593–2602Google Scholar
  81. Mizoguchi T, Yoshitomi T, Harada J, Tamiaki H (2011) Temperature- and time-dependent changes in the structure and composition of glycolipids during the growth of the green sulfur photosynthetic bacterium Chlorobaculum tepidum. Biochemistry 50:4504–4512PubMedGoogle Scholar
  82. Montano GA, Bowen BP, LaBelle JT, Woodbury NW, Pizziconi VB, Blankenship RE (2003a) Characterization of Chlorobium tepidum chloromes: a calculation of bacteriochlorophyll c per chlorosome and oligomer modeling. Biophys J 85:2560–2565PubMedCentralPubMedGoogle Scholar
  83. Montano GA, Wu HM, Lin S, Brune DC, Blankenship RE (2003b) Isolation and characterization of the B798 light-harvesting baseplate from the chlorosomes of Chloroflexus aurantiacus. Biochemistry 42:10246–10251PubMedGoogle Scholar
  84. Nowicka B, Kruk J (2010) Occurrence, biosynthesis and function of isoprenoid quinones. Biochim Biophys Acta 1797:1587–1605PubMedGoogle Scholar
  85. Nozawa T, Ohtomo K, Suzuki M, Nakagawa H, Shikama Y, Konami H, Wang ZY (1994) Structures of chlorosomes and aggregated BChl c in Chlorobium tepidum from solid state high resolution CP/MAS 13C NMR. Photosynth Res 41:211–223PubMedGoogle Scholar
  86. Oelze J, Golecki JR (1995) Membranes and chlorosomes of green bacteria: structure, composition, and development. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 259–278Google Scholar
  87. Oostergetel GT, Reus M, Gomez Maqueo Chew A, Bryant DA, Boekema EJ, Holzwarth AR (2007) Long-range organization of bacteriochlorophyll in chlorosomes of Chlorobium tepidum investigated by cryo-electron microscopy. FEBS Lett 581:5435–5439PubMedGoogle Scholar
  88. Oostergetel GT, van Amerongen H, Boekema EJ (2010) The chlorosome: a prototype for efficient light harvesting in photosynthesis. Photosynth Res 104:245–255PubMedCentralPubMedGoogle Scholar
  89. Overmann J, Cypionka H, Pfennig N (1992) An extremely low-light-adapted phototrophic sulfur bacterium from the Black Sea. Limnol Oceanogr 37:150–155Google Scholar
  90. Pedersen MO, Underhaug J, Dittmer J, Miller M, Nielsen NC (2008) The three-dimensional structure of CsmA: a small antenna protein from the green sulfur bacterium Chlorobium tepidum. FEBS Lett 582:2869–2874PubMedGoogle Scholar
  91. Pedersen MO, Linnanto J, Frigaard NU, Nielsen NC, Miller M (2010) A model of the protein-pigment baseplate complex in chlorosomes of photosynthetic green bacteria. Photosynth Res 104:233–243PubMedGoogle Scholar
  92. Persson S, Sonksen CP, Frigaard NU, Cox RP, Roepstorff P, Miller M (2000) Pigments and proteins in green bacterial chlorosomes studied by matrix-assisted laser desorption ionization mass spectrometry. Eur J Biochem 267:450–456PubMedGoogle Scholar
  93. Polivka T, Sundstrom V (2004) Ultrafast dynamics of carotenoid excited states-from solution to natural and artificial systems. Chem Rev 104:2021–2071PubMedGoogle Scholar
  94. Prokhorenko VI, Steensgaard DB, Holzwarth AR (2000) Exciton dynamics in the chlorosomal antennae of the green bacteria Chloroflexus aurantiacus and Chlorobium tepidum. Biophys J 79:2105–2120PubMedCentralPubMedGoogle Scholar
  95. Prokhorenko VI, Holzwarth AR, Muller MG, Schaffner K, Miyatake T, Tamiaki H (2002) Energy transfer in supramolecular artificial antennae units of synthetic zinc chlorins and co-aggregated energy traps. A time- resolved fluorescence study. J Phys Chem B 106:5761–5768Google Scholar
  96. Psencik J, Vacha M, Adamec F, Ambroz M, Dian J, Bocek J, Hala J (1994) Hole-burning study of excited-state structure and energy- transfer dynamics of bacteriochlorophyll-c in chlorosomes of green sulfur photosynthetic bacteria. Photosynth Res 42:1–8Google Scholar
  97. Psencik J, Ma YZ, Arellano JB, Garcia-Gil J, Holzwarth AR, Gillbro T (2002) Excitation energy transfer in chlorosomes of Chlorobium phaeobacteroides strain CL1401: the role of carotenoids. Photosynth Res 71:5–18PubMedGoogle Scholar
  98. Psencik J, Ma YZ, Arellano JB, Hala J, Gillbro T (2003) Excitation energy transfer dynamics and excited-state structure in chlorosomes of Chlorobium phaeobacteroides. Biophys J 84:1161–1179PubMedCentralPubMedGoogle Scholar
  99. Psencik J, Ikonen TP, Laurinmäki P, Merckel MC, Butcher SJ, Serimaa RE, Tuma R (2004) Lamellar organization of pigments in chlorosomes, the light harvesting complexes of green photosynthetic bacteria. Biophys J 87:1165–1172PubMedCentralPubMedGoogle Scholar
  100. Psencik J, Arellano JB, Ikonen TP, Borrego CM, Laurinmäki PA, Butcher SJ, Serimaa RE, Tuma R (2006) Internal structure of chlorosomes from brown-colored Chlorobium species and the role of carotenoids in their assembly. Biophys J 91:1433–1440PubMedCentralPubMedGoogle Scholar
  101. Psencik J, Collins AM, Liljeroos L, Torkkeli M, Laurinmäki P, Ansink HM, Ikonen TP, Serimaa RE, Blankenship RE, Tuma R, Butcher SJ (2009) Structure of chlorosomes from the green filamentous bacterium Chloroflexus aurantiacus. J Bacteriol 191:6701–6708PubMedCentralPubMedGoogle Scholar
  102. Psencik J, Torkkeli M, Zupcanova A, Vacha F, Serimaa RE, Tuma R (2010) The lamellar spacing in self-assembling bacteriochlorophyll aggregates is proportional to the length of the esterifying alcohol. Photosynth Res 104:211–219PubMedGoogle Scholar
  103. Psencik J, Arellano JB, Collins AM, Laurinmäki P, Torkkeli M, Löflund B, Serimaa RE, Blankenship RE, Tuma R, Butcher SJ (2013) The structural and functional role of carotenoids in chlorosomes. J Bacteriol 195:1727–1734PubMedCentralPubMedGoogle Scholar
  104. Pullerits T (2000) Exciton states and relaxation in molecular aggregates: numerical study of photosynthetic light harvesting. J Chin Chem Soc 47:773–784Google Scholar
  105. Saga Y, Shibata Y, Ltoh S, Tamiaki H (2007) Direct counting of submicrometer-sized photosynthetic apparatus dispersed in medium at cryogenic temperature by confocal laser fluorescence microscopy: estimation of the number of bacteriochlorophyll c in single light-harvesting antenna complexes chlorosomes of green photosynthetic bacteria. J Phys Chem B 111:12605–12609PubMedGoogle Scholar
  106. Saga Y, Shibata Y, Tamiaki H (2010) Spectral properties of single light-harvesting complexes in bacterial photosynthesis. J Photochem Photobiol C 11:15–24Google Scholar
  107. Savikhin S, Zhu Y, Blankenship RE, Struve WS (1996) Intraband energy transfers in the BChl c antenna of chlorosomes from the green photosynthetic bacterium Chloroflexus aurantiacus. J Phys Chem 100:17978–17980Google Scholar
  108. Savikhin S, Buck DR, Struve WS, Blankenship RE, Taisova AS, Novoderezhkin VI, Fetisova ZG (1998) Excitation delocalization in the bacteriochlorophyll c antenna of the green bacterium Chloroflexus aurantiacus as revealed by ultrafast pump-probe spectroscopy. FEBS Lett 430:323–326PubMedGoogle Scholar
  109. Scheer H (2006) An overview of chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. In: Grimm B, Porra RJ, Rudiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls. Springer, Dordrecht, pp 1–26Google Scholar
  110. Schmidt K, Maarzahl M, Mayer F (1980) Development and pigmentation of chlorosomes in Chloroflexus aurantiacus strain Ok-70-fl. Arch Microbiol 127:87–97Google Scholar
  111. Shibata Y, Saga Y, Tamiaki H, Itoh S (2007) Polarized fluorescence of aggregated bacteriochlorophyll c and baseplate bacteriochlorophyll a in single chlorosomes isolated from Chloroflexus aurantiacus. Biochemistry 46:7062–7068PubMedGoogle Scholar
  112. Shibata Y, Saga Y, Tamiaki H, Itoh S (2009) Anisotropic distribution of emitting transition dipoles in chlorosome from Chlorobium tepidum: fluorescence polarization anisotropy study of single chlorosomes. Photosynth Res 100:67–78PubMedGoogle Scholar
  113. Shibata Y, Tateishi S, Nakabayashi S, Itoh S, Tamiaki H (2010) Intensity borrowing via excitonic couplings among soret and Q(y) transitions of bacteriochlorophylls in the pigment aggregates of chlorosomes, the light-harvesting antennae of green sulfur bacteria. Biochemistry 49:7504–7515PubMedGoogle Scholar
  114. Sorensen PG, Cox RP, Miller M (2008) Chlorosome lipids from Chlorobium tepidum: characterization and quantification of polar lipids and wax esters. Photosynth Res 95:191–196PubMedGoogle Scholar
  115. Spontak RJ, Patel NP (2004) Phase behaviour of copolymer blends. In: Hamley IW (ed) Developments in block copolymers science and technology. Wiley, Chichester, pp 159–212Google Scholar
  116. Sprague SG, Staehelin LA, Dibartolomeis MJ, Fuller RC (1981) Isolation and development of chlorosomes in the green bacterium Chloroflexus aurantiacus. J Bacteriol 147:1021–1031PubMedCentralPubMedGoogle Scholar
  117. Staehelin LA, Golecki JR, Fuller RC, Drews G (1978) Visualization of the supramolecular architecture of chlorosome (Chlorobium type vesicles) in freeze-fractured cells of Chloroflexus aurantiacus. Arch Microbiol 119:269–277Google Scholar
  118. Staehelin LA, Golecki JR, Drews G (1980) Supramo-lecular organization of chlorosome (Chlorobium vesicles) and of their membrane attachment site in Chlorobium limicola. Biochim Biophys Acta 589:30–45PubMedGoogle Scholar
  119. Stanier RY, Smith JHC (1960) The chlorophylls of green bacteria. Biochim Biophys Acta 41:478–484PubMedGoogle Scholar
  120. Steensgaard DB, van Walree CA, Permentier H, Baneras L, Borrego CM, Garcia-Gil J, Aartsma TJ, Amesz J, Holzwarth AR (2000a) Fast energy transfer between BChl d and BChl c in chlorosomes of the green sulfur bacterium Chlorobium limicola. Biochim Biophys Acta 1457:71–80PubMedGoogle Scholar
  121. Steensgaard DB, Wackerbarth H, Hildebrandt P, Holzwarth AR (2000b) Diastereoselective control of bacteriochlorophyll e aggregation. 3(1)-S-BChl e is essential for the formation of chlorosome-like aggregates. J Phys Chem B 104:10379–10386Google Scholar
  122. Takaichi S (1999) Carotenoids and carotenogenesis in anoxygenic photosynthetic bacteria. In: Frank HA, Young AJ, Britton G, Cogdell RJ (eds) The photochemistry of carotenoids. Kluwer, Dordrecht, pp 39–69Google Scholar
  123. Takaichi S, Oh-Oka H (1999) Pigment composition in the reaction center complex from the thermophilic green sulfur bacterium, Chlorobium tepidum: carotenoid glucoside esters, menaquinone and chlorophylls. Plant Cell Physiol 40:691–694Google Scholar
  124. Tamiaki H, Tateishi S, Nakabayashi S, Shibata Y, Itoh S (2010) Linearly polarized light absorption spectra of chlorosomes, light-harvesting antennas of photosynthetic green sulfur bacteria. Chem Phys Lett 484:333–337Google Scholar
  125. Tamiaki H, Komada J, Kunieda M, Fukai K, Yoshitomi T, Harada J, Mizoguchi T (2011) In vitro synthesis and characterization of bacteriochlorophyll-f and its absence in bacteriochlorophyll-e producing organisms. Photosynth Res 107:133–138PubMedGoogle Scholar
  126. van Amerongen H, Valkunas L, van Grondelle R (2000) Photosynthetic excitons. World Scientific, SingaporeGoogle Scholar
  127. van Dorssen RJ, Vasmel H, Amesz J (1986) Pigment organization and energy transfer in the green photosynthetic bacterium Chloroflexus aurantiacus. II. The chlorosome. Photosynth Res 9:33–45PubMedGoogle Scholar
  128. van Noort PI, Zhu Y, LoBrutto R, Blankenship RE (1997) Redox effects on the excited-state lifetime in chlorosomes and bacteriochlorophyll c oligomers. Biophys J 72:316–325PubMedCentralPubMedGoogle Scholar
  129. van Rossum BJ, Steensgaard DB, Mulder FM, Boender GJ, Schaffner K, Holzwarth AR, de Groot HJM (2001) A refined model of the chlorosomal antennae of the green bacterium Chlorobium tepidum from proton chemical shift constraints obtained with high-field 2-D and 3-D MAS NMR dipolar correlation spectroscopy. Biochemistry 40:1587–1595PubMedGoogle Scholar
  130. van Walree CA, Sakuragi Y, Steensgaard DB, Frigaard NU, Cox RP, Holzwarth AR, Miller M (1999) Effect of alkaline treatment on bacteriochlorophyll a, quinones and energy transfer in chlorosomes from Chlorobium tepidum and Chlorobium phaeobacteroides. Photochem Photobiol 69:322–328Google Scholar
  131. Vassilieva EV, Stirewalt VL, Jakobs CU, Frigaard NU, Inoue-Sakamoto K, Baker MA, Sotak A, Bryant DA (2002) Subcellular localization of chlorosome proteins in Chlorobium tepidum and characterization of three new chlorosome proteins: CsmF, CsrnH, and CsmX. Biochemistry 41:4358–4370PubMedGoogle Scholar
  132. Vila X, Abella CA (1994) Effects of Light quality on the physiology and the ecology of planktonic green sulfur bacteria in lakes. Photosynth Res 41:53–65PubMedGoogle Scholar
  133. Wang YL, Mao LS, Hu XC (2004) Insight into the structural role of carotenoids in the photosystem I: a quantum chemical analysis. Biophys J 86:3097–3111PubMedCentralPubMedGoogle Scholar
  134. Zobova A, Taisova A, Lukashev E, Fedorova N, Baratova L, Fetisova Z (2011) CsmA protein is associated with BChl a in the baseplate subantenna of chlorosomes of the photosynthetic green filamentous bacterium Oscillochloris trichoides belonging to the family Oscillochloridaceae. J Biophys 2011:1860382Google Scholar
  135. Zupcanova A, Arellano JB, Bina D, Kopecky J, Psencik J, Vacha F (2008) The length of esterifying alcohol affects the aggregation properties of chlorosomal bacteriochlorophylls. Photochem Photobiol 84:1187–1194PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2014

Authors and Affiliations

  • Jakub Pšenčík
    • 1
    Email author
  • Sarah J. Butcher
    • 2
  • Roman Tuma
    • 3
  1. 1.Faculty of Mathematics and PhysicsCharles University in PraguePrague 2Czech Republic
  2. 2.Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
  3. 3.The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUK

Personalised recommendations