Piecing Together the Phycobilisome

  • Ailie Marx
  • Liron David
  • Noam AdirEmail author
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 39)


Photosynthesis is driven by the absorption of light by arrays of pigments bound within protein complexes called antennas, followed by the efficient transfer of energy to the photochemical reaction centers. Cyanobacteria, red algae and cyanelles contain phycobilisomes (PBS) as their major antenna complex. The PBS is an extremely large (3–7 MDa), multi-layered complex bound to the stromal side of the photosynthetic membrane. In this review, we will describe the important structural and functional characteristics of the phycobilisome complex experimentally obtained over the past 40 years, especially in relation to the phycobilisomes unique absorption characteristics and its ability to self-assemble and disassemble.


Synechococcus Elongatus Adjacent Monomer Trimer Interface Symmetry Related Molecule Northeast Structural Genomic Consortium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



– Atomic force microscopy;


– Allophycocyanin;


– Electron microscopy;


– –Core linkers;


– Core-membrane linker;


– Linker proteins;


– Rod linker;


– Rod-core membrane linker;


– Phycobiliprotein;


– Phycobilisome;


– Phycocyanin;


– Phycocyanobilin cofactor;


– Phycoerythrin;


– Phycoerythrobilin cofactor;


– Phycoerythrocyanin;


– Phycourobilin cofactor;


– Phycobiliviolin cofactor;


– Reaction center;


– Transmission electron microscopy



This work was supported by the Israel Science Foundation founded by the Israel Academy of Sciences and Humanities (1045/06) and US-Israel Binational Science Foundation (2009406). We gratefully thank the staff of the European Synchrotron Radiation Facility (beamlines ID-14-1, ID23-1) for provision of synchrotron radiation facilities and assistance.


  1. Adir N (2005) Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant. Photosynth Res 85:15–32PubMedCrossRefGoogle Scholar
  2. Adir N (2008) Structure of the phycobilisome antennae in cyanobacteria and red algae. In: Fromme P (ed) Photosynthetic protein complexes: a structural approach. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 243–274CrossRefGoogle Scholar
  3. Adir N, Lerner N (2003) The crystal structure of a novel unmethylated form of C-phycocyanin, a possible connector between cores and rods in phycobilisomes. J Biol Chem 278:25926–25932PubMedCrossRefGoogle Scholar
  4. Adir N, Dobrovetsky Y, Lerner N (2001) Structure of C-phycocyanin from the thermophilic cyanobacterium Synechococcus vulcanus at 2.5 A: structural implications for thermal stability in phycobilisome assembly. J Mol Biol 313:71–81PubMedCrossRefGoogle Scholar
  5. Adir N, Vainer R, Lerner N (2002) Refined structure of C-phycocyanin from the cyanobacterium Synecho-coccus vulcanus at 1.6 A: insights into the role of solvent molecules in thermal stability and co-factor structure. Biochim Biophys Acta 1556:168–174PubMedCrossRefGoogle Scholar
  6. Adir N, Dines M, Klartag M, McGregor A, Melamed-Frank M (2006) Assembly and disassembly of phycobilisomes. In: Shively JM (ed) Microbiology monographs: inclusions in prokaryotes, vol 2. Springer, Berlin, pp 47–77Google Scholar
  7. Anderson LK, Toole CM (1998) A model for early events in the assembly pathway of cyanobacterial phycobilisomes. Mol Microbiol 30:467–474PubMedCrossRefGoogle Scholar
  8. Arciero DM, Bryant DA, Glazer AN (1988) In vitro attachment of bilins to apophycocyanin. I. Specific covalent adduct formation at cysteinyl residues involved in phycocyanobilin binding in C-phycocyanin. J Biol Chem 263:18343–18349PubMedGoogle Scholar
  9. Arteni AA, Liu LN, Aartsma TJ, Zhang YZ, Zhou BC, Boekema EJ (2008) Structure and organization of phycobilisomes on membranes of the red alga Porphyridium cruentum. Photosynth Res 95:169–174PubMedCentralPubMedCrossRefGoogle Scholar
  10. Arteni AA, Ajlani G, Boekema EJ (2009) Structural organisation of phycobilisomes from Synechocystis sp. strain PCC 6803 and their interaction with the membrane. Biochim Biophys Acta 1787:272–279PubMedCrossRefGoogle Scholar
  11. Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N (2010) ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res 38(Suppl):W529–W533PubMedCentralPubMedCrossRefGoogle Scholar
  12. Beck WF, Sauer K (1992) Energy-transfer and exciton-state relaxation processes in allophycocyanin. J Phys Chem 96:4658–4666CrossRefGoogle Scholar
  13. Bienert R, Baier K, Volkmer R, Lockau W, Heinemann U (2006) Crystal structure of NblA from Anabaena sp. PCC 7120, a small protein playing a key role in phycobilisome degradation. J Biol Chem 281:5216–5223PubMedCrossRefGoogle Scholar
  14. Biswas A, Vasquez YM, Dragomani TM, Kronfel ML, Williams SR, Alvey RM, Bryant DA, Schluchter WM (2010) Biosynthesis of cyanobacterial phycobiliproteins in Escherichia coli: chromophorylation efficiency and specificity of all bilin lyases from Synechococcus sp. strain PCC 7002. Appl Environ Microbiol 76:2729–2739PubMedCentralPubMedCrossRefGoogle Scholar
  15. Blankenship RE, Olson JM, Miller M (1995) Antenna complexes from green photosynthetic bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 399–435Google Scholar
  16. Bryant DA, Cohen-Bazire G (1981) Effects of chromatic illumination on cyanobacterial phycobilisomes. Evidence for the specific induction of a second pair of phycocyanin subunits in Pseudanabaena 7409 grown in red light. Eur J Biochem 119:415–424PubMedCrossRefGoogle Scholar
  17. Bryant DA, Glazer AN, Eiserling FA (1976) Characte-rization and structural properties of the major biliproteins of Anabaena sp. Arch Microbiol 110:61–75PubMedCrossRefGoogle Scholar
  18. Capuano V, Braux AS, Tandeau de Marsac N, Houmard J (1991) The “anchor polypeptide” of cyanobacterial phycobilisomes. Molecular characterization of the Synechococcus sp. PCC 6301 apce gene. J Biol Chem 266:7239–7247PubMedGoogle Scholar
  19. Cogdell RJ, Gardiner AT, Roszak AW, Law CJ, Southall J, Isaacs NW (2004) Rings, ellipses and horseshoes: how purple bacteria harvest solar energy. Photosynth Res 81:207–214PubMedCrossRefGoogle Scholar
  20. Collier JL, Grossman AR (1992) Chlorosis induced by nutrient deprivation in Synechococcus sp. strain PCC 7942: not all bleaching is the same. J Bacteriol 174:4718–4726PubMedCentralPubMedGoogle Scholar
  21. Collier JL, Grossman AR (1994) A small polypeptide triggers complete degradation of light-harvesting phycobiliproteins in nutrient-deprived cyanobacteria. EMBO J 13:1039–1047PubMedCentralPubMedGoogle Scholar
  22. David L, Marx A, Adir N (2011) High-resolution crystal structures of trimeric and rod phycocyanin. J Mol Biol 405:201–213PubMedCrossRefGoogle Scholar
  23. Dines M, Sendersky E, David L, Schwarz R, Adir N (2008) Structural, functional, and mutational analysis of the NblA protein provides insight into possible modes of interaction with the phycobilisome. J Biol Chem 283:30330–30340PubMedCentralPubMedCrossRefGoogle Scholar
  24. Ducret A, Sidler W, Wehrli E, Frank G, Zuber H (1996) Isolation, characterization and electron microscopy analysis of a hemidiscoidal phycobilisome type from the cyanobacterium Anabaena sp. PCC 7120. Eur J Biochem 236:1010–1024PubMedCrossRefGoogle Scholar
  25. Ducret A, Muller SA, Goldie KN, Hefti A, Sidler WA, Zuber H, Engel A (1998) Reconstitution, characterization and mass analysis of the pentacylindrical allophycocyanin core complex from the cyanobacterium Anabaena sp. PCC 7120. J Mol Biol 278:369–388PubMedCrossRefGoogle Scholar
  26. Edwards MR, Gantt E (1971) Phycobilisomes of the thermophilic blue-green alga Synechococcus lividus. J Cell Biol 50:896–900PubMedCentralPubMedCrossRefGoogle Scholar
  27. Ficner R, Lobeck K, Schmidt G, Huber R (1992) Isolation, crystallization, crystal structure analysis and refinement of B-phycoerythrin from the red alga Porphyridium sordidum at 2.2 A resolution. J Mol Biol 228:935–950PubMedCrossRefGoogle Scholar
  28. Gantt E, Conti SF (1966a) Granules associated with the chloroplast lamellae of Porphyridium cruentum. J Cell Biol 29:423–434PubMedCentralPubMedCrossRefGoogle Scholar
  29. Gantt E, Conti SF (1966b) Phycobiliprotein localization in algae. Brookhaven Symp Biol 19:393–405PubMedGoogle Scholar
  30. Gantt E, Lipschultz CA (1972) Phycobilisomes of Porphyridium cruentum. I. Isolation. J Cell Biol 54:313–324PubMedCentralPubMedCrossRefGoogle Scholar
  31. Ge B, Sun H, Feng Y, Yang J, Qin S (2009) Functional biosynthesis of an allophycocyan beta subunit in Escherichia coli. J Biosci Bioeng 107:246–249PubMedCrossRefGoogle Scholar
  32. Glauser M, Bryant DA, Frank G, Wehrli E, Rusconi SS, Sidler W, Zuber H (1992) Phycobilisome structure in the cyanobacteria Mastigocladus laminosus and Anabaena sp. PCC 7120. Eur J Biochem 205:907–915PubMedCrossRefGoogle Scholar
  33. Glazer AN (1989) Light guides. Directional energy transfer in a photosynthetic antenna. J Biol Chem 264:1–4PubMedGoogle Scholar
  34. Glazer AN, Bryant DA (1975) Allophycocyanin B (lambdamax 671, 618 nm): a new cyanobacterial phycobiliprotein. Arch Microbiol 104:15–22PubMedCrossRefGoogle Scholar
  35. Grossman AR, Schaefer MR, Chiang GG, Collier JL (1993) The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol Rev 57:725–749PubMedCentralPubMedGoogle Scholar
  36. Grossman AR, Bhaya D, Apt KE, Kehoe DM (1995) Light-harvesting complexes in oxygenic photosynthesis: diversity, control, and evolution. Annu Rev Genet 29:231–288PubMedCrossRefGoogle Scholar
  37. Inoue N, Emi T, Yamane Y, Kashino Y, Koike H, Satoh K (2000) Effects of high-temperature treatments on a thermophilic cyanobacterium Synechococcus vulcanus. Plant Cell Physiol 41:515–522PubMedCrossRefGoogle Scholar
  38. Karradt A, Sobanski J, Mattow J, Lockau W, Baier K (2008) NblA, a key protein of phycobilisome degradation, interacts with ClpC, a HSP100 chaperone partner of a cyanobacterial Clp protease. J Biol Chem 283:32394–32403PubMedCrossRefGoogle Scholar
  39. Klotz AV, Leary JA, Glazer AN (1986) Post-translational methylation of asparaginyl residues. Identification of beta-71 gamma-N-methylasparagine in allophycocyanin. J Biol Chem 261:15891–15894PubMedGoogle Scholar
  40. Liu LN, Chen XL, Zhang YZ, Zhou BC (2005) Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: an overview. Biochim Biophys Acta 1708:133–142PubMedCrossRefGoogle Scholar
  41. Liu LN, Aartsma TJ, Thomas JC, Lamers GE, Zhou BC, Zhang YZ (2008) Watching the native supramolecular architecture of photosynthetic membrane in red algae: topography of phycobilisomes and their crowding, diverse distribution patterns. J Biol Chem 283:34946–34953PubMedCentralPubMedCrossRefGoogle Scholar
  42. Lundell DJ, Yamanaka G, Glazer AN (1981) A terminal energy acceptor of the phycobilisome: the 75,000-dalton polypeptide of Synechococcus 6301 phycobilisomes–a new biliprotein. J Cell Biol 91:315–319PubMedCrossRefGoogle Scholar
  43. MacColl R (1983) Stability of allophycocyanin’s quaternary structure. Arch Biochem Biophys 223:24–32PubMedCrossRefGoogle Scholar
  44. MacColl R (1998) Cyanobacterial phycobilisomes. J Struct Biol 124:311–334PubMedCrossRefGoogle Scholar
  45. MacColl R (2004) Allophycocyanin and energy transfer. Biochim Biophys Acta 1657:73–81PubMedCrossRefGoogle Scholar
  46. MacColl R, Eisele LE, Menikh A (2003) Allophy-cocyanin: trimers, monomers, subunits, and homodimers. Biopolymers 72:352–365PubMedCrossRefGoogle Scholar
  47. McGregor A, Klartag M, David L, Adir N (2008) Allophycocyanin trimer stability and functionality are primarily due to polar enhanced hydrophobicity of the phycocyanobilin binding pocket. J Mol Biol 384:406–421PubMedCrossRefGoogle Scholar
  48. Neilson JA, Durnford DG (2010) Evolutionary distribution of light-harvesting complex-like proteins in photosynthetic eukaryotes. Genome 53:68–78PubMedCrossRefGoogle Scholar
  49. Reuter W, Wiegand G, Huber R, Than ME (1999) Structural analysis at 2.2 A of orthorhombic crystals presents the asymmetry of the allophycocyanin-linker complex, AP.LC7.8, from phycobilisomes of Mastigocladus laminosus. Proc Natl Acad Sci U S A 96:1363–1368PubMedCentralPubMedCrossRefGoogle Scholar
  50. Ritter S, Hiller RG, Wrench PM, Welte W, Diederichs K (1999) Crystal structure of a phycourobilin-containing phycoerythrin at 1.90-A resolution. J Struct Biol 126:86–97PubMedCrossRefGoogle Scholar
  51. Sato T, Minagawa S, Kojima E, Okamoto N, Nakamoto H (2010) HtpG, the prokaryotic homologue of Hsp90, stabilizes a phycobilisome protein in the cyanobacterium Synechococcus elongatus PCC 7942. Mol Microbiol 76:576–589PubMedCrossRefGoogle Scholar
  52. Sauer K, Scheer H (1988) Exitation transfer in C-phycocyanin. Förster transfer rate and exciton calculations based on new crystal structure data for C-phycocyanins from Agmenellum quadruplaticum and Mastigocladus laminosus. Biochim Biophys Acta 936:157–170CrossRefGoogle Scholar
  53. Schirmer T, Huber R, Schneider M, Bode W, Miller M, Hackert ML (1986) Crystal structure analysis and refinement at 2.5 A of hexameric C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum. The molecular model and its implications for light-harvesting. J Mol Biol 188:651–676PubMedCrossRefGoogle Scholar
  54. Swanson RV, Glazer AN (1990) Phycobiliprotein methylation. Effect of the gamma-N-methylasparagine residue on energy transfer in phycocyanin and the phycobilisome. J Mol Biol 214:787–796PubMedCrossRefGoogle Scholar
  55. Tandeau de Marsac N, Cohen-Bazire G (1977) Molecular composition of cyanobacterial phycobilisomes. Proc Natl Acad Sci U S A 74:1635–1639CrossRefGoogle Scholar
  56. Teale FW, Dale RE (1970) Isolation and spectral characterization of phycobiliproteins. Biochem J 116:161–169PubMedCentralPubMedGoogle Scholar
  57. Tooley AJ, Cai YA, Glazer AN (2001) Biosynthesis of a fluorescent cyanobacterial C-phycocyanin holo-alpha subunit in a heterologous host. Proc Natl Acad Sci U S A 98:10560–10565PubMedCentralPubMedCrossRefGoogle Scholar
  58. Yamanaka G, Lundell DJ, Glazer AN (1982) Molecular architecture of a light-harvesting antenna. Isolation and characterization of phycobilisome subassembly particles. J Biol Chem 257:4077–4086PubMedGoogle Scholar
  59. Yi ZW, Huang H, Kuang TY, Sui SF (2005) Three-dimensional architecture of phycobilisomes from Nostoc flagelliforme revealed by single particle electron microscopy. FEBS Lett 579:3569–3573PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2014

Authors and Affiliations

  1. 1.Schulich Faculty of Chemistry, TechnionIsrael Institute of TechnologyTechnion City, HaifaIsrael

Personalised recommendations