Skip to main content

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 39))

  • 2502 Accesses

Summary

Some organisms lack conventional mitochondria and instead contain divergent mitochondrial-related organelles, called hydrogenosomes, which are double-membrane bound organelles and produce molecular hydrogen. Phylogenetic and biochemical analyses of hydrogenosomes indicated a common origin with mitochondria. Hydrogenosomes are spherical or slightly elongated organelles found in non-mitochondrial organisms such as some protists and fungi which live in anaerobic or microaerophilic environments. The most-studied hydrogenosomes are those in the human pathogen, Trichomonas vaginalis. Hydrogenosomes are polyphyletic and have arisen independently in several eukaryotic lineages. Like mitochondria hydrogenosomes produce ATP, participate in the metabolism of pyruvate formed during glycolysis, incorporate calcium, import proteins post-translationally and divide in the same way. However, they differ from mitochondria by the absence of genetic material, at least in trichomonas, lack a respiratory chain and cytochromes, absence of the F0–F1 ATPase (see Chap. 6), absence of the tricarboxylic acid cycle, lack of oxidative phosphorylation and absence of cristae. ATP is generated by the Trichomonas hydrogenosome by substrate level phosphorylation involving acetyl CoA released by the decarboxylation of pyruvate. Hydrogenosomes are considered an excellent drug target. The sequencing of the T. vaginalis genome allowed bioinformatic identification of putative hydrogenosomal proteins through screening for the conserved N-terminal presequence motif. The Trichomonas vaginalis hydrogenosome proteome is highly reduced relative to mitochondria. Of the 569 proteins in the hydrogenosomes proteome, ~30 % are proteins with important functions such as amino acid and energy metabolism, Fe–S cluster assembly, flavin-mediated catalysis, oxygen stress response, membrane translocation, chaperonin functions, proteolytic processing and ATP hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PFOR:

– Pyruvate: ferredoxin oxidoreductase

References

  • Akhmanova A, Voncken F, van Alen T, van Hoek A, Boxma B, Vogels G, Veenhuis M, Hackstein JH (1998) A hydrogenosome with a genome. Nature 396:527–528

    Article  CAS  PubMed  Google Scholar 

  • Andrade RI, Einicker-Lamas M, Bernardo RR, Previatto LM, Mohana-Borges R, Morgado-Diaz J, Benchimol M (2006) Cardiolipin in hydrogenosomes: evidence of symbiotic origin. Eukaryot Cell 5:784–787

    Article  Google Scholar 

  • Benchimol M (1999) Hydrogenosome autophagy in Tritrichomonas foetus: an ultrastructural and cytochemical study. Biol Cell 91:165–174

    Article  CAS  PubMed  Google Scholar 

  • Benchimol M (2000) Ultrastructural characterization of the isolated hydrogenosome in Tritrichomonas foetus. Tiss Cell 32:1–9

    Article  Google Scholar 

  • Benchimol M (2001) Hydrogenosome morphological variation induced by fibronectin and other drugs in Tritrichomonas foetus and Trichomonas vaginalis. Parasitol Res 87:215–222

    Article  CAS  PubMed  Google Scholar 

  • Benchimol M, De Souza W (1983) Fine structure and cytochemistry of the hydrogenosome of Tritrichomonas foetus. J Protozool 30:422–425

    Article  CAS  PubMed  Google Scholar 

  • Benchimol M, Engelke F (2003) Hydrogenosome behavior during the cell cycle in Tritrichomonas foetus. Biol Cell 95:283–293

    Article  CAS  PubMed  Google Scholar 

  • Benchimol M, Elias CA, De Souza W (1982) Ultrastructural localization of calcium in the plasma membrane and in the hydrogenosome of Tritrichomonas foetus. Exp Parasitol 54:277–284

    Article  CAS  PubMed  Google Scholar 

  • Benchimol M, Almeida JC, Lins U, Gonçalves NR, de Souza W (1993) Electron microscopic study of the effect of zinc on Tritrichomonas foetus. Antimicrob Agents Chemother 37:2722–2726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benchimol M, Almeida JCA, De Souza W (1996a) Further studies on the organization of the hydrogenosome in Tritrichomonas foetus. Tiss Cell 28:287–299

    Article  CAS  Google Scholar 

  • Benchimol M, Johnson PJ, De Souza W (1996b) Morphogenesis of the hydrogenosome: an ultrastructural study. Biol Cell 87:197–205

    Article  CAS  PubMed  Google Scholar 

  • Benchimol M, Durand R, Almeida J (1997) A double membrane surrounds the hydrogenosomes of the anaerobic fungus Neocallimastix frontalis. FEMS Microbiol 154:277–282

    Article  CAS  Google Scholar 

  • Biagini GA, Hayes AJ, Suller MTE, Winters C, Finlay BJ, Lloyd D (1997) Hydrogenosomes of Metopus contortus physiologically resemble mitochondria. Microbiology 143:1623–1629

    Article  CAS  Google Scholar 

  • Bradley PJ, Lahti CJ, Plumper E, Johnson PJ (1997) Targeting and translocation of proteins into the hydrogenosome of the protist Trichomonas: similarities with mitochondrial protein import. EMBO J 16:3484–3493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bui ET, Bradley PJ, Johnson PJ (1996) A common evolutionary origin for mitochondria and hydrogenosomes. Proc Natl Acad Sci U S A 93:9651–9656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, Wortman JR, Bidwell SL, Alsmark UC, Besteiro S, Sicheritz-Ponten T, Noel CJ, Dacks JB, Foster PG, Simillion C, Van de Peer Y, Miranda-Saavedra D, Barton GJ, Westrop GD, Müller S, Dessi D, Fiori PL, Ren Q, Paulsen I, Zhang H, Bastida-Corcuera FD, Simoes-Barbosa A, Brown MT, Hayes RD, Mukherjee M, Okumura CY, Schneider R, Smith AJ, Vanacova S, Villalvazo M, Haas BJ, Pertea M, Feldblyum TV, Utterback TR, Shu CL, Osoegawa K, de Jong PJ, Hrdy I, Horvathova L, Zubacova Z, Dolezal P, Malik SB, Logsdon JM Jr, Henze K, Gupta A, Wang CC, Dunne RL, Upcroft JA, Upcroft P, White O, Salzberg SL, Tang P, Chiu CH, Lee YS, Embley TM, Coombs GH, Mottram JC, Tachezy J, Fraser-Liggett CM, Johnson PJ (2007) Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 315:207–212

    Article  PubMed Central  PubMed  Google Scholar 

  • Cerkasov J, Cerkasovová A, Kulda J, Vilhelmová D (1978) Respiration of hydrogenosomes of Tritrichomonas foetus. I. ADP-dependent oxidation of malate and pyruvate. J Biol Chem 253:1207–1214

    CAS  PubMed  Google Scholar 

  • Clemens DL, Johnson PJ (2000) Failure to detect DNA in hydrogenosomes of Trichomonas vaginalis by nick translation and immunomicroscopy. Mol Biochem Parasitol 106:307–313

    Article  CAS  PubMed  Google Scholar 

  • Coombs GH, Westrop GD, Suchan P, Puzova G, Hirt RP, Embley TM, Mottram JC, Müller S (2004) The amitochondriate eukaryote Trichomonas vaginalis contains a divergent thioredoxin-linked peroxiredoxin antioxidant system. J Biol Chem 279:5249–5256

    Article  CAS  PubMed  Google Scholar 

  • Díaz JAM, De Souza W (1997) Purification and biochemical characterization of the hydrogenosomes of the flagellate protist Tritrichomonas foetus. Eur J Cell Biol 74:85–91

    PubMed  Google Scholar 

  • Dolezal P, Dancis A, Lesuisse E, Sutak R, Hrdý I, Embley TM, Tachezy J (2007) Frataxina conserved mitochondrial protein, in the hydrogenosome of Trichomonas vaginalis. Eukaryot Cell 6:1431–1438

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dyall SD, Koehler CM, Delgadillo-Correa MG, Bradley PJ, Plümper E, Leuernberger D, Turck CW, Johnson PJ (2000) Presence of a member of the mitochondrial carrier family in hydrogenosomes: conservation of membrane targeting pathways between hydrogenosomes and mitochondria. Mol Cell Biol 20:2488–2497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dyall SD, Yan W, Delgadillo-Correa MG, Lunceford A, Loo JA, Clarke CF, Johnson PJ (2004) Non-mitochondrial complex I proteins in a hydrogenosomal oxidoreductase complex. Nature 431:1103–1107

    Article  CAS  PubMed  Google Scholar 

  • Embley TM (2006) Multiple secondary origins of the anaerobic lifestyle in eukaryotes. Philos Trans R Soc Lond B Biol Sci 361:1055–1067

    Article  CAS  PubMed  Google Scholar 

  • Embley TM, Hirt RP (1998) Early branching eukaryotes? Curr Opin Genet Dev 8:624–629

    Article  CAS  PubMed  Google Scholar 

  • Fenchel T, Finlay BJ (eds) (1995) Ecology and Evolution in Anoxic Worlds. Oxford University Press, Oxford

    Google Scholar 

  • Finlay BJ, Fenchel T (1989) Hydrogenosomes in some anaerobic protozoa resemble mitochondria. FEMS Microbiol Lett 65:311–314

    Article  CAS  Google Scholar 

  • Granger BL, Warwood SJ, Benchimol M, De Souza W (2000) Transient invagination of flagella by Tritrichomonas foetus. Parasitol Res 86:699–709

    Article  CAS  PubMed  Google Scholar 

  • Guschina AI, Harris KM, Maskrey B, Goldelberg B, Lloyd D, Harwood JL (2009) The microaerophilic flagellate, Trichomonas vaginalis, contains unusual acyl lipids but no detectable cardiolipin. J Eukaryot Microbiol 56:52–57

    Article  CAS  PubMed  Google Scholar 

  • Honigberg MB, Brugerolle G (1990) Structure. In: Honigberg BM (ed) Trichomonads Parasitic in Humans. Springer, New York, pp 5–35

    Chapter  Google Scholar 

  • Hrdý I, Hirt RP, Dolezal P, Bardonova L, Foster PG, Tachezy J, Embley TM (2004) Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432:618–622

    Article  PubMed  Google Scholar 

  • Hrdý I, Cammack R, Stopka P, Kulda J, Tachezy J (2005) Alternative pathway of metronidazole activation in Trichomonas vaginalis hydrogenosomes. Antimicrob Agents Chemother 49:5033–5036

    Article  PubMed Central  PubMed  Google Scholar 

  • Hrdý I, Tachezy J, Müller M (2008) Metabolism of trichomonad hydrogenosomes. In: Tachezy J (ed) Hydrogenosomes and mitosomes: mitochondria of anaerobic eukaryotes. Springer, Berlin, pp 113–145

    Chapter  Google Scholar 

  • Johnson PJ, Lahti CJ, Bradley PJ (1993) Biogenesis of the hydrogenosome: an unusual organelle in the anaerobic protist Trichomonas vaginalis. J Parasitol 79:664–670

    Article  CAS  PubMed  Google Scholar 

  • Lahti CJ, Johnson PJ (1991) Trichomonas vaginalis hydrogenosomal proteins are synthesized on free polyribosomes and may undergo processing upon maturation. Mol Biochem Parasitol 46:307–310

    Article  CAS  PubMed  Google Scholar 

  • Lahti CJ, d’Oliveira CE, Johnson PJ (1992) Beta-succinyl-coenzyme A synthetase from Trichomonas vaginalis is a soluble hydrogenosomal protein with an amino-terminal sequence that resembles mitochondrial presequences. J Bacteriol 174:6822–6830

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lindmark DG, Müller M (1973) Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate, Tritrichomonas foetus, and its role in pyruvate metabolism. J Biol Chem 248:7724–7728

    CAS  PubMed  Google Scholar 

  • Madeiro RF, Benchimol M (2004) The effect of drugs in cell structure of Tritrichimonas foetus. Parasitol Res 92:159–170

    Article  Google Scholar 

  • Mariante RM, Guimarães CA, Linden R, Benchimol M (2003) Hydrogen peroxide induces caspase activation and programmed cell death in the amitochondrial Tritrichomonas foetus. Histochem Cell Biol 120:129–141

    Article  CAS  PubMed  Google Scholar 

  • Mentel M, Zimorski V, Haferkamp P, Martin W, Henze K (2008) Protein import into hydrogenosomes of Trichomonas vaginalis involves both N-terminal and internal targeting signals: a case study of thioredoxin reductases. Eukaryot Cell 7:1750–1757

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Müller M (1990) Biochemistry. In: Honigberg BM (ed) Trichomonads parasitic in humans. Springer, New York, pp 36–83

    Google Scholar 

  • Müller M (1993) The hydrogenosome. J Gen Microbiol 139:2879–2889

    Article  PubMed  Google Scholar 

  • Rada P, Dolez¡al P, Jedelsky PL, Bursac D, Perry AJ, Sedinova M, Smískova K, Novotny M, Beltrán NC, Hrdý I, Lithgow T, Tachezy J (2011) The core components of organelle biogenesis and membrane transport in the hydrogenosomes of Trichomonas vaginalis. PLoS ONE 6(9):e24428. doi:10.1371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reis IA, Martinez MP, Yarlett N, Johnson PJ, Silva-Filho FC, Vannier-Santos MA (1999) Inhibition of polyamine synthesis arrests trichomonad growth and induces destruction of hydrogenosomes. Antimicrob Agents Chemother 43:1919–1923

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ribeiro KC, Vetö Arnholdt AC, Benchimol M (2002) Tritrichomonas foetus: induced division synchrony by hydroxyurea. Parasitol Res 88:627–631

    Article  PubMed  Google Scholar 

  • Schneider RE, Brown MT, Shiflett AM, Dyall SD, Hayes RD, Xie Y, Loo JA, Johnson PJ (2011) The Trichomonas vaginalis hydrogenosome proteome is highly reduced relative to mitochondria, yet complex compared with mitosomes. Int J Parasitol 41:1421–1434

    Article  CAS  PubMed  Google Scholar 

  • Shiflett AM, Johnson PJ (2010) Mitochondrion-related organelles in eukaryotic protists. Annu Rev Microbiol 64:409–429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smíd O, Matusková A, Harris SR, Kucera T, Novotný M, Horváthová L, Hrdý I, Kutejová E, Hirt RP, Embley TM, Janata J, Tachezy J (2008) Reductive evolution of the mitochondrial processing peptidases of the unicellular parasites Trichomonas vaginalis and Giardia intestinalis. PLoS Pathog 4:e1000243

    Article  PubMed Central  PubMed  Google Scholar 

  • Tandler B, Hoppel L (1973) Division of giant mitochondria during recovery from cuprizone intoxication. J Cell Biol 56:266–272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van der Giezen M, Sjollema KA, Artz RR, Alkema W, Prins RA (1997) Hydrogenosomes in the anaerobic fungus Neocallimastix frontalis have a double membrane but lack an associated organelle genome. FEBS Lett 408:147–150

    Article  PubMed  Google Scholar 

  • Vanácová S, Rasoloson D, Rázga J, Hrdý I, Kulda J, Tachezy J (2001) Iron-induced changes in pyruvate metabolism of Tritrichomonas foetus and involvement of iron in expression of hydrogenosomal proteins. Microbiology 147:53–62

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), PRONEX (Programa de Núcleo de Excelência), FAPERJ (Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro), and AUSU (Associação Universitária Santa Úrsula).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlene Benchimol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Benchimol, M. (2014). The Hydrogenosome. In: Hohmann-Marriott, M. (eds) The Structural Basis of Biological Energy Generation. Advances in Photosynthesis and Respiration, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8742-0_22

Download citation

Publish with us

Policies and ethics