The Hydrogenosome

  • Marlene BenchimolEmail author
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 39)


Some organisms lack conventional mitochondria and instead contain divergent mitochondrial-related organelles, called hydrogenosomes, which are double-membrane bound organelles and produce molecular hydrogen. Phylogenetic and biochemical analyses of hydrogenosomes indicated a common origin with mitochondria. Hydrogenosomes are spherical or slightly elongated organelles found in non-mitochondrial organisms such as some protists and fungi which live in anaerobic or microaerophilic environments. The most-studied hydrogenosomes are those in the human pathogen, Trichomonas vaginalis. Hydrogenosomes are polyphyletic and have arisen independently in several eukaryotic lineages. Like mitochondria hydrogenosomes produce ATP, participate in the metabolism of pyruvate formed during glycolysis, incorporate calcium, import proteins post-translationally and divide in the same way. However, they differ from mitochondria by the absence of genetic material, at least in trichomonas, lack a respiratory chain and cytochromes, absence of the F0–F1 ATPase (see Chap.  6), absence of the tricarboxylic acid cycle, lack of oxidative phosphorylation and absence of cristae. ATP is generated by the Trichomonas hydrogenosome by substrate level phosphorylation involving acetyl CoA released by the decarboxylation of pyruvate. Hydrogenosomes are considered an excellent drug target. The sequencing of the T. vaginalis genome allowed bioinformatic identification of putative hydrogenosomal proteins through screening for the conserved N-terminal presequence motif. The Trichomonas vaginalis hydrogenosome proteome is highly reduced relative to mitochondria. Of the 569 proteins in the hydrogenosomes proteome, ~30 % are proteins with important functions such as amino acid and energy metabolism, Fe–S cluster assembly, flavin-mediated catalysis, oxygen stress response, membrane translocation, chaperonin functions, proteolytic processing and ATP hydrolysis.


Molecular Hydrogen Eukaryotic Lineage Ferredoxin Oxidoreductase Substrate Level Phosphorylation Processing Peptidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



– Pyruvate: ferredoxin oxidoreductase



This work was supported by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), PRONEX (Programa de Núcleo de Excelência), FAPERJ (Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro), and AUSU (Associação Universitária Santa Úrsula).


  1. Akhmanova A, Voncken F, van Alen T, van Hoek A, Boxma B, Vogels G, Veenhuis M, Hackstein JH (1998) A hydrogenosome with a genome. Nature 396:527–528PubMedCrossRefGoogle Scholar
  2. Andrade RI, Einicker-Lamas M, Bernardo RR, Previatto LM, Mohana-Borges R, Morgado-Diaz J, Benchimol M (2006) Cardiolipin in hydrogenosomes: evidence of symbiotic origin. Eukaryot Cell 5:784–787CrossRefGoogle Scholar
  3. Benchimol M (1999) Hydrogenosome autophagy in Tritrichomonas foetus: an ultrastructural and cytochemical study. Biol Cell 91:165–174PubMedCrossRefGoogle Scholar
  4. Benchimol M (2000) Ultrastructural characterization of the isolated hydrogenosome in Tritrichomonas foetus. Tiss Cell 32:1–9CrossRefGoogle Scholar
  5. Benchimol M (2001) Hydrogenosome morphological variation induced by fibronectin and other drugs in Tritrichomonas foetus and Trichomonas vaginalis. Parasitol Res 87:215–222PubMedCrossRefGoogle Scholar
  6. Benchimol M, De Souza W (1983) Fine structure and cytochemistry of the hydrogenosome of Tritrichomonas foetus. J Protozool 30:422–425PubMedCrossRefGoogle Scholar
  7. Benchimol M, Engelke F (2003) Hydrogenosome behavior during the cell cycle in Tritrichomonas foetus. Biol Cell 95:283–293PubMedCrossRefGoogle Scholar
  8. Benchimol M, Elias CA, De Souza W (1982) Ultrastructural localization of calcium in the plasma membrane and in the hydrogenosome of Tritrichomonas foetus. Exp Parasitol 54:277–284PubMedCrossRefGoogle Scholar
  9. Benchimol M, Almeida JC, Lins U, Gonçalves NR, de Souza W (1993) Electron microscopic study of the effect of zinc on Tritrichomonas foetus. Antimicrob Agents Chemother 37:2722–2726PubMedCentralPubMedCrossRefGoogle Scholar
  10. Benchimol M, Almeida JCA, De Souza W (1996a) Further studies on the organization of the hydrogenosome in Tritrichomonas foetus. Tiss Cell 28:287–299CrossRefGoogle Scholar
  11. Benchimol M, Johnson PJ, De Souza W (1996b) Morphogenesis of the hydrogenosome: an ultrastructural study. Biol Cell 87:197–205PubMedCrossRefGoogle Scholar
  12. Benchimol M, Durand R, Almeida J (1997) A double membrane surrounds the hydrogenosomes of the anaerobic fungus Neocallimastix frontalis. FEMS Microbiol 154:277–282CrossRefGoogle Scholar
  13. Biagini GA, Hayes AJ, Suller MTE, Winters C, Finlay BJ, Lloyd D (1997) Hydrogenosomes of Metopus contortus physiologically resemble mitochondria. Microbiology 143:1623–1629CrossRefGoogle Scholar
  14. Bradley PJ, Lahti CJ, Plumper E, Johnson PJ (1997) Targeting and translocation of proteins into the hydrogenosome of the protist Trichomonas: similarities with mitochondrial protein import. EMBO J 16:3484–3493PubMedCentralPubMedCrossRefGoogle Scholar
  15. Bui ET, Bradley PJ, Johnson PJ (1996) A common evolutionary origin for mitochondria and hydrogenosomes. Proc Natl Acad Sci U S A 93:9651–9656PubMedCentralPubMedCrossRefGoogle Scholar
  16. Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, Wortman JR, Bidwell SL, Alsmark UC, Besteiro S, Sicheritz-Ponten T, Noel CJ, Dacks JB, Foster PG, Simillion C, Van de Peer Y, Miranda-Saavedra D, Barton GJ, Westrop GD, Müller S, Dessi D, Fiori PL, Ren Q, Paulsen I, Zhang H, Bastida-Corcuera FD, Simoes-Barbosa A, Brown MT, Hayes RD, Mukherjee M, Okumura CY, Schneider R, Smith AJ, Vanacova S, Villalvazo M, Haas BJ, Pertea M, Feldblyum TV, Utterback TR, Shu CL, Osoegawa K, de Jong PJ, Hrdy I, Horvathova L, Zubacova Z, Dolezal P, Malik SB, Logsdon JM Jr, Henze K, Gupta A, Wang CC, Dunne RL, Upcroft JA, Upcroft P, White O, Salzberg SL, Tang P, Chiu CH, Lee YS, Embley TM, Coombs GH, Mottram JC, Tachezy J, Fraser-Liggett CM, Johnson PJ (2007) Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 315:207–212PubMedCentralPubMedCrossRefGoogle Scholar
  17. Cerkasov J, Cerkasovová A, Kulda J, Vilhelmová D (1978) Respiration of hydrogenosomes of Tritrichomonas foetus. I. ADP-dependent oxidation of malate and pyruvate. J Biol Chem 253:1207–1214PubMedGoogle Scholar
  18. Clemens DL, Johnson PJ (2000) Failure to detect DNA in hydrogenosomes of Trichomonas vaginalis by nick translation and immunomicroscopy. Mol Biochem Parasitol 106:307–313PubMedCrossRefGoogle Scholar
  19. Coombs GH, Westrop GD, Suchan P, Puzova G, Hirt RP, Embley TM, Mottram JC, Müller S (2004) The amitochondriate eukaryote Trichomonas vaginalis contains a divergent thioredoxin-linked peroxiredoxin antioxidant system. J Biol Chem 279:5249–5256PubMedCrossRefGoogle Scholar
  20. Díaz JAM, De Souza W (1997) Purification and biochemical characterization of the hydrogenosomes of the flagellate protist Tritrichomonas foetus. Eur J Cell Biol 74:85–91PubMedGoogle Scholar
  21. Dolezal P, Dancis A, Lesuisse E, Sutak R, Hrdý I, Embley TM, Tachezy J (2007) Frataxina conserved mitochondrial protein, in the hydrogenosome of Trichomonas vaginalis. Eukaryot Cell 6:1431–1438PubMedCentralPubMedCrossRefGoogle Scholar
  22. Dyall SD, Koehler CM, Delgadillo-Correa MG, Bradley PJ, Plümper E, Leuernberger D, Turck CW, Johnson PJ (2000) Presence of a member of the mitochondrial carrier family in hydrogenosomes: conservation of membrane targeting pathways between hydrogenosomes and mitochondria. Mol Cell Biol 20:2488–2497PubMedCentralPubMedCrossRefGoogle Scholar
  23. Dyall SD, Yan W, Delgadillo-Correa MG, Lunceford A, Loo JA, Clarke CF, Johnson PJ (2004) Non-mitochondrial complex I proteins in a hydrogenosomal oxidoreductase complex. Nature 431:1103–1107PubMedCrossRefGoogle Scholar
  24. Embley TM (2006) Multiple secondary origins of the anaerobic lifestyle in eukaryotes. Philos Trans R Soc Lond B Biol Sci 361:1055–1067PubMedCrossRefGoogle Scholar
  25. Embley TM, Hirt RP (1998) Early branching eukaryotes? Curr Opin Genet Dev 8:624–629PubMedCrossRefGoogle Scholar
  26. Fenchel T, Finlay BJ (eds) (1995) Ecology and Evolution in Anoxic Worlds. Oxford University Press, OxfordGoogle Scholar
  27. Finlay BJ, Fenchel T (1989) Hydrogenosomes in some anaerobic protozoa resemble mitochondria. FEMS Microbiol Lett 65:311–314CrossRefGoogle Scholar
  28. Granger BL, Warwood SJ, Benchimol M, De Souza W (2000) Transient invagination of flagella by Tritrichomonas foetus. Parasitol Res 86:699–709PubMedCrossRefGoogle Scholar
  29. Guschina AI, Harris KM, Maskrey B, Goldelberg B, Lloyd D, Harwood JL (2009) The microaerophilic flagellate, Trichomonas vaginalis, contains unusual acyl lipids but no detectable cardiolipin. J Eukaryot Microbiol 56:52–57PubMedCrossRefGoogle Scholar
  30. Honigberg MB, Brugerolle G (1990) Structure. In: Honigberg BM (ed) Trichomonads Parasitic in Humans. Springer, New York, pp 5–35CrossRefGoogle Scholar
  31. Hrdý I, Hirt RP, Dolezal P, Bardonova L, Foster PG, Tachezy J, Embley TM (2004) Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432:618–622PubMedCrossRefGoogle Scholar
  32. Hrdý I, Cammack R, Stopka P, Kulda J, Tachezy J (2005) Alternative pathway of metronidazole activation in Trichomonas vaginalis hydrogenosomes. Antimicrob Agents Chemother 49:5033–5036PubMedCentralPubMedCrossRefGoogle Scholar
  33. Hrdý I, Tachezy J, Müller M (2008) Metabolism of trichomonad hydrogenosomes. In: Tachezy J (ed) Hydrogenosomes and mitosomes: mitochondria of anaerobic eukaryotes. Springer, Berlin, pp 113–145CrossRefGoogle Scholar
  34. Johnson PJ, Lahti CJ, Bradley PJ (1993) Biogenesis of the hydrogenosome: an unusual organelle in the anaerobic protist Trichomonas vaginalis. J Parasitol 79:664–670PubMedCrossRefGoogle Scholar
  35. Lahti CJ, Johnson PJ (1991) Trichomonas vaginalis hydrogenosomal proteins are synthesized on free polyribosomes and may undergo processing upon maturation. Mol Biochem Parasitol 46:307–310PubMedCrossRefGoogle Scholar
  36. Lahti CJ, d’Oliveira CE, Johnson PJ (1992) Beta-succinyl-coenzyme A synthetase from Trichomonas vaginalis is a soluble hydrogenosomal protein with an amino-terminal sequence that resembles mitochondrial presequences. J Bacteriol 174:6822–6830PubMedCentralPubMedGoogle Scholar
  37. Lindmark DG, Müller M (1973) Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate, Tritrichomonas foetus, and its role in pyruvate metabolism. J Biol Chem 248:7724–7728PubMedGoogle Scholar
  38. Madeiro RF, Benchimol M (2004) The effect of drugs in cell structure of Tritrichimonas foetus. Parasitol Res 92:159–170CrossRefGoogle Scholar
  39. Mariante RM, Guimarães CA, Linden R, Benchimol M (2003) Hydrogen peroxide induces caspase activation and programmed cell death in the amitochondrial Tritrichomonas foetus. Histochem Cell Biol 120:129–141PubMedCrossRefGoogle Scholar
  40. Mentel M, Zimorski V, Haferkamp P, Martin W, Henze K (2008) Protein import into hydrogenosomes of Trichomonas vaginalis involves both N-terminal and internal targeting signals: a case study of thioredoxin reductases. Eukaryot Cell 7:1750–1757PubMedCentralPubMedCrossRefGoogle Scholar
  41. Müller M (1990) Biochemistry. In: Honigberg BM (ed) Trichomonads parasitic in humans. Springer, New York, pp 36–83Google Scholar
  42. Müller M (1993) The hydrogenosome. J Gen Microbiol 139:2879–2889PubMedCrossRefGoogle Scholar
  43. Rada P, Dolez¡al P, Jedelsky PL, Bursac D, Perry AJ, Sedinova M, Smískova K, Novotny M, Beltrán NC, Hrdý I, Lithgow T, Tachezy J (2011) The core components of organelle biogenesis and membrane transport in the hydrogenosomes of Trichomonas vaginalis. PLoS ONE 6(9):e24428. doi:10.1371PubMedCentralPubMedCrossRefGoogle Scholar
  44. Reis IA, Martinez MP, Yarlett N, Johnson PJ, Silva-Filho FC, Vannier-Santos MA (1999) Inhibition of polyamine synthesis arrests trichomonad growth and induces destruction of hydrogenosomes. Antimicrob Agents Chemother 43:1919–1923PubMedCentralPubMedGoogle Scholar
  45. Ribeiro KC, Vetö Arnholdt AC, Benchimol M (2002) Tritrichomonas foetus: induced division synchrony by hydroxyurea. Parasitol Res 88:627–631PubMedCrossRefGoogle Scholar
  46. Schneider RE, Brown MT, Shiflett AM, Dyall SD, Hayes RD, Xie Y, Loo JA, Johnson PJ (2011) The Trichomonas vaginalis hydrogenosome proteome is highly reduced relative to mitochondria, yet complex compared with mitosomes. Int J Parasitol 41:1421–1434PubMedCrossRefGoogle Scholar
  47. Shiflett AM, Johnson PJ (2010) Mitochondrion-related organelles in eukaryotic protists. Annu Rev Microbiol 64:409–429PubMedCentralPubMedCrossRefGoogle Scholar
  48. Smíd O, Matusková A, Harris SR, Kucera T, Novotný M, Horváthová L, Hrdý I, Kutejová E, Hirt RP, Embley TM, Janata J, Tachezy J (2008) Reductive evolution of the mitochondrial processing peptidases of the unicellular parasites Trichomonas vaginalis and Giardia intestinalis. PLoS Pathog 4:e1000243PubMedCentralPubMedCrossRefGoogle Scholar
  49. Tandler B, Hoppel L (1973) Division of giant mitochondria during recovery from cuprizone intoxication. J Cell Biol 56:266–272PubMedCentralPubMedCrossRefGoogle Scholar
  50. van der Giezen M, Sjollema KA, Artz RR, Alkema W, Prins RA (1997) Hydrogenosomes in the anaerobic fungus Neocallimastix frontalis have a double membrane but lack an associated organelle genome. FEBS Lett 408:147–150PubMedCrossRefGoogle Scholar
  51. Vanácová S, Rasoloson D, Rázga J, Hrdý I, Kulda J, Tachezy J (2001) Iron-induced changes in pyruvate metabolism of Tritrichomonas foetus and involvement of iron in expression of hydrogenosomal proteins. Microbiology 147:53–62PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2014

Authors and Affiliations

  1. 1.Laboratório de Ultraestrutura CelularUniversidade Santa ÚrsulaRio de JaneiroBrazil

Personalised recommendations