Skip to main content

Electron Transport in the Mitochondrial Respiratory Chain

  • Chapter
  • First Online:
The Structural Basis of Biological Energy Generation

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 39))

Summary

The metabolic capacity of the eukaryotic cell to convert free energy contained in nutrients into ATP is a process accomplished by a multi-step system: the mitochondrial respiratory chain. This chain involves a series of electron-transferring enzymes and redox co-factors, whose biochemical characterization is the collective result of more than 50 years of scientists’ endeavors. The current knowledge describes in detail the structure and function of the individual proton-translocating “core” complexes of the respiratory chain (Complex I, III, IV). However, a holistic approach to the study of electrons transport from NAD-dependent substrates to oxygen has recently directed our attention to the existence of specific albeit dynamic interactions between the respiratory complexes. In this context, the respiratory complexes are envisaged to be either in form of highly ordered assemblies (i.e. supercomplexes) or as individual enzymes randomly distributed in the mitochondrial membrane. Either model of organization has functional consequences, which can be discussed in terms of the structural stability of the protein complexes and the kinetic efficiency of inter-complex electron transfer. Available experimental evidence suggests that Complex I and Complex III behave as assembled supercomplexes (ubiquinone-channeling) or as individual enzymes (ubiquinone-pool), depending on the lipid environment of the membrane. On the contrary, a strict association of Complexes III and Complex IV is not required for electron transfer via cytochrome c, although there are supercomplexes in bovine heart mitochondria, known as the respirasomes, that also include some molecules of Complex IV. Our recent experimental results demonstrate that the disruption of the supercomplex I1–III2 enhances the propensity of Complex I to generate the superoxide anion; we propose that any primary source of oxidative stress in mitochondria may perpetuate generation of reactive oxygen species by a vicious cycle involving supercomplex dissociation as a major determinant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BN-PAGE:

– Blue native polyacrylamide gel electrophoresis;

CI–IV :

– Metabolic flux control coefficient of the corresponding respiratory complex;

CoQ:

– Coenzyme Q ubiquinone;

EPR:

– Electron paramagnetic resonance;

ETF:

– Electron transfer flavoprotein;

FP:

– Flavoprotein;

O2 ·:

– Superoxide anion;

OXPHOS:

– Oxidative phosphorylation system;

PL:

– Phospholipids;

ROS:

– Reactive oxygen species;

SDS:

– Sodium dodecyl sulfate

References

  • Acín-Pérez R, Fernández-Silva P, Peleato ML, Pérez-Martos A, Enriquez JA (2008) Respiratory active mitochondrial supercomplexes. Mol Cell 32:529–539

    PubMed  Google Scholar 

  • Adam-Vizi V, Chinopoulos C (2006) Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci 27:639–645

    CAS  PubMed  Google Scholar 

  • Althoff T, Mills DJ, Popot JL, Kühlbrandt W (2011) Arrangement of electron transport chain components in bovine mitochondrial supercomplex I(1)III(2)IV(1). EMBO J 30:4652–4664

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baradaran R, Berrisford JM, Minhas GS, Sazanov LA (2013) Crystal structure of the entire respiratory complex I. Nature 494:443–448

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baum H, Silman HI, Rieske HS, Lipton SH (1967) On the composition and structural organization of complex 3 of the mitochondrial electron transfer chain. J Biol Chem 242:4876–4887

    CAS  PubMed  Google Scholar 

  • Belevich I, Verkhovsky MI (2008) Molecular mechanism of proton translocation by cytochrome c oxidase. Antioxid Redox Signal 10:1–29

    CAS  PubMed  Google Scholar 

  • Belevich I, Bloch DA, Belevich N, Wikström M, Verkhovsky MI (2007) Exploring the proton pump mechanism of cytochrome c oxidase in real time. Proc Natl Acad Sci U S A 104:2685–2690

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bianchi C, Genova ML, Parenti Castelli G, Lenaz G (2004) The mitochondrial respiratory chain is partially organized in a supercomplex assembly: kinetic evidence using flux control analysis. J Biol Chem 279:36562–36569

    CAS  PubMed  Google Scholar 

  • Boumans H, Grivell LA, Berden JA (1998) The respiratory chain in yeast behaves as a single functional unit. J Biol Chem 273:4872–4877

    CAS  PubMed  Google Scholar 

  • Boveris A, Cadenas E (1975) Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration. FEBS Lett 54:311–314

    CAS  PubMed  Google Scholar 

  • Brandt U (2013) Inside view of a giant proton pump. Angew Chem Int Ed Engl 52:7358–7360

    CAS  PubMed  Google Scholar 

  • Brandt U, Kerscher S, Drose S, Zwicker K, Zickermann V (2003) Proton pumping by NADH: ubiquinone oxidoreductase. A redox driven conformational change mechanism? FEBS Lett 545:9–17

    CAS  PubMed  Google Scholar 

  • Brzezinski P, Gennis RB (2008) Cytochrome c oxidase: exciting progress and remaining mysteries. J Bioenerg Biomembr 40:521–531

    CAS  PubMed  Google Scholar 

  • Bultema JB, Braun HP, Boekema EJ, Kouril R (2009) Megacomplex organization of the oxidative phosphorylation system by structural analysis of respiratory supercomplexes from potato. Biochim Biophys Acta 1787:60–67

    CAS  PubMed  Google Scholar 

  • Chance B, Williams GR (1955) A method for the localization of sites for oxidative phosphorylation. Nature 176:250–254

    CAS  PubMed  Google Scholar 

  • Chance B, Williams GR (1956) The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem 17:65–134

    CAS  PubMed  Google Scholar 

  • Covian R, Trumpower BL (2008) The dimeric structure of the cytochrome bc(1) complex prevents center P inhibition by reverse reactions at center N. Biochim Biophys Acta 1777:1044–1052

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cramer WA, Hasan SS, Yamashita E (2011) The Q cycle of cytochrome bc complexes: a structure perspective. Biochim Biophys Acta 1807:788–802

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crane FL, Hatefi Y, Lester RL, Widmer C (1957) Isolation of a quinone from beef heart mitochondria. Biochim Biophys Acta 25:220–221

    CAS  PubMed  Google Scholar 

  • Criddle RS, Bock RM, Green DE, Tisdale H (1962) Physical characteristics of proteins of the electron transfer system and interpretation of the structure of the mitochondrion. Biochemistry 1:827–842

    CAS  PubMed  Google Scholar 

  • Dalmonte ME, Forte E, Genova ML, Giuffrè A, Sarti P, Lenaz G (2009) Control of respiration by cytochrome c oxidase in intact cells: role of the membrane potential. J Biol Chem 284:32331–32335

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dröse S, Brandt U (2008) The mechanism of mitochondrial superoxide production by the cytochrome bc1 complex. J Biol Chem 283:21649–21654

    PubMed  Google Scholar 

  • Dudkina NV, Kudryashev M, Stahlberg H, Boekema EJ (2011) Interaction of complexes I, III, and IV within the bovine respirasome by single particle cryoelectron tomography. Proc Natl Acad Sci U S A 108:15196–15200

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dutton PL, Moser CC, Sled VD, Daldal F, Ohnishi T (1998) A reductant-induced oxidation mechanism for complex I. Biochim Biophys Acta 1364:245–257

    CAS  PubMed  Google Scholar 

  • Efremov RG, Sazanov LA (2011) Respiratory complex I: ‘steam engine’ of the cell? Curr Opin Struct Biol 21:532–540

    CAS  PubMed  Google Scholar 

  • Efremov RG, Baradaran R, Sazanov LA (2010) The architecture of respiratory complex I. Nature 465:441–445

    CAS  PubMed  Google Scholar 

  • Esterházy D, King MS, Yakovlev G, Hirst J (2008) Production of reactive oxygen species by complex I (NADH: ubiquinone oxidoreductase) from Escherichia coli and comparison to the enzyme from mitochondria. Biochemistry 47:3964–3971

    PubMed  Google Scholar 

  • Eubel H, Heinemeyer J, Sunderhaus S, Braun HP (2004) Respiratory chain supercomplexes in plant mitochondria. Plant Physiol Biochem 42:937–942

    CAS  PubMed  Google Scholar 

  • Euro L, Belevich G, Verkhovsky MI, Wikström M, Verkhovskaya M (2008) Conserved lysine residues of the membrane subunit NuoM are involved in energy conversion by the proton-pumping NADH: ubiquinone oxidoreductase (Complex I). Biochim Biophys Acta Bioenerg 1777:1166–1172

    CAS  Google Scholar 

  • Fato R, Bergamini C, Bortolus M, Maniero AL, Leoni S, Ohnishi T, Lenaz G (2009) Differential effects of complex I inhibitors on production of reactive oxygen species. Biochim Biophys Acta 1787:384–392

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fernandez-Moran H (1963) Subunit organization of mitochondrial membranes. Science 140:381

    CAS  PubMed  Google Scholar 

  • Galkin A, Brandt U (2005) Superoxide radical formation by pure complex I (NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica. J Biol Chem 280:30129–30135

    CAS  PubMed  Google Scholar 

  • Genova ML, Ventura B, Giuliano G, Bovina C, Formiggini G, Parenti CG, Lenaz G (2001) The site of production of superoxide radical in mitochondrial complex I is not a bound ubisemiquinone but presumably iron-sulfur cluster N2. FEBS Lett 505:364–368

    CAS  PubMed  Google Scholar 

  • Genova ML, Baracca A, Biondi A, Casalena G, Faccioli M, Falasca AI, Formiggini G, Sgarbi G, Solaini G, Lenaz G (2008) Is supercomplex organization of the respiratory chain required for optimal electron transfer activity? Biochim Biophys Acta 1777:740–746

    CAS  PubMed  Google Scholar 

  • Green DE, Tzagoloff A (1966) The mitochondrial electron transfer chain. Arch Biochem Biophys 116:293–304

    CAS  PubMed  Google Scholar 

  • Green DE, Wharton DC (1963) Stoichiometry of the fixed oxidation-reduction components of the electron transfer chain of beef heart mitochondria. Biochem Z 338:335–348

    CAS  PubMed  Google Scholar 

  • Griffiths DE, Wharton DC (1961) Studies of the electron transport system. XXXV. Purification and properties of cytochrome oxidase. J Biol Chem 236:1850–1856

    CAS  PubMed  Google Scholar 

  • Guerrero-Castillo S, Vázquez-Acevedo M, González-Halphen D, Uribe-Carvajal S (2009) In Yarrowia lipolytica mitochondria, the alternative NADH dehydrogenase interacts specifically with the cytochrome complexes of the classic respiratory pathway. Biochim Biophys Acta 1787:75–85

    CAS  PubMed  Google Scholar 

  • Hackenbrock CR, Chazotte B, Gupte SS (1986) The random collision model and a critical assessment of diffusion and collision in mitochondrial electron transport. J Bioenerg Biomembr 18:331–368

    CAS  PubMed  Google Scholar 

  • Hatefi Y, Haavik AG, Jurtshuk P (1961) Studies on the electron transport system. XXX. DPNH-cytochrome c reductase I. Biochim Biophys Acta 52:106–118

    CAS  PubMed  Google Scholar 

  • Hatefi Y, Haavik AG, Griffiths DE (1962a) Studies on the electron transfer system. XL. Preparation and properties of mitochondrial DPNH-coenzyme Q reductase. J Biol Chem 237:1676–1680

    CAS  PubMed  Google Scholar 

  • Hatefi Y, Haavik AG, Fowler LR, Griffiths DE (1962b) Studies on the electron transfer system, XLII. Reconstitution of the electron transfer system. J Biol Chem 237:2661–2669

    CAS  PubMed  Google Scholar 

  • Heinemeyer J, Braun HP, Boekema EJ, Kouril R (2007) A structural model of the cytochrome c reductase/oxidase supercomplex from yeast mitochondria. J Biol Chem 282:12240–12248

    CAS  PubMed  Google Scholar 

  • Hinchliffe P, Sazanov LA (2005) Organization of iron-sulfur clusters in respiratory complex I. Science 309:71–74

    Google Scholar 

  • Hinkle PC (2005) P/O ratios of mitochondrial oxidative phosphorylation. Biochim Biophys Acta 1706:1–11

    CAS  PubMed  Google Scholar 

  • Hinkle PC, Kim JJ, Racker E (1972) Ion transport and respiratory control in vesicles formed from cytochrome oxidase and phospholipids. J Biol Chem 247:1338–1339

    CAS  PubMed  Google Scholar 

  • Höchli MK, Hackenbrock CR (1976) Fluidity in mitochondrial membranes: thermotropic lateral translational motion of intramembrane particles. Proc Natl Acad Sci U S A 73:1636–1640

    PubMed Central  PubMed  Google Scholar 

  • Horsefield R, Yankovskaya V, Sexton G, Whittingham W, Shiomi K, Omura S, Byrne B, Cecchini G, Iwata S (2006) Structural and computational analysis of the quinonebinding site of complex II (succinate-ubiquinone oxidoreductase): a mechanism of electron transfer and proton conduction during ubiquinone reduction. J Biol Chem 281:7309–7316

    CAS  PubMed  Google Scholar 

  • Hunte C, Zickermann V, Brandt U (2010) Functional modules and structural basis of conformational coupling in mitochondrial complex I. Science 329:448–451

    CAS  PubMed  Google Scholar 

  • Kadenbach B (2003) Intrinsic and extrinsic uncoupling of oxidative phosphorylation. Biochim Biophys Acta 1604:77–94

    CAS  PubMed  Google Scholar 

  • Krab K (1995) Kinetic and regulatory aspects of the function of the alternative oxidase in plant respiration. J Bioenerg Biomembr 27:387–396

    CAS  PubMed  Google Scholar 

  • Krause F, Reifschneider NH, Vocke D, Seelert H, Rexroth S, Dencher NA (2004a) “Respirasome”-like supercomplexes in green leaf mitochondria of spinach. J Biol Chem 279:48369–48375

    CAS  PubMed  Google Scholar 

  • Krause F, Scheckhuber CQ, Werner A, Rexroth S, Reifschneider NH, Dencher NA, Osiewacz HD (2004b) Supramolecular organization of cytochrome c oxidase- and alternative oxidase-dependent respiratory chains in the filamentous fungus Podospora anserina. J Biol Chem 279:26453–26461

    CAS  PubMed  Google Scholar 

  • Krause F, Scheckhuber CQ, Werner A, Rexroth S, Reifschneider NH, Dencher NA, Osiewacz HD (2006) OXPHOS Supercomplexes: respiration and life-span control in the aging model Podospora anserina. Ann NY Acad Sci 1067:106–115

    CAS  PubMed  Google Scholar 

  • Kröger A, Klingenberg M (1973) The kinetics of the redox reactions of ubiquinone related to the electron-transport activity in the respiratory chain. Eur J Biochem 34:358–368

    PubMed  Google Scholar 

  • Kussmaul L, Hirst J (2006) The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Natl Acad Sci U S A 103:7607–7612

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kwong LK, Sohal RS (1998) Substrate and site specificity of hydrogen peroxide generation in mouse mitochondria. Arch Biochem Biophys 350:118–126

    CAS  PubMed  Google Scholar 

  • Lehninger AL (1965) Bionergetics: the molecular basis of biological energy transformations. WA Benjamin Inc, New York

    Google Scholar 

  • Lehninger AL (1971) Bionergetics: the molecular basis of biological energy transformations, 2nd edn. WA Benjamin Inc, Menlo Park

    Google Scholar 

  • Lenaz G (2001) A critical appraisal of the mitochondrial coenzyme Q pool. FEBS Lett 509:151–155

    CAS  PubMed  Google Scholar 

  • Lenaz G (2012) Mitochondria and reactive oxygen species. Which role in physiology and pathology? Adv Exp Med Biol 942:93–136

    CAS  PubMed  Google Scholar 

  • Lenaz G, Genova ML (2007) Kinetics of integrated electron transfer in the mitochondrial respiratory chain: random collisions vs. solid state electron channeling. Am J Physiol Cell Physiol 292:C1221–C1239

    CAS  PubMed  Google Scholar 

  • Lenaz G, Genova ML (2009a) Mobility and function of Coenzyme Q (ubiquinone) in the mitochondrial respiratory chain. Biochim Biophys Acta 1787:563–573

    CAS  PubMed  Google Scholar 

  • Lenaz G, Genova ML (2009b) Structural and functional organization of the mitochondrial respiratory chain: a dynamic super-assembly. Int J Biochem Cell Biol 41:1750–1772

    CAS  PubMed  Google Scholar 

  • Lenaz G, Genova ML (2010) Structure and organization of mitochondrial respiratory complexes: a new understanding of an old subject. Antioxid Redox Signal 12:961–1008

    CAS  PubMed  Google Scholar 

  • Lenaz G, Genova ML (2012) Supramolecular organisation of the mitochondrial respiratory chain: a new challenge for the mechanism and control of oxidative phosphorylation. Adv Exp Med Biol 748:107–144

    CAS  PubMed  Google Scholar 

  • Lenaz G, Daves GD Jr, Folkers K (1968) Organic structural specificity and sites of coenzyme Q in succinoxidase and DPNH-oxidase systems. Arch Biochem Biophys 123:539–550

    CAS  PubMed  Google Scholar 

  • Lenaz G, Fato R, Di Bernardo S, Jarreta D, Costa A, Genova ML, Parenti Castelli G (1999) Localization and mobility of coenzyme Q in lipid bilayers and membranes. Biofactors 9:87–93

    CAS  PubMed  Google Scholar 

  • Lenaz G, Baracca A, Fato R, Genova ML, Solaini G (2006) New insights into structure and function of mitochondria and their role in aging and disease. Antioxid Redox Signal 8:417–437

    CAS  PubMed  Google Scholar 

  • Lenaz G, Baracca A, Barbero G, Bergamini C, Dalmonte ME, Del Sole M, Faccioli M, Falasca A, Fato R, Genova ML, Sgarbi G, Solaini G (2010) Mitochondrial respiratory chain super-complex I–III in physiology and pathology. Biochim Biophys Acta 1797:633–640

    CAS  PubMed  Google Scholar 

  • Lester RL, Fleischer S (1961) Studies on the electron-transport system. 27. The respiratory activity of acetone extracted beef-heart mitochondria: role of coenzyme Q and other lipids. Biochim Biophys Acta 47:358–377

    CAS  PubMed  Google Scholar 

  • Leung KH, Hinkle PC (1975) Reconstitution of ion transport and respiratory control in vesicles formed from reduced coenzyme Q-cytochrome c reductase and phospholipids. J Biol Chem 250:8467–8471

    CAS  PubMed  Google Scholar 

  • Maas MF, Krause F, Dencher NA, Sainsard-Chanet A (2009) Respiratory complexes III and IV are not essential for the assembly/stability of complex I in fungi. J Mol Biol 387:259–269

    CAS  PubMed  Google Scholar 

  • Magnitsky S, Toulokhonova L, Yano T, Sled VD, Hagerhall C, Grivennikova VG, Burbaev DS, Vinogradov AD, Ohnishi T (2002) EPR characterization of ubisemiquinones and iron-sulfur cluster N2, central components of the energy coupling in the NADH-ubiquinone oxidoreductase (complex I) in situ. J Bioenerg Biomembr 34:193–208

    CAS  PubMed  Google Scholar 

  • Maranzana E, Barbero G, Falasca AI, Lenaz G, Genova ML (2013) Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex I. Antioxid Redox Signal [Jun 28. Epub ahead of print]

    Google Scholar 

  • Marques I, Dencher NA, Videira A, Krause F (2007) Supramolecular organization of the respiratory chain in Neurospora crassa mitochondria. Eukaryot Cell 6:2391–2405

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mileykovskaya E, Penczek PA, Fang J, Mallampalli VK, Sparagna GC, Dowhan W (2012) Arrangement of the respiratory chain complexes in Saccharomyces cerevisiae supercomplex III2IV2 revealed by single particle cryo-electron microscopy. J Biol Chem 287:23095–23103

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mitchell P (1975) Protonmotive redox mechanism of the cytochrome b-c 1 complex in the respiratory chain: protonmotive ubiquinone cycle. FEBS Lett 56:1–6

    CAS  PubMed  Google Scholar 

  • Mitchell P, Moyle J (1967) Respiration-driven proton translocation in rat liver mitochondria. Biochem J 105:1147–1162

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morton RA (1958) Ubiquinone. Nature 182(4652):1764–1767

    CAS  PubMed  Google Scholar 

  • Moser CC, Page CC, Dutton PL (2005) Tunneling in PSII. Photochem Photobiol Sci 4:933–939

    CAS  PubMed  Google Scholar 

  • Muller F, Crofts AR, Kramer DM (2002) Multiple Q-cycle bypass reactions at the Qo site of the cytochrome bc 1 complex. Biochemistry 41:7866–7874

    CAS  PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muster B, Kohl W, Wittig I, Strecker V, Joos F, Haase W, Bereiter-Hahn J, Busch K (2010) Respiratory chain complexes in dynamic mitochondria display a patchy distribution in life cells. PLoS One 5:e11910

    PubMed Central  PubMed  Google Scholar 

  • Ohnishi T, Sled VD, Yano T, Yagi T, Burbaev DS, Vinogradov AD (1998) Structure-function studies of iron-sulfur clusters and semiquinones in the NADH-Q oxidoreductase segment of the respiratory chain. Biochim Biophys Acta 1365:301–308

    CAS  PubMed  Google Scholar 

  • Ohnishi ST, Shinzawa-Itoh K, Ohta K, Yoshikawa S, Ohnishi T (2010) New insights into the superoxide generation sites in bovine heart NADH-ubiquinone oxidoreductase (complex I): the significance of protein-associated ubiquinone and the dynamic shifting of generation sites between semiflavin and semiquinone radicals. Biochim Biophys Acta 1797:1901–1909

    CAS  PubMed  Google Scholar 

  • Papa S, Capitanio G, Martino PL (2006a) Concerted involvement of cooperative proton-electron linkage and water production in the proton pump of cytochrome c oxidase. Biochim Biophys Acta 1757:1133–1143

    CAS  PubMed  Google Scholar 

  • Papa S, Lorusso M, Di Paola M (2006b) Operativity and flexibility of the protonmotive activity of mitochondrial respiratory chain. Biochim Biophys Acta 1757:428–436

    CAS  PubMed  Google Scholar 

  • Piccoli C, Scrima R, Boffoli D, Capitanio N (2006) Control by cytochrome c oxidase of the cellular oxidative phosphorylation system depends on the mitochondrial energy state. Biochem J 396:573–583

    CAS  PubMed Central  PubMed  Google Scholar 

  • Quinlan CL, Gerencser AA, Treberg JR, Brand MD (2011) The mechanism of superoxide production by the antimycin-inhibited mitochondrial Q-cycle. J Biol Chem 286:31361–31372

    CAS  PubMed Central  PubMed  Google Scholar 

  • Racker E (1965) Mechanisms in bioenergetics. Academic, New York

    Google Scholar 

  • Ragan CI, Hinkle PC (1975) Ion transport and respiratory control in vesicles formed from reduced nicotinamide adenine dinucleotide coenzyme Q reductase and phospholipids. J Biol Chem 250:8472–8476

    CAS  PubMed  Google Scholar 

  • Ricquier D (2005) Respiration uncoupling and metabolism in the control of energy expenditure. Proc Nutr Soc 64:47–52

    CAS  PubMed  Google Scholar 

  • Rosca M, Minkler P, Hoppel CL (2011) Cardiac mitochondria in heart failure: normal cardiolipin profile and increased threonine phosphorylation of complex IV. Biochim Biophys Acta 1807:1373–1382

    CAS  PubMed  Google Scholar 

  • Sazanov LA, Hinchliffe P (2006) Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311:1430–1436

    CAS  PubMed  Google Scholar 

  • Schäfer E, Seelert H, Reifschneider NH, Krause F, Dencher NA, Vonck J (2006) Architecture of active mammalian respiratory chain supercomplexes. J Biol Chem 281:15370–15375

    PubMed  Google Scholar 

  • Schäfer E, Dencher NA, Vonck J, Parcej DN (2007) Three-dimensional structure of the respiratory chain supercomplex I1III2IV1 from bovine heart mitochondria. Biochemistry 44:12579–12585

    Google Scholar 

  • Schägger H, Pfeiffer K (2001) The ratio of oxidative phosphorylation complexes I–V in bovine heart mitochondria and the composition of respiratory chain supercomplexes. J Biol Chem 276:37861–37867

    PubMed  Google Scholar 

  • Schneider H, Lemasters JJ, Hackenbrock CR (1982) Lateral diffusion of ubiquinone during electron transfer in phospholipid- and ubiquinone-enriched mitochondrial membranes. J Biol Chem 257:10789–10793

    CAS  PubMed  Google Scholar 

  • Sowers E, Hackenbrock CR (1981) Rate of lateral diffusion of intramembrane particles: measurement by electrophoretic displacement and rerandomization. Proc Natl Acad Sci U S A 78:6246–6250

    CAS  PubMed Central  PubMed  Google Scholar 

  • Strauss M, Hofhaus G, Schröder RR, Kühlbrandt W (2008) Dimer ribbons of ATP synthase shape the inner mitochondrial membrane. EMBO J 27:1154–1160

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sunderhaus S, Klodmann J, Lenz C, Braun HP (2010) Supramolecular structure of the OXPHOS system in highly thermogenic tissue of Arum maculatum. Plant Physiol Biochem 48:265–272

    CAS  PubMed  Google Scholar 

  • Trouillard M, Meunier B, Rappaport F (2011) Questioning the functional relevance of mitochondrial supercomplexes by time-resolved analysis of the respiratory chain. Proc Natl Acad Sci U S A 108:e1027–e1034

    CAS  PubMed Central  PubMed  Google Scholar 

  • Turrens JF, Alexandre A, Lehninger AL (1985) Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys 237:408–414

    CAS  PubMed  Google Scholar 

  • van den Berg WH, Prince RC, Bashford CL, Takamiya KI, Bonner WD Jr, Dutton PL (1979) Electron and proton transport in the ubiquinone cytochrome b-c2 oxidoreductase of Rhodopseudomonas sphaeroides. Patterns of binding and inhibition by antimycin. J Biol Chem 254:8594–8604

    PubMed  Google Scholar 

  • Wikström M (2012) Active site intermediates in the reduction of O(2) by cytochrome oxidase, and their derivatives. Biochim Biophys Acta 1817:468–475

    PubMed  Google Scholar 

  • Wittig I, Schägger H (2009) Supramolecular organization of ATP synthase and respiratory chain in mitochondrial membranes. Biochim Biophys Acta 1787:672–680

    CAS  PubMed  Google Scholar 

  • Yagi T, Seo BB, Di Bernardo S, Nakamaru-Ogiso E, Kao MC, Matsuno-Yagi A (2001) NADH dehydrogenases: from basic science to biomedicine. Bioenerg Biomembr 33:233–242

    CAS  Google Scholar 

  • Yankovskaya V, Horsefield R, Törnroth S, Luna-Chavez C, Miyoshi H, Léger C, Byrne B, Cecchini G, Iwata S (2003) Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299:700–704

    CAS  PubMed  Google Scholar 

  • Yu A, Yu L (1980) Resolution and reconstitution of succinate-cytochrome c reductase: preparations and properties of high purity succinate dehydrogenase and ubiquinolcytochrome c reductase. Biochim Biophys Acta 591:409–420

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to express my gratitude to my scientific mentor, Professor Giorgio Lenaz (University of Bologna, Italy), to whom I am indebted for the critical review of my work. I am also sincerely grateful to him for his valued example of attitude in science and for the generous helpful advices and stimulating ideas that he has shared with me during all these years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Luisa Genova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Genova, M.L. (2014). Electron Transport in the Mitochondrial Respiratory Chain. In: Hohmann-Marriott, M. (eds) The Structural Basis of Biological Energy Generation. Advances in Photosynthesis and Respiration, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8742-0_21

Download citation

Publish with us

Policies and ethics