Skip to main content

Structure and Functional Heterogeneity of Fucoxanthin-Chlorophyll Proteins in Diatoms

  • Chapter
  • First Online:

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 39))

Summary

Fucoxanthin-chlorophyll proteins (FCPs) of diatoms are divided into three groups, the main light harvesting antennas Lhcf, the photosystem I-specific Lhcr, and Lhcx involved in photoprotection. All are closely related to higher plant light harvesting complexes (LHCs) when comparing sequences, albeit smaller and more hydrophobic. However, pigmentation differs from higher plant LHCs with around eight chlorophyll a, two chlorophyll c and six fucoxanthin per monomer. Fucoxanthin, with a carbonyl moiety conjugated to the polyene backbone, undergoes extreme bathochromic shifts upon protein binding, dividing the different fucoxanthins into more red, green and blue absorbing ones. Excitation energy transfer is extremely efficient, either directly from chlorophyll c to chlorophyll a or from fucoxanthin to chlorophyll a involving the S1/ICT state of fucoxanthin. Most Lhcf assemble into trimers, whereby only in centric diatoms Lhcx was found in trimers as well, and specific oligomeric FCP complexes are present. Whereas the arrangement of FCPs around the photosystems is largely unknown, spectroscopic measurements together with homology considerations allow for a first rough model of the pigment arrangement in trimeric and oligomeric FCP complexes. Blue fucoxanthin is bound analogously to lutein in LHCII, surrounded by the same four chlorophyll a, since binding sites are conserved. Additionally, chlorophyll a can be found in a604, a614, b605 and a611, although binding of the latter has to be different due to the lack of long wavelength absorption in FCPs. Chlorophyll c is most probably bound in b609 and a613. The red fucoxanthin cluster around helix 2, which has less sequence homology to LHCII. The green fucoxanthins are most probably located around the violaxanthin and b601 binding sites of LHCII, whereby the former is probably a mixed site for fucoxanthins and diadinoxanthin/diatoxanthin.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Chl:

– Chlorophyll;

Dd:

– Diadinoxanthin;

Dt:

– Diatoxanthin;

FCP:

– Fucoxanthin-chlorophyll protein;

Fx:

– Fucoxanthin;

LHC:

– Light-harvesting complex;

NPQ:

– Non-photochemical quenching;

PS:

– Photosystem

References

  • Alberte RS, Friedman AL, Gustafson DL, Rudnick MS, Lyman H (1981) Light-harvesting systems of brown algae and diatoms. Isolation and characterization of chlorophyll a/c and chlorophyll a/fucoxanthin pigment-protein complexes. Biochim Biophys Acta 635:304–316

    Article  CAS  PubMed  Google Scholar 

  • Alexandre MTA, Gundermann K, Pascal AA, Grondelle R, Büchel C, Robert B (2014) Probing the carotenoid content of intact Cyclotella cells by resonance Raman spectroscopy. Photosynth Res 119(3):273–281

    Google Scholar 

  • Archibald JM, Keeling PJ (2002) Recycled plastids: a ‘green movement’ in eukaryotic evolution. Trends Genet 18:577–584

    Article  CAS  PubMed  Google Scholar 

  • Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    Article  CAS  PubMed  Google Scholar 

  • Bailleul B, Rogato A, De Martino A, Coesel S, Cardol P, Bowler C et al (2010) An atypical member of the light-harvesting complex stress-related protein family modulates diatom responses to light. Proc Natl Acad Sci U S A 107:18214–18219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Becker F, Rhiel E (2006) Immuno-electron microscopic quantification of the fucoxanthin chlorophyll a/c binding polypeptides Fcp2, Fcp4, and Fcp6 of Cyclotella cryptica grown under low- and high-light intensities. Int Microbiol 9:29–36

    CAS  PubMed  Google Scholar 

  • Beer A, Gundermann K, Beckmann J, Büchel C (2006) Subunit composition and pigmentation of fucoxanthin-chlorophyll proteins in diatoms: evidence for a subunit involved in diadinoxanthin and diatoxanthin binding. Biochemistry 45:13046–13053

    Article  CAS  PubMed  Google Scholar 

  • Beer A, Juhas M, Büchel C (2011) Influence of different light intensities and different iron nutrition on the photosynthetic apparatus in the diatom Cyclotella meneghiniana (Bacillariophyceae). J Phycol 47:1266–1273

    Article  CAS  Google Scholar 

  • Berkaloff C, Caron L, Rousseau B (1990) Subunit organization of PS I particles from brown algae and diatoms: polypeptide and pigment analysis. Photosynth Res 23:181–193

    Article  CAS  PubMed  Google Scholar 

  • Bhaya D, Grossman AR (1993) Characterization of gene clusters encoding the fucoxanthin chlorophyll proteins of the diatom Phaeodactylum tricornutum. Nucleic Acids Res 21:4458–4466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boekema EJ, Hankamer B, Bald D, Kruip J, Boonstra AF, Barber J, Rögner M (1995) Supramolecular structure of photosystem II complex from green plants and cyanobacteria. Proc Natl Acad Sci U S A 92:175–179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244

    Article  CAS  PubMed  Google Scholar 

  • Brakemann T, Schlörmann W, Marquardt J, Nolte M, Rhiel E (2006) Association of fucoxanthin chlorophyll a/c-binding polypeptides with photosystems and phosphorylation in the centric diatom Cyclotella cryptica. Protist 157:463–475

    Article  CAS  PubMed  Google Scholar 

  • Brown JS (1988) Photosynthetic pigment organization in diatoms (Bacillariophyceae). J Phycol 24:96–102

    Article  CAS  Google Scholar 

  • Büchel C (2003) Fucoxanthin-chlorophyll proteins in diatoms: 18 and 19 kDa subunits assemble into different oligomeric states. Biochemistry 42:13027–13034

    Article  PubMed  Google Scholar 

  • Caron L, Brown JS (1987) Chlorophyll-carotenoid protein complexes from the diatom, Phaeodactylum tricornutum: spectrophotometric, pigment and polypeptide analyses. Plant Cell Physiol 28:775–785

    CAS  Google Scholar 

  • Damjanović A, Ritz T, Schulten K (2000) Excitation transfer in the peridinin-chlorophyll-protein of Amphidinium carterae. Biophys J 79:1695–1705

    Article  PubMed Central  PubMed  Google Scholar 

  • Dekker JP, Boekema EJ (2005) Supramolecular organization of thylakoid membrane proteins in green plants. Biochim Biophys Acta 1706:12–39

    Article  CAS  PubMed  Google Scholar 

  • Durnford DG, Aebersold R, Green BR (1996) The fucoxanthin-chlorophyll proteins from a chromophyte alga are part of a large multigene family: structural and evolutionary relationships to other light-harvesting antennae. Mol Gen Genet 253:377–386

    Article  CAS  PubMed  Google Scholar 

  • Eppard M, Rhiel E (1998) The genes encoding light-harvesting subunits of Cyclotella cryptica (Bacillariophyceae) constitute a complex and heterogeneous family. Mol Gen Genet 260:335–345

    Article  CAS  PubMed  Google Scholar 

  • Eppard M, Rhiel E (2000) Investigation on gene copy number, introns and chromosomal arrangements of genes encoding the fucoxanthin chlorophyll a/c-binding proteins of the centric diatom Cyclotella cryptica. Protist 151:27–39

    Article  CAS  PubMed  Google Scholar 

  • Eppard M, Krumbein WE, von Haesler A, Rhiel E (2000) Characterization of fcp4 and fcp12, two additional genes encoding light harvesting proteins of Cyclotella cryptica (Bacillariophyceae) and phylogenetic analysis of this complex gene family. Plant Biol 2:283–289

    Article  CAS  Google Scholar 

  • Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–206

    Article  CAS  PubMed  Google Scholar 

  • Fawley MW (1989) A new form of chlorophyll c involved in light-harvesting. Plant Physiol 91:727–732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fawley MW, Grossman AR (1986) Polypeptides of a light-harvesting complex of the diatom Phaeodactylum tricornutum are synthesized in the cytoplasm of the cell as precursors. Plant Physiol 81:149–155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frank HA, Bautista JA, Josue J, Pendon Z, Hiller RG, Sharples FP et al (2000) Effect of the solvent environment on the spectroscopic properties and dynamics of the lowest excited states of carotenoids. J Phys Chem B 104:4569–4577

    Article  CAS  Google Scholar 

  • Friedman AL, Alberte RS (1984) A diatom light-harvesting pigment-protein complex. Plant Physiol 76:483–489

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Friedman AL, Alberte RS (1986) Biogenesis and light regulation of the major light harvesting chlorophyll-protein of diatoms. Plant Physiol 80:43–51

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Georgakopoulou S, van der Zwan G, Bassi R, van Grondelle R, van Amerongen H, Croce R (2007) Understanding the changes in the circular dichroism of light harvesting complex II upon varying its pigment composition and organization. Biochemistry 46:4745–4754

    Article  CAS  PubMed  Google Scholar 

  • Gibbs SP (1970) The comparative ultrastructure of the algal chloroplast. Ann NY Acad Sci 175:454–473

    Article  Google Scholar 

  • Gildenhoff N, Amarie S, Gundermann K, Beer A, Büchel C, Wachtveitl J (2010a) Oligomerization and pigmentation dependent excitation energy transfer in fucoxanthin-chlorophyll proteins. Biochim Biophys Acta 1797:543–549

    Article  CAS  PubMed  Google Scholar 

  • Gildenhoff N, Herz J, Gundermann K, Büchel C, Wachtveitl J (2010b) The excitation energy transfer in the trimeric fucoxanthin-chlorophyll protein from Cyclotella meneghiniana analyzed by polarized transient absorption spectroscopy. Chem Phys 373:104–109

    Article  CAS  Google Scholar 

  • Green BR (2011) After the primary endosymbiosis: an update on the chromalveolate hypothesis and the origins of algae with Chl c. Photosynth Res 107:103–115

    Article  CAS  PubMed  Google Scholar 

  • Green BR, Kühlbrandt W (1995) Sequence conservation of light-harvesting and stress-response proteins in relation to the three-dimensional molecular structure of LHCII. Photosynth Res 44:139–148

    Article  CAS  PubMed  Google Scholar 

  • Green BR, Pichersky E (1994) Hypothesis for the evolution of three-helix Chl a/b and Chl a/c light-harvesting antenna proteins from two-helix and four-helix ancestors. Photosynth Res 39:149–162

    Article  CAS  PubMed  Google Scholar 

  • Grouneva I, Rokka A, Aro E (2011) The thylakoid membrane proteome of two marine diatoms outlines both diatom-specific and species-specific features of the photosynthetic machinery. J Proteome Res: 111109140228006

    Google Scholar 

  • Guglielmi G, Lavaud J, Rousseau B, Etienne A, Houmard J, Ruban AV (2005) The light-harvesting antenna of the diatom Phaeodactylum tricornutum. Evidence for a diadinoxanthin-binding subcomplex. FEBS J 272:4339–4348

    Article  CAS  PubMed  Google Scholar 

  • Gugliemelli A (1984) Isolation and characterization of pigment-protein particles from the light-harvesting complex of Phaeodactylum tricornutum. Biochim Biophys Acta 766:45–50

    Article  CAS  Google Scholar 

  • Gundermann K, Büchel C (2008) The fluorescence yield of the trimeric fucoxanthin-chlorophyll-protein FCPa in the diatom Cyclotella meneghiniana is dependent on the amount of bound diatoxanthin. Photosynth Res 95:229–235

    Article  CAS  PubMed  Google Scholar 

  • Gundermann K, Büchel C (2012) Factors determining the fluorescence yield of fucoxanthin-chlorophyll complexes (FCP) involved in non-photochemical quenching in diatoms. Biochim Biophys Acta 1817:1044–1052

    Article  CAS  PubMed  Google Scholar 

  • Gundermann K, Haufe A, Schmidt M, Weisheit W, Mittag M, Büchel C (2013) Identification of several sub-populations in the pool of light harvesting proteins in the pennate diatom Phaeodactylum tricornutum. Biochim Biophys Acta 1827:303–310

    Article  CAS  PubMed  Google Scholar 

  • Ikeda Y, Komura M, Wanatabe M, Minami C, Koike H, Itoh S et al (2008) Photosystem I complexes associated with fucoxanthin-chlorophyll-binding proteins from a marine centric diatom, Chaetoceros gracilis. Biochim Biophys Acta 1777:351–361

    Article  CAS  PubMed  Google Scholar 

  • Janssen M, Bathke L, Marquardt J, Krumbein WE, Rhiel E (2001) Changes in the photosynthetic apparatus of diatoms in response to low and high light intensities. Int Microbiol 4:27–33

    CAS  PubMed  Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrometric equations for determining chlorophyll a, b, c 1 and c 2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194

    CAS  Google Scholar 

  • Joshi-Deo J, Schmidt M, Gruber A, Weisheit W, Mittag M, Kroth PG, Büchel C (2010) Characterization of a trimeric light-harvesting complex in the diatom Phaeodactylum tricornutum built of FcpA and FcpE proteins. J Exp Bot 61:3079–3087

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Juhas M, Büchel C (2012) Properties of photosystem I antenna protein complexes of the diatom Cyclotella meneghiniana. J Exp Bot 63:3673–3681

    Google Scholar 

  • Katoh T, Nagashima U, Mimuro M (1991) Fluorescence properties of the allenic carotenoid fucoxanthin: implication for energy transfer in photosynthetic pigment systems. Photosynth Res 27:221–226

    CAS  PubMed  Google Scholar 

  • Koyama Y, Kuki M, Andersson PO, Gillbro T (1996) Singlet excited states and the light-harvesting function of carotenoids in bacterial photosynthesis. Photochem Photobiol 63:243–256

    Article  CAS  Google Scholar 

  • Kraay GW, Zapata M, Veldhuis MJW (1992) Separation of chlorophylls c 1 c 2, and c 3 of marine phytoplankton by reversed-phase-C18-high-performance liquid chromatography. J Phycol 28:708–712

    Article  CAS  Google Scholar 

  • Lavaud J, Rousseau B, van Gorkom HJ, Etienne A (2002) Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum. Plant Physiol 129:1398–1406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lavaud J, Rousseau B, Etienne A (2003) Enrichment of the light-harvesting complex in diadinoxanthin and implications for the nonphotochemical fluorescence quenching in diatoms. Biochemistry 42:5802–5808

    Article  CAS  PubMed  Google Scholar 

  • Lepetit B, Volke D, Szabó M, Hoffmann R, Garab G, Wilhelm C, Goss R (2007) Spectroscopic and molecular characterization of the oligomeric antenna of the diatom Phaeodactylum tricornutum. Biochemistry 46:9813–9822

    Article  CAS  PubMed  Google Scholar 

  • Lepetit B, Volke D, Gilbert M, Wilhelm C, Goss R (2010) Evidence for the existence of one antenna-associated lipid-dissolved and two protein-bound pools of diadinoxanthin cycle pigments in diatoms. Plant Physiol 154:1905–1920

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lepetit B, Goss R, Jakob T, Wilhelm C (2012) Molecular dynamics of the diatom thylakoid membrane under different light conditions. Photosynth Res 111:245–257

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L et al (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428:287–292

    Article  CAS  PubMed  Google Scholar 

  • Lohr M, Wilhelm C (1999) Algae displaying the diadinoxanthin cycle also possess the violaxanthin cycle. Proc Natl Acad Sci U S A 96:8784–8789

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Medlin LK, Kooistra WH, Gersonde R, Wellbrock U (1996) Evolution of the diatoms (Bacillariophyta). II. Nuclear-encoded small-subunit rRNA sequence comparisons confirm a paraphyletic origin for the centric diatoms. Mol Biol Evol 13:67–75

    Article  CAS  PubMed  Google Scholar 

  • Miloslavina Y, Grouneva I, Lambrev PH, Lepetit B, Goss R, Wilhelm C, Holzwarth AR (2009) Ultrafast fluorescence study on the location and mechanism of non-photochemical quenching in diatoms. Biochim Biophys Acta 1787:1189–1197

    Article  CAS  PubMed  Google Scholar 

  • Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, Bhattacharya D (2009) Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 324:1724–1726

    Article  CAS  PubMed  Google Scholar 

  • Nagao R, Ishii A, Tada O, Suzuki T, Dohmae N, Okumura A et al (2007) Isolation and characterization of oxygen-evolving thylakoid membranes and photosystem II particles from a marine diatom Chaetoceros gracilis. Biochim Biophys Acta 1767:1353–1362

    Article  CAS  PubMed  Google Scholar 

  • Nagao R, Tomo T, Noguchi E, Nakajima S, Suzuki T, Okumura A et al (2010) Purification and characterization of a stable oxygen-evolving photosystem II complex from a marine centric diatom, Chaetoceros gracilis. Biochim Biophys Acta 1797:160–166

    Article  CAS  PubMed  Google Scholar 

  • Novoderezhkin VI, Palacios MA, van Amerongen H, van Grondelle R (2004) Energy-transfer dynamics in the LHCII complex of higher plants: modified Redfield approach. J Phys Chem B 108:10363–10375

    Article  CAS  Google Scholar 

  • Nymark M, Valle KC, Brembu T, Hancke K, Winge PW, Andresen K et al (2009) An integrated analysis of molecular acclimation to high light in the marine diatom Phaeodactylum tricornutum. PLoS ONE 4:e7743

    Article  PubMed Central  PubMed  Google Scholar 

  • Oeltjen A, Krumbein WE, Rhiel E (2002) Investigations on transcript sizes, steady state mRNA concentrations and diurnal expression of genes encoding fucoxanthin chlorophyll a/c light harvesting polypeptides in the centric diatom Cyclotella cryptica. Plant Biol 4:250–257

    Article  CAS  Google Scholar 

  • Oeltjen A, Marquardt J, Rhiel E (2004) Differential circadian expression of genes fcp2 and fcp6 in Cyclotella cryptica. Int Microbiol 7:127–131

    CAS  PubMed  Google Scholar 

  • Owens TG (1986) Light-harvesting function in the diatom Phaeodactylum tricornutum – II. Distribution of excitation energy between the photosystems. Plant Physiol 80:739–746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Owens TG (1988) Light-harvesting antenna systems in the chlorophyll a/c-containing algae. In: Stevens SE, Bryant DA (eds) Light-energy transduction in photosynthesis: higher plants and bacterial models. American Society of Plant Physiologists, Rockville, MD, pp 122–136

    Google Scholar 

  • Owens TG, Wold ER (1986) Light-harvesting function in the diatom Phaeodactylum tricornutum – I. Isolation and characterization of pigment-protein complexes. Plant Physiol 80:732–738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pan X, Li M, Wan T, Wang L, Jia C, Hou Z et al (2011) Structural insights into energy regulation of light-harvesting complex CP29 from spinach. Nat Struct Mol Biol 18:309–315

    Article  CAS  PubMed  Google Scholar 

  • Papagiannakis E, van Stokkum IHM, Fey H, Büchel C (2005) Spectroscopic characterization of the excitation energy transfer in the fucoxanthin-chlorophyll protein of diatoms. Photosynth Res 86:241–250

    Article  CAS  PubMed  Google Scholar 

  • Peers G, Truong TB, Ostendorf E, Busch A, Elrad D, Grossman AR et al (2009) An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462:518–521

    Article  CAS  PubMed  Google Scholar 

  • Premvardhan L, Sandberg D, Fey H, Birge R, Büchel C, van Grondelle R (2008) The charge-transfer properties of the S2 state of fucoxanthin in solution and in fucoxanthin chlorophyll-a/c2 protein (FCP) based on Stark spectroscopy and molecular orbital theory. J Phys Chem B 112:11838–11853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Premvardhan L, Bordes L, Beer A, Büchel C, Robert B (2009) Carotenoid structures and environments in trimeric and oligomeric fucoxanthin chlorophyll a/c 2 proteins from resonance Raman spectroscopy. J Phys Chem B 113:12565–12574

    Article  CAS  PubMed  Google Scholar 

  • Premvardhan L, Robert B, Beer A, Büchel C (2010) Pigment organization in fucoxanthin chlorophyll a/c 2 proteins (FCP) based on resonance Raman spectroscopy and sequence analysis. Biochim Biophys Acta 1797:1647–1656

    Article  CAS  PubMed  Google Scholar 

  • Pyszniak AM, Gibbs SP (1992) Immunocytochemical localization of photosystem I and the fucoxanthin-chlorophyll a/c light-harvesting complex in the diatom Phaeodactylum tricornutum. Protoplasma 166:208–217

    Article  CAS  Google Scholar 

  • Raven JA, Waite AM (2004) The evolution of silicification in diatoms: inescapable sinking and sinking as escape? New Phytol 162:45–61

    Article  Google Scholar 

  • Rhiel E, Marquardt J, Eppard M, Mörschel E, Krumbein WE (1997) The light-harvesting system of the diatom Cyclotella cryptica. Isolation and characterisation of the main light harvesting complex and evidence for the existence of minor pigment proteins. Bot Acta 110:109–117

    Article  CAS  Google Scholar 

  • Richard C, Ouellet H, Guertin M (2000) Characterization of the LI818 polypeptide from the green unicellular alga Chlamydomonas reinhardtii. Plant Mol Biol 42:303–316

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV, Lavaud J, Rousseau B, Guglielmi G, Horton P, Etienne A (2004) The super-excess energy dissipation in diatom algae: comparative analysis with higher plants. Photosynth Res 82:165–175

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV, Johnson MP, Duffy CDP (2012) The photoprotective molecular switch in the photosystem II antenna. Biochim Biophys Acta 1817:167–181

    Article  CAS  PubMed  Google Scholar 

  • Standfuss J, van Scheltinga ACT, Lamborghini M, Kühlbrandt W (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution. EMBO J 24:919–928

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Szabò I, Bergantino E, Giacometti GM (2005) Light and oxygenic photosynthesis: energy dissipation as a protection mechanism against photo-oxidation. EMBO Rep 6:629–634

    Article  PubMed Central  PubMed  Google Scholar 

  • Szabó M, Lepetit B, Goss R, Wilhelm C, Mustárdy L, Garab G (2008) Structurally flexible macro-organization of the pigment-protein complexes of the diatom Phaeodactylum tricornutum. Photosynth Res 95:237–245

    Article  PubMed  Google Scholar 

  • Szabó M, Premvardhan L, Lepetit B, Goss R, Wilhelm C, Garab G (2010) Functional heterogeneity of the fucoxanthins and fucoxanthin-chlorophyll proteins in diatom cells revealed by their electrochromic response and fluorescence and linear dichroism spectra. Chem Phys 373:110–114

    Article  Google Scholar 

  • Veith T, Büchel C (2007) The monomeric photosystem I-complex of the diatom Phaeodactylum tricornutum binds specific fucoxanthin chlorophyll proteins (FCPs) as light-harvesting complexes. Biochim Biophys Acta 1767:1428–1435

    Article  CAS  PubMed  Google Scholar 

  • Veith T, Brauns J, Weisheit W, Mittag M, Büchel C (2009) Identification of a specific fucoxanthin-chlorophyll protein in the light harvesting complex of photosystem I in the diatom Cyclotella meneghiniana. Biochim Biophys Acta 1787:905–912

    Article  CAS  PubMed  Google Scholar 

  • Wolfe GR, Cunningham FX, Durnford D, Green BR, Gantt E (1994) Evidence for a common origin of chloroplasts with light-harvesting complexes of different pigmentation. Nature 367:566–568

    Article  CAS  Google Scholar 

  • Zhu S, Green BR (2010) Photoprotection in the diatom Thalassiosira pseudonana: role of LI818-like proteins in response to high light stress. Biochim Biophys Acta 1797:1449–1457

    Article  CAS  PubMed  Google Scholar 

  • Zigmantas D, Hiller RG, Sharples FP, Frank HA, Sundström V, Polívka T (2004) Effect of a conjugated carbonyl group on the photophysical properties of carotenoids. Phys Chem Chem Phys 6:3009–3016

    Article  CAS  Google Scholar 

Download references

Acknowledgments

CB would like to express her extreme thankfulness to her present and former group members, colleagues and collaborators, without whom the vast increase in our knowledge about FCP structure and function during the last years would not have been possible. CB and KG gratefully acknowledge continuous support by the Deutsche Forschungsgemeinschaft (Bu812: grants 4–8) and the European Union (MRTN-CT-2003-505069 “Intro2”; MC-ITN-2009-238017 “Harvest”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Büchel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gundermann, K., Büchel, C. (2014). Structure and Functional Heterogeneity of Fucoxanthin-Chlorophyll Proteins in Diatoms. In: Hohmann-Marriott, M. (eds) The Structural Basis of Biological Energy Generation. Advances in Photosynthesis and Respiration, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8742-0_2

Download citation

Publish with us

Policies and ethics