Advertisement

Green Algae

  • Maria Schmidt
  • Christian WilhelmEmail author
Chapter
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 39)

Summary

Green algae have been treated for a long time as “free living choroplasts” and therefore used as model organisms in photosynthesis research. However, recent progress has provided evidence that they have a paraphyletic origin, resulting in a wide array of different evolutionary lineages. This diversity opens the opportunity to utilise green algae not only for the production of bulk biomass, but also for the extraction of specific biotechnological compounds. This chapter gives an overview of the taxonomic, structural, biochemical, molecular and physiological features of those species which are the most widely used in algal biomass technologies. Based on this description, we suggest how green algal biodiversity and metabolic pathways can be exploited in the future for biological energy generation.

Keywords

Green Alga Hydrogen Production Metabolic Engineering Biotechnological Application Botryococcus Braunii 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations:

AX

– Astaxanthin

CAN

– Cantaxanthin

CAR

– β-carotene

Chl

– Chlorophyll

ITS

– Internal transcribe spacer (commonly referring to the ribosomal rRNA operon)

LUT

– Lutein

Mya

– Million years ago

ROS

– Reactive oxygen species

VDE

– Violaxanthin de-epoxidase

ZEA

– Zeaxanthin

Notes

Acknowledgements

We would like to acknowledge the German Funding Agency (DFG) for financial support for Maria Schmidt and the German Ministry of Science and Education (BMBF) for support in developing new concepts of algal based biofuels production (VIP 16 V0001)

References

  1. Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup Ø, Mozley-Standrige SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MFJR (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Euk Microbiol 52:399–451PubMedGoogle Scholar
  2. Agrawal S, Striepen B (2010) More membranes, more proteins: complex protein import mechanisms into secondary plastids. Protist 161:672–687PubMedCentralPubMedGoogle Scholar
  3. Archibald JM, Lane CE (2009) Going, going, not quite gone: nucleomorphs as a case study in nuclear genome reduction. J Heredity 100:582Google Scholar
  4. Asada K (2000) The water-water cycle as alternative photon and electron sinks. Philos Trans R Soc Lond B Biol Sci 355:1419–1431PubMedCentralPubMedGoogle Scholar
  5. Ashokkumar V, Rengasamy R (2011) Mass culture of Botryococcus braunii under open raceway pond for biofuel production. Bioresource Techn 104:394–399Google Scholar
  6. Banerjee A, Sharma R, Chisti Y, Banerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechn 22:245–279Google Scholar
  7. Bayramoglu G, Arica MY (2011) Preparation of a composite biosorbent using Scenedesmus quadricauda biomass and alginate/polyvinyl alcohol for removal of Cu(II) and Cd(II) ions: isotherms, kinetics, and thermodynamic studies. Wat Air Soil Poll 221:391–403Google Scholar
  8. Beckmann J, Lehr F, Finazzi G, Hankamer B, Posten C, Wobbe L, Kruse O (2009) Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii. J Biotechn 142:70–77Google Scholar
  9. Bennoun P (1982) Evidence for a respiratory chain in the chloroplast. Proc Natl Acad Sci USA 79:4352–4356PubMedCentralPubMedGoogle Scholar
  10. Bennoun P (2002) The present model of chlororespiration. Photosynth Res 73:273–277PubMedGoogle Scholar
  11. Brown AC, Knights BA (1969) Hydrocarbon content and its relationship to physiological state in the green alga Botryococcus braunii. Phytochem 8:543–547Google Scholar
  12. Bock C, Pröschold T, Krienitz L (2011) Updating the genus Dictyosphaerium and description of Mucidosphaerium gen. nov. (Trebouxiophyceae) based on morphological and molecular data. J Phycol 47:638–652Google Scholar
  13. Bouvier F, Rahier A, Camara B (2005) Biogenesis, molecular regulation and function of plant isoprenoids. Progr Lipid Res 44:357–492Google Scholar
  14. de Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Biores Techn 101:1611–1627Google Scholar
  15. Casadevall D, Dif D, Largeau C, Gudin C, Chaumont D, Desanti O (1985) Studies on batch and continuous cultures of Botryococcus braunii: hydrocarbon production in relation to physiological state, cell ultrastructure and phosphate nutrition. Biotechnol Bioeng 27:286–295PubMedGoogle Scholar
  16. Cha TS, Yee W, Aziz A (2012) Assessment of factors affecting Agrobacterium-mediated genetic transformation of the unicellular green alga, Chlorella vulgaris. World J Microbiol Biotechnol 28:1771–1779PubMedGoogle Scholar
  17. Coll JM (2006) Methodologies for transferring DNA into eukaryotic microalgae. S J Agricult Res 4:316–330Google Scholar
  18. Collins AM, Jones HDT, Han D, Hu Q, Hu Q, Beechem TE, Timlin JA (2011) Carotenoid distribution in living cells of Haematococcus pluvialis (Chlorophyceae). PLoS ONE 6(9):e24302PubMedCentralPubMedGoogle Scholar
  19. Coragliotti AT, Beligni MV, Franklin SE, Mayfield SP (2011) Molecular factors affecting the accumulation of recombinant proteins in the Chlamydomonas reinhardtii chloroplast. Mol Biotechnol 48:60–75PubMedCentralPubMedGoogle Scholar
  20. Chretiennot-Dinet MJ, Courties C, Vaquer A, Neveux J, Claustre H, Lautier J, Machado MC (1995) A new marine picoeukaryote – Ostreococcus tauri gen et sp. nov. (Chlorophyta, Prasinophyceae). Phycologia 34:285–292Google Scholar
  21. Darienko T, Gustavs L, Mudimu O, Menendez CR, Schumann R, Karsten U, Friedl T, Proeschold T (2010) Chloroidium, a common terrestrial coccoid green alga previously assigned to Chlorella (Trebouxiophyceae, Chlorophyta). Eur J Phycol 45:79–95Google Scholar
  22. Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88:3524–3531Google Scholar
  23. Dawson HN, Burlingame R, Cannons AC (1997) Stable transformation of Chlorella: rescue of nitrate reductase-deficient mutants with the nitrate reductase gene. Curr Microbiol 35:356–362PubMedGoogle Scholar
  24. Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol 137:545–556PubMedCentralPubMedGoogle Scholar
  25. Derenne S, Largeau C, Berkaloff C, Rousseau B, Wilhelm C, Hatcher PG (1992) Non-hydrolysable macromolecular constituents from outer walls of Chlorella fusca and Nanochlorum eukaryotum. Phytochemistry 31:1923–1929Google Scholar
  26. De Wever A, Leliaert F, Verleyen E, Vanormelingen P, van der Gucht K, Hodgson DA, Sabbe K, Vyverman W (2009) Hidden levels of phylodiversity in Antarctic green algae: further evidence for the existence of glacial refugia. Proc Biol Sci 276:3591–3599PubMedCentralPubMedGoogle Scholar
  27. Ebersold WT (1962) Biochemical genetics. In: Lewin RA (ed) Biochemistry and physiology of algae. Academic Press, New York, pp 731–739Google Scholar
  28. Egeland ES, Guillard RRL, Liaaen-Jensen S (1997) Additional carotenoid prototype representatives and a general chemosystematic evaluation of carotenoids in Prasinophyceae (Chlorophyta). Phytochem 44:1087–1097Google Scholar
  29. Elias M, Archibald JM (2009) Sizing up the genomic footprint of endosymbiosis. BioEssays 31:1273–1279PubMedGoogle Scholar
  30. Ettl H (1980) Grundriss der allgemeinen Algologie. VEB Gustav Fischer Verlag, JenaGoogle Scholar
  31. Falkowski PG, Knoll AH (2007) Evolution of primary producers in the sea. Academic, WalthamGoogle Scholar
  32. Fan L, Vonshak A, Gabbay R, Hirschberg J, Cohen Z, Boussiba S (1995) The biosynthetic pathway of astaxanthin in a green alga Haematococcus pluvialis as indicated by inhibition with dephenylamine. Plant Cell Physiol 36:1519–1524Google Scholar
  33. Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90PubMedGoogle Scholar
  34. Fassett RG, Coombes JS (2011) Astaxanthin: a potential therapeutic agent in cardiovascular disease. Marine Drugs 9:447–465PubMedCentralPubMedGoogle Scholar
  35. Fawley MW, Fawley KP, Buchheim MA (2004) Molecular diversity among communities of freshwater microchlorophytes. Microbial Ecol 48:489–499Google Scholar
  36. Feng P, Deng Z, Hu Z, Lu F (2011) Lipid accumulation and growth of Chlorella zofingiensis in flat plate photobioreactors outdoors. Bioresour Technol 102:10577–10584PubMedGoogle Scholar
  37. Ferris PJ, Woessner JP, Waffenschmidt S, Kilz S, Drees J, Goodenough U (2001) Glycosylated polyprolin II rods with kinks as a structural motif in plant hydroyprolin-rich glycoproteins. Biochemistry 40:2978–2987PubMedGoogle Scholar
  38. Forti G, Caldiroli G (2005) State transitions in Chlamydomonas reinhardtii. The role of the Mehler reaction in state 2-to state 1 transitions. Plant Physiol 137:492–499PubMedCentralPubMedGoogle Scholar
  39. Frommolt R, Werner S, Paulsen H, Goss R, Wilhelm C, Zauner S, Maier U, Grossman A, Bhattacharya D, Lohr M (2008) Ancient recruitment by Chromists of green algal genes encoding enzymes for carotenoid biosynthesis. Mol Biol Evol 25:2653–2667PubMedGoogle Scholar
  40. Genkov T, Meyer M, Griffiths H, Spreitzer RJ (2010) Functional hybrid rubisco enzymes with plant small subunits and algal large subunits. J Biol Chem 285:19833–19841PubMedCentralPubMedGoogle Scholar
  41. Gile GH, Stern RF, James ER, Keeling PJ (2010) DNA barcoding of chlorarachniophytes using nucleomorph ITS sequences. J Phycol 46:743–750Google Scholar
  42. Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation and evolution. Annu Rev Plant Biol 56:99–131PubMedGoogle Scholar
  43. Goldman JC (1979) Outdoor algal mass cultures – applications. Water Res 13:1–19Google Scholar
  44. Gontcharov AA (2008) Phylogeny and classification of Zygnematophyceae (Streptophyta): current state of affairs. Fottea 8:87–104Google Scholar
  45. Goss R (2003) Substrate specificity of the violaxanthin de-epoxidase of the primitive green alga Mantoniella squamata (Prasinophyceae). Planta 217:801–812PubMedGoogle Scholar
  46. Goss R, Böhme K, Wilhelm C (1998) The xanthophyll cycle of Mantoniella squamata converts violaxanthin into antheraxanthin but not to zeaxanthin. Planta 205:613–621Google Scholar
  47. Granado-Lorencio F, Herrero-Barbudo C, Acien-Fernandez G (2009) In vitro bioaccesibility of lutein and zeaxanthin from the microalgae Scenedesmus almeriensis. Food Chem 114:747–752Google Scholar
  48. Gressel J (2008) Transgenics are imperative for biofuel crops. Plant Sci 174:246–263Google Scholar
  49. Gressel J, Chen O, Einbinder S, Eisenstadt S, Schatz D, Schlesinger A (2010) Transgenically domesticating marine micro-algae for biofuel and feed uses: no competition with crops for land and water. J Biotechn 150:16Google Scholar
  50. Grimsley N, Péquin B, Bachy C, Moreau H, Piganeau G (2010) Cryptic sex in the smallest eukaryotic marine alga. Mol Biol Evol 27:47–54PubMedGoogle Scholar
  51. Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) (2006) Chlorophylls and bacteriochlorophylls, 1st edn. Springer, DordrechtGoogle Scholar
  52. Grünewald K, Hirschberg J, Hagen C (2001) Ketocarotenoid biosynthesis outside of plastids in the unicellular green alga Haematococcus pluvialis. J Biol Chem 276:6023–6029PubMedGoogle Scholar
  53. Guedes AC, Maras HM, Malcata FX (2011) Microalgae as sources of high added-value compounds – a brief review of recent work. Biotechnol Prog 27:597–613PubMedGoogle Scholar
  54. Guiry MD, Guiry GM (2012) AlgaeBase [Online]. World-wide electronic publication, National University of Ireland, Galway http://www.algaebase.org. Accessed 14 Mar 2014
  55. Harris EH (2008) Chlamydomonas in the laboratory. In: Harris EH (ed) The Chlamydomonas sourcebook: introduction to Chlamydomonas and its laboratory use. Academic, Waltham, pp 241–302Google Scholar
  56. Hejazi MA, Wijffels H (2001) Milking of microalgae. Trends Biotechnol 22:189–194Google Scholar
  57. Heilmann S, Jader LR, Harned LA (2011) Hydrothermal carbonization of microalgae II. Fatty acid, char, and algal nutrient products. Appl Energy 88:3286–3290Google Scholar
  58. Huss VAR, Frank C, Hartmann EC, Hirmer M, Kloboucek A, Seidel BM, Wenzeler P, Kessler E (1999) Biochemical taxonomy and molecular phylogeny of the genus Chlorella sensu lato (Chlorophyta). J Phycol 35:587–598Google Scholar
  59. Janssen M, de Bresser L, Baijens T, Tramper J, Mur LR, Snel JFH, Wijffesl RH (2000) Scale-up aspects of photobioreactors: effects of mixing induced light/dark cycles. J Appl Phycol 12:225–237Google Scholar
  60. Jayasankar R, Ramamoorthy N (1993) Some observations on the growth of Chlorella salina. Seaweed Res Utiln 16:139–144Google Scholar
  61. Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. Phil Trans R Soc B Biol Sci 365:729–748Google Scholar
  62. Kessler E (1992) Chlorella biochemische Taxonomie einer für Forschung und Biotechnologie wichtigen Gattung einzelliger Grünalgen. Naturwissenschaften 79:260–265Google Scholar
  63. Kessler E, Czygan F-C (1970) Physiologische und biochemische Beiträge zur Taxonomie der Gattung Chlorella. Arch Mikrobiol 70:211–216, 1970Google Scholar
  64. Kim JI, Shin W, Triemer RE (2010) Multigene analyses of photosynthetic euglenoids and new family. Phacaceae (Euglenales) J Phycol 46:1278–1287Google Scholar
  65. Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–626PubMedGoogle Scholar
  66. Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 87:1228–1232PubMedCentralPubMedGoogle Scholar
  67. Kobayashi M (2003) Astaxanthin biosynthesis enhanced by reactive oxygen species in the green alga Haematococcus pluvialis. Biotechnol Bioproc Eng 8:322–330Google Scholar
  68. Klochkova T, Kang S, Cho G, Pueschel C, West J, Kim G (2006) Biology of a terrestrial green alga, Chlorococcum sp (Chlorococcales, Chlorophyta), collected from the Miruksazi stupa in Korea. Phycologia 45:349–358Google Scholar
  69. Krämer P, Wilhelm C, Wild A, Mörschel E, Riehl E (1988) Ultrastructure and freeze fracture studies of the thylakoids of Mantoniella squamata (Prasinophyceae). Protoplasma 147:170–177Google Scholar
  70. Kruse O, Hankamer B (2010) Microalgal hydrogen production. Curr Opin Biotechnol 21:238–243PubMedGoogle Scholar
  71. Lakaniemi AM, Hulatt CJ, Thomas DN, Tuovinen OH, Puhakka JA (2011) Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass. Biotechnol Biofuels 4:34PubMedCentralPubMedGoogle Scholar
  72. Langner U, Jakob T, Stehfest K, Wilhelm C (2009) A complete energy balance for Chlamydomonas reinhardtii and Chlamydomonas acidophila under neutral and extremely acidic growth conditions. Plant Cell Environ 32:250–258PubMedGoogle Scholar
  73. Lee JH, Kim YT (2006) Cloning and characterization of the astaxanthin biosynthesis gene cluster from the marine bacterium Paracoccus haeundaensis. Gene 370:86–95PubMedGoogle Scholar
  74. Leliaert F, Verbruggen H, Zechman F (2011) Into the deep: new discoveries at the base of green plant phylogeny. Bioessays 33:683–692PubMedGoogle Scholar
  75. Leliaert F, Smith DR, Moreau H, Herron MD, Verbruggen H, Delwiche CF, De Clerck O (2012) Phylogeny and molecular evolution of the green algae. Crit Rev Plant Sci 31:1–46Google Scholar
  76. Lemoine Y, Schoefs B (2010) Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynth Res 106:155–177PubMedGoogle Scholar
  77. Leon R, Couso I, Fernández E (2007) Metabolic engineering of ketocarotenoids biosynthesis in the unicellular microalga Chlamydomonas reinhardtii. J Biotechnol 130:143–152PubMedGoogle Scholar
  78. Lewis LA, McCourt RM (2004) Green algae and the origin of land plants. Am J Bot 91:1535–1556PubMedGoogle Scholar
  79. Li Y, Zhou W, Hu B, Min M, Chen P, Ruan RR (2011) Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: strains screening and significance evaluation of environmental factors. Bioresour Technol 102:10861–10867PubMedGoogle Scholar
  80. Lien T, Knutsen T (1979) Synchronous growth of Chlamydomonas reinhardtii (Chlorophyceae): a review of optimal conditions. J Phycol 15:191–200Google Scholar
  81. Lorenz RT, Cysewski RG (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167PubMedGoogle Scholar
  82. Lotan T, Hirschberg J (1995) Cloning and expressing in Escherichia coli the gene encoding β-C-4-oxygenase that converts β-carotene to the ketocarotenoid canthaxanthin in Haematococcus pluvialis. FEBS Lett 364:125–128PubMedGoogle Scholar
  83. Lurling M (2001) Grazing associated infochemicals induce colony formation in the green alga Sencedesmus. Protist 152:7–16PubMedGoogle Scholar
  84. Matsumoto T, Shinozaki F, Chikuni T, Yabuki A, Takishita K, Kawachi M, Nakayama T, Inouye I, Hashimoto T, Inagaki Y (2011) Green-colored plastids in the dinoflagellate genus Lepidodinium are of core chlorophyte origin. Protist 162:268–276PubMedGoogle Scholar
  85. Melis A (2007) Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae). Plant 226:1075–1086Google Scholar
  86. Melis A (2009) Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 177:272–280Google Scholar
  87. Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–135PubMedCentralPubMedGoogle Scholar
  88. Merchant SS, Prochnik SE, Vallon O et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–251PubMedCentralPubMedGoogle Scholar
  89. Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496PubMedGoogle Scholar
  90. Mikhailyuk TI, Sluiman HJ, Massalski A, Mudimu O, Demchenko EM, Kondratyuk SY, Friedl T (2008) New streptophyte green algae from terrestrial habitats and an assessment of the genus Interfilum (Klebsormidiophyceae, Streptophyta). J Phycol 44:1586–1603Google Scholar
  91. Mussgnug JH, Thomas-Hall S, Rupprecht J, Foo A, Klassen V, McDowall A, Schenk PM, Kruse O, Hankamer B (2001) Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotech J 5:802–814Google Scholar
  92. Nakada T, Nozaki H, Pröschold T (2008) Molecular phylogeny, ultrastructure, and taxonomic revision of Chlorogonium (Chlorophyta): emendation of Chlorogonium and description of Gungnir gen. nov. and Rusalka gen. nov. J Phycol 44:751–760Google Scholar
  93. Niehaus TD, Okad S, Devarenne TP, Watt DS, Sviripa V, Chapell J (2011) Identification of unique mechanisms for triperterpene biosynthesis in Botryococcus braunii. Proc Natl Acad Sci USA 108:12260–126265PubMedCentralPubMedGoogle Scholar
  94. Niklas KJ, Kutschera U (2010) The evolution of the land plant life cycle. New Phytol 185:27–41PubMedGoogle Scholar
  95. Oswald W, Golucke C (eds) (1968) Algae, man and the environment. Syracuse University Press, SyracuseGoogle Scholar
  96. Palmucci M, Giordano M (2011) Ecological and evolutionary implications of carbon allocation in marine phytoplankton as a function of nitrogen availability. A Fourier Transform Infrared spectroscopy approach. J Phycol 47:313–323Google Scholar
  97. Patron NJ, Waller RF (2007) Transit peptide diversity and divergence: a global analysis of plastid targeting signals. BioEssays 29:1048–1058PubMedGoogle Scholar
  98. Pickett-Heaps JD (ed) (1975) Green algae, structure, reproduction and evolution in selected genera. Sinauer Associates, Inc, SunderlandGoogle Scholar
  99. Piganeau G, Eyre-Walker A, Grimsley N, Moreau H (2011) How and why DNA barcodes underestimate the diversity of microbial eukaryotes. PLoS ONE 6:e16342PubMedCentralPubMedGoogle Scholar
  100. Pocock T, Lachance MA, Proschold T, Priscu C, Kim SS, Huner NPA (2004) Identification of a psychrophilic green alga from Lake Bonney Antarctica: Chlamydomonas raudensis Ettl. (UWO 241) Chlorophyceae. J Phycol 40:1138–1148Google Scholar
  101. Potvin G, Zhang Z (2010) Strategies for high-level recombinant protein expression in transgenic microalgae: a Review. Biotechnol Adv 28:910–918PubMedGoogle Scholar
  102. Pröschold T, Marin B, Schlosser UG, Melkonian M (2001) Molecular phylogeny and taxonomic revision of Chlamydomonas (Chlorophyta). I. Emendation of Chlamydomonas Ehrenberg and Chloromonas Gobi, and description of Oogamochlamys gen. nov. and Lobochlamys gen. Nov. Protist 152:265–300PubMedGoogle Scholar
  103. Rasala BA, Muto M, Lee PA, Jager M, Cardos R, Behnke CA, Kirk P, Hokanson CA, Crea R, Mendez MS (2010) Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechn J 8:719–733Google Scholar
  104. Raven JA (2011) The cost of photoinhibition. Physiol Plant 142:87–104PubMedGoogle Scholar
  105. Reiland S, Finazzi G, Endler A et al (2011) Comparative phosphoproteome profiling reveals a function of the STN 8 kinase in fine-tuning of cyclic electron flow. Proc Natl Acad Sci U S A 108:12955–12960PubMedCentralPubMedGoogle Scholar
  106. Remias D, Lütz-Meindl U, Lütz C (2005) Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur J Phycol 40:259–268Google Scholar
  107. Remias D, Schwaiger S, Aigner S, Leya T, Stuppner H, Lütz C (2012) Characterization of an UV- and VIS-absorbing, purpurogallin-derived secondary pigment new to algae and highly abundant in Mesotaenium berggrenii (Zygnematophyceae, Chlorophyta), an extremophyte living on glaciers. FEMS Microbiol Ecol 79:638–648PubMedGoogle Scholar
  108. Rezanka T, Nedbalova L, Sigler K, Cepak V (2008) Identification of astaxanthin di glucoside diesters from snow alga Chlamydomonas nivalis by liquid chromatogrphy-atmospheric pressure chimica ionization mass spectrometry. Phytochem 69:479–490Google Scholar
  109. Rohr J, Sarkar N, Balenger S, Jeong BR, Cerutti H (2004) Tandem inverted repeat system for selection of effective transgenic RNAi strains in Chlamydomonas. Plant J 40:611–621PubMedGoogle Scholar
  110. Rupprecht J (2009) From systems biology to fuel Chlamydomonas reinhardtii as a model for a systems biology approach to improve biohydrogen production. J Biotechn 142:10–20Google Scholar
  111. Sager R (1954) Mendelian and non-Mendelian inheritance of streptomycin resistance in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 40:356–363PubMedCentralPubMedGoogle Scholar
  112. Schroda M, Blöcker D, Beck CF (2000) The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. Plant J 21:121–131PubMedGoogle Scholar
  113. Schuhmann H, Lim DKY, Schenk PM (2012) Perspectives on metabolic engineering for increased lipid contents in microalgae. Biofuels 3:71–86Google Scholar
  114. Sharkey TD, Yeh S (2001) Isoprene emission form plans. Annu Rev Plant Physiol Mol Biol 52:407–436Google Scholar
  115. Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416PubMedGoogle Scholar
  116. Söder C (1976) The use of microalgae in nutrition. Naturwissenschaften 63:131–138Google Scholar
  117. Song W, Rashid N, Choi W, Lee K (2011) Biohydrogen production by immobilized Chlorella sp. using cycles of oxygenic photosynthesis and anaerobiosis. Bioresour Technol 102:8676–8681PubMedGoogle Scholar
  118. Sorokina O, Corellou F, Dauvillée D, Sorokin A, Goryanin I, Ball S, Bouget F-Y, Millar AJ (2011) Microarray data can predict diurnal changes of starch content in the picoalga Ostreococcus. BMC System Biol 5:36Google Scholar
  119. Stanley JG, Jones JB (1976) Feeding algae to fish. Aquaculture 7:219–223Google Scholar
  120. Steinbrenner J, Linden H (2013) Licht induction of carotenoid biosynthesis genes in the green algae Haematococcus pluvialis: regulation by photosynthetic redox control. Plant Mol Biol 52:343–356Google Scholar
  121. Steinbrenner JA, Sandmann G (2006) Transformation of the green alga Haematococcus pluvialis with a phytoene desaturase for accelerated astaxanthin biosynthesis. Appl Environ Microbiol 72:7477–7484PubMedCentralPubMedGoogle Scholar
  122. Tamiya H (1966) Synchronous cultures of algae. Annu Rev Plant Physiol 17:1–26Google Scholar
  123. Torzillo G, Pushparaj B, Masojidek J (2003) Biological constraints in algal biotechnology. Biotechnol Bioproc Engineer 8:338–348Google Scholar
  124. Triki A, Maillard P, Gudin C (1997) Gametogenesis in Haematococcus pluvialis. F. (Volvocales, Chlorophyta). Phycologia 36:190–194Google Scholar
  125. Trissl HW, Wilhelm C (1993) Why do thylakoid membranes from higher plants form grana stacks? Trends Biochem Sci 18:415–419PubMedGoogle Scholar
  126. Visser H, van Ooyen AJ, Verodes JC (2003) Metabolic engineering of the astaxanthin-biosynthetic pathway of Xanthophyllomyces dendrorhous. FEMS Yeast Res 4:221–231PubMedGoogle Scholar
  127. van den Hoek C, Mann D, Jahns HM (eds) (1996) Algae: an introduction to phycology. Cambridge University Press, CambridgeGoogle Scholar
  128. Vaulot D, Eikrem W, Viprey M, Moreau H (2008) The diversity of small eukaryotic phytoplankton (≤3 μm) in marine ecosystems. FEMS Microbiol Rev 32:795–820PubMedGoogle Scholar
  129. Weinberg J, Kaltschmitt M, Wilhelm C (2012) Biofuels from microalgae – an environmental analysis. Biomass Convers Biorefinery 2:179–194Google Scholar
  130. Weiss TL, Johnston JS, Fjijsawa K, Okada S, Devarenne TP (2011) Genome size and phylogenetic analysis of the A and L races of Botryococcus braunii. J Appl Phycol 23:833–839Google Scholar
  131. Wilhelm C, Wild A (1984) The variability of the photosynthetic unit in Chlorella. II. The effect of light intensity and cell development on photosynthesis, P-700 and cytochrome f in homocontinuous and synchronous cultures of Chlorella. J Plant Physiol 115:125–135PubMedGoogle Scholar
  132. Wilhelm C, Lenartz-Weiler I (1987) Energy transfer and pigment composition in three chlorophyll b containing light-harvesting complexes isolated from Mantoniella squamata, Chlorella fusca and Sinapis alba. Photosynth Res 13:101–111PubMedGoogle Scholar
  133. Wilhelm C, Krämer P, Wild A (1985) Effect of different light qualities on the ultrastructure, thylakoid membrane composition and assimilation metabolism in Chlorella fusca. Physiol Plant 64:359–364Google Scholar
  134. Wilhelm C, Selmar D (2011) Energy dissipation is an essential mechanism to sustain the viability of plants: the physiological limits of improved photosynthesis. J Plant Physiol 168:79–87PubMedGoogle Scholar
  135. Worden AZ, Lee J-H, Mock T, Rouzé P, Simmons MP (2009) Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes micromonas. Science 324:268–272PubMedGoogle Scholar
  136. Yokoyama A, Shizuri Y, Hoshino T, Sandmann G (1996) Thermocryptoxanthins: novel intermediates in the carotenoid bio-synthetic pathway of Thermus thermophilus. Arch Microbiol 165:342–345PubMedGoogle Scholar
  137. Zechman FW, Verbruggen H, Leliaert F, Ashworth M, Buchheim MA, Fawley MW, Spalding H, Pueschel CM, Buchheim JA, Verghese B, Hanisak MD (2010) An unrecognized ancient lineage of green plants persists in deep marine waters. J Phycol 46:1288–1295Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2014

Authors and Affiliations

  1. 1.Department of Plant Physiology, Institute of BiologyUniversity of LeipzigLeipzigGermany

Personalised recommendations