The Structure and Morphology of Red Algae Chloroplasts

  • Zenilda L. BouzonEmail author
  • Carmen Simioni
  • Eder C. Schmidt
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 39)


The morphological and structural aspects of red algae chloroplasts are described in this chapter. Structural and physiological features of the red algal chloroplast demonstrate the occurrence of an endosymbiotic event. Structural features of the red algal chloroplast include phycobilisomes, plastoglobuli, genophores, ribosomes, and pyrenoids in some species. The phycobilisomes are photosynthetic macromolecular aggregates of light-harvesting pigment-protein complexes attached to the stromal side of the thylakoid membrane. In the chloroplast stroma, electron-dense lipid droplets (plastoglobuli) are observed between the thylakoids, and in red algae, these structures are interpreted as lipid material. In chloroplasts, the stroma is filled with plastidial ribosomes and a fibrillar region corresponding to a genophore. Red algae can possess a large variety of colors, ranging from purple-red, pinkish-red, red, brown, yellowish to different gradations of green. These colors arise from a variety of photosynthetic pigments, predominantly chlorophyll a, with accessory pigments found in the phycobiliproteins (allophycocyanin, phycocyanin and phycoerythrin), as well as different carotenoids (violaxanthin, antheraxanthin, lutein, zeaxanthin, β-cryptoxanthin, α-carotene and β-carotene). Floridean starch is the main storage product synthesized in red algae. The floridean starch is stored in granules, which are localized in the cell cytoplasm – outside of the chloroplast.


Kappaphycus Alvarezii Chloroplast Division Chloroplast Stroma Accessory Pigment Porphyridium Cruentum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



– Electron microscopy;


– Light microscopy;


– Periodic acid-schiff;


– Phycobilisome



The authors would like to acknowledge the staff of the Central Laboratory of Electron Microscopy (LCME), Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil, for the use of their transmission electron and confocal microscopes. We appreciate the efforts of everyone contributing to the book.


  1. Bouzon ZL (2006) Histoquímica e ultra-estrutura da ontogênese dos tetrasporângios de Hypnea musciformis (Wulfen) J.V. Lamouroux (Gigartinales, Rhodophyta). Rev Bras Bot 29:229–238CrossRefGoogle Scholar
  2. Bouzon ZL, Ferreira EC, Santos R, Scherner F, Horta PA, Maraschin M, Schmidt EC (2012) Influences of cadmium on fine structure and metabolism of Hypnea musciformis (Rhodophyta, Gigartinales) cultivated in vitro. Protoplasma 249:637–650PubMedCrossRefGoogle Scholar
  3. Bréhélin C, Kessler F, Wijk KJ (2007) Plastoglobules: versatile lipoprotein particles in plastids. Trends Plant Sci 12:260–266PubMedCrossRefGoogle Scholar
  4. Cole KM, Sheath RG (1990) Biology of the red algae. Front cover. Cambridge University Press, Cambridge, Science, 517 ppGoogle Scholar
  5. Coleman AW (1985) Diversity of plastid DNA configuration among classes of eukaryote algae. J Phycol 21:1–16CrossRefGoogle Scholar
  6. Colin H, Guéguen E (1930) The constitution of the principle sugar of Rhodymenia palmata. Seances Acad Sci 191:163–164Google Scholar
  7. Delivopoulos SG (2003) Ultrastructure of auxiliary and gonimoblast cells during carposporophyte development in the red alga Cryptopleura ruprechtiana (Delesseriaceae, Ceramiales, Rhodophyta). Biol Cell 95:383–392PubMedCrossRefGoogle Scholar
  8. Dodge JD (1973) The fine structure of algal cells. Academic Press, London, p 261Google Scholar
  9. Gantt E, Contii SF (1965) The ultrastructure of Porphyridium cruentum. J Cell Biol 6:365–381CrossRefGoogle Scholar
  10. Gantt E, Lipschultz CA (1974) Phycobilisomes of Porphyridium cruentum: pigment analysis. Biochemistry 13:2960–2966PubMedCrossRefGoogle Scholar
  11. Gibbs SP (1962) The ultrastructure of the chloroplasts of algae. J Ultrastruct Res 7:418–435PubMedCrossRefGoogle Scholar
  12. Holzinger A, Roleda MY, Lütz C (2009) The vegetative arctic freshwater green alga Zygnema is insensitive to experimental UV exposure. Micron 40:831–838PubMedCrossRefGoogle Scholar
  13. Jenks A, Gibbs SP (2000) Immunolocalization and distribution of Form II RUBISCO in the pyrenoid and chloroplast stroma of Amphidinium carterae and Form I RUBISCO in the symbiont-derived plastids of Peridinium foliaceum (Dinophyceae). J Phycol 36:127–138CrossRefGoogle Scholar
  14. Lee RE (2008) Phycology, 4th edn. University Press, CambridgeCrossRefGoogle Scholar
  15. Linka ML, Jamai A, Weber PM (2008) Functional characterization of the plastidic phosphate translocator gene family from the thermo-acidophilic red alga Galdieria sulphuraria reveals specific adaptations of primary carbon partitioning in green plants and red algae. Plant Physiol 148:1487–1496PubMedCentralPubMedCrossRefGoogle Scholar
  16. Miyagishima S (2011) Mechanism of plastid division: from a bacterium to an organelle. Plant Physiol 155:1533–1544PubMedCentralPubMedCrossRefGoogle Scholar
  17. Nagasato C, Yoshikawa S, Yamashita M, Kawai H, Motomura T (2003) Pyrenoid formation associated with the cell cycle in the brown alga, Scytosiphon lomentaria (Scytosiphonales, Phaeophyceae). J Phycol 39:1172–1180CrossRefGoogle Scholar
  18. Patron NJ, Keeling PJ (2005) Common evolutionary origin of starch biosynthetic enzymes in green and red algae. J Phycol 41:1131–1141CrossRefGoogle Scholar
  19. Pueschel CM (1988) Cell sloughing and chloroplast inclusions in Hildenbrandia rubra (Rhodophyta, Hildenbrandiales). Eur J Phycol 23:17–23CrossRefGoogle Scholar
  20. Pueschel CM (1990) Cell structure. In: Cole KM, Sheath RG (eds) Biology of the red algae. Cambridge University Press, Cambridge, pp 7–42Google Scholar
  21. Schmidt EC, Scariot LA, Rover T, Bouzon ZL (2009) Changes in ultrastructure and histochemistry of two red macroalgae strains of Kappaphycus alvarezii (Rhodophyta, Gigartinales), as a consequence of ultraviolet B radiation exposure. Micron 40:860–869PubMedCrossRefGoogle Scholar
  22. Schmidt EC, Maraschin M, Bouzon ZL (2010a) Effects of UVB radiation on the carragenophyte Kappaphycus alvarezii (Rhodophyta, Gigartinales): changes in ultrastructure, growth, and photosynthetic pigments. Hydrobiologia 649:171–182CrossRefGoogle Scholar
  23. Schmidt EC, Nunes BG, Maraschin M, Bouzon ZL (2010b) Effect of ultraviolet-B radiation on growth, photosynthetic pigments, and cell biology of Kappaphycus alvarezii (Rhodophyta, Gigartinales) macroalgae brown strain. Photosynthetica 48:161–172CrossRefGoogle Scholar
  24. Schmidt EC, Santos R, Horta PA, Maraschin M, Bouzon ZL (2010c) Effects of UVB radiation on the agarophyte Gracilaria domingensis (Rhodophyta, Gracilariales): changes in cell organization, growth and photosynthetic performance. Micron 41:919–930PubMedCrossRefGoogle Scholar
  25. Schubert N, García-Mendoza E, Pacheco-Ruiz I (2006) Carotenoid composition of marine red algae. J Phycol 42:1208–1216CrossRefGoogle Scholar
  26. Su HN, Xie BB, Zhang XY, Zhou BC, Zhang YZ (2010) The supramolecular architecture, function, and regulation of thylakoid membranes in red algae: an overview. Photosynth Res 106:73–87PubMedCrossRefGoogle Scholar
  27. Thiéry JP (1967) Mise en évidence des polysaccharides sur coupes fines en microscopy électronique. J Microsc 6:987–1018Google Scholar
  28. Trick HN, Pueschel CM (1990) Cytochemistry of pit plugs in Bossiella californica (Corallinales, Rhodophyta). Phycologia 29:403–409CrossRefGoogle Scholar
  29. Tripodi G, De Masi F (1975) Cytological localization of polysaccharidic molecules in some red algae. J Submicrosc Cytol 7:197–209Google Scholar
  30. Vergara JJ, Niell FX (1993) Effects of nitrate avail ability and irradiance on internal nitrogen constituents in Corallina elongata (Rhodophyta). J Phycol 29:285–293CrossRefGoogle Scholar
  31. Viola R, Nyvall P, Pedersen M (2001) The unique features of starch metabolism in red algae. Proc R Soc Lond B Biol Sci 268:1417–1422CrossRefGoogle Scholar
  32. Wetherbee R, Wynne MJ (1973) The fine structure of the nucleus and nuclear associations of developing carposporangia in Polysiphonia novae-angliae (Rhodophyta). J Phycol 9:402–407Google Scholar
  33. Wise RR, Hoober JK (eds) (2007) The structure and function of plastids, vol 23, Advances in photosynthesis and respiration. Springer, The NetherlandsGoogle Scholar
  34. Zilinskas BA, Greenwald LS (1986) Phycobilisome structure and function. Photosynth Res 10:7–35PubMedCrossRefGoogle Scholar
  35. Zitta CS (2010) Determinação da ploidia de três linhagens de Kappaphycus alvarezii (Rhodophyta, Gigartinales) cultivadas em laboratório e análise da ontogênese de calos da linhagem tetrasporofítica marrom. Master dissertation, Federal University of Santa Catarina, BrazilGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2014

Authors and Affiliations

  • Zenilda L. Bouzon
    • 1
    • 2
    Email author
  • Carmen Simioni
    • 3
  • Eder C. Schmidt
    • 4
  1. 1.Plant Cell Biology Laboratory, Department of Cell Biology, Embryology and GeneticsFederal University of Santa CatarinaFlorianópolisBrazil
  2. 2.Central Laboratory of Electron MicroscopyFederal University of Santa CatarinaFlorianópolisBrazil
  3. 3.Post-Graduate Program in Cell Biology and Development, Department of Cell Biology, Embryology and GeneticsFederal University of Santa CatarinaFlorianópolisBrazil
  4. 4.Postdoctoral Research of Postgraduate Program in Cell Biology and Development, Department of Cell Biology, Embryology and GeneticsFederal University of Santa CatarinaFlorianópolisBrazil

Personalised recommendations