The Architecture of Cyanobacteria, Archetypes of Microbial Innovation

  • Claire S. TingEmail author
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 39)


With an impressive and unparalleled evolutionary history spanning over two billion years, cyanobacteria have evolved to thrive in a diverse range of habitats and numerically dominate vast regions, such as the open oceans. Impacts of this microbial lineage on our planet have been far-reaching: ancestors of extant cyanobacteria had a pivotal role not only in the establishment of oxygen as a major component of the atmosphere, but in the rise of embryophytic algae and land plants. The evolution of innovative cellular structure and function in response to abiotic and biotic selection pressures has resulted in a striking diversity in cyanobacteria. Given the fact that the relationship between form and function is complex, and that cellular structures are often multifunctional and dynamic, this review uses a comparative approach in understanding how biological functions or strategies impact cellular architecture. Notably, differences existing in cellular architecture among genera, and even between strains of the same genus, often reflect evolutionary innovations that have permitted a group to flourish in a particular environment. This review also addresses how a conserved cellular feature, namely the compartmentalization of key functions, has promoted metabolic flexibility and survival. This compartmentalization involves structures such as the internal membranes, heterocysts and carboxysomes, and has permitted the functioning and integration of diverse, and at times, incompatible, processes in a single cell. With heightened interest in utilizing photosynthetic organisms to address global challenges in food and energy resources, research on this remarkable lineage will undoubtedly continue to inform, as well as inspire.


Cyanobacterial Cell Internal Membrane Peptidoglycan Layer Conventional Transmission Electron Microscopy Intracytoplasmic Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



– Adenosine triphosphate;


– Chlorophyll


– Chl-binding protein (apparent molecular mass 43 kDa) associated with PSII;


– Chl-binding protein (apparent molecular mass 47 kDa) associated with PSII;


– Mobile light-harvesting Chl a/b-binding antenna complex;


– Million base pairs;


– Prochlorophyte Chl a/b-binding antenna protein;


– Plastoquinone;


– Photosystem I;


– Photosystem II;


– Transmission electron microscopy



This work was supported by the National Science Foundation Award Numbers MCB-0615680 and MCB-0850900.


  1. Anderson JM (1986) Photoregulation of the composition, function, and structure of thylakoid memgbranes. Ann Rev Plant Physiol 37:93–136Google Scholar
  2. Badger MR, Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54:609–622PubMedGoogle Scholar
  3. Badger MR, Hanson D, Price GD (2002) Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria. Funct Plant Biol 29:161–173Google Scholar
  4. Badger MR, Price GD, Long BM, Woodger FJ (2006) The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism. J Exp Bot 57:249–265PubMedGoogle Scholar
  5. Balagam B, Richardson DE (2008) The mechanism of carbon dioxide catalysis in the hydrogen peroxide N-oxidation of amines. Inorg Chem 47:1173–1178PubMedGoogle Scholar
  6. Balskus EP, Walsh CT (2010) The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria. Science 329:1653–1656PubMedCentralPubMedGoogle Scholar
  7. Bauer CC, Buikema WJ, Black K, Haselkorn R (1995) A short-filament mutant of Anabaena sp. strain PCC 7120 that fragments in nitrogen-deficient medium. J Bacteriol 177:1520–1526PubMedCentralPubMedGoogle Scholar
  8. Bekker A, Holland HD, Wang PL, Rumble D, Stein HJ, Hannah JL, Coetzee LL, Beukes NJ (2004) Dating the rise of atmospheric oxygen. Nature 427:117–120PubMedGoogle Scholar
  9. Bergman B, Gallon JR, Rai AN, Stal LJ (1997) N2-fixation by non-heterocystous cyanobacteria. FEMS Microbiol Rev 19:139–185Google Scholar
  10. Berman-Frank I, Lundgren P, Chen Y-B, Kupper H, Kolber Z, Bergman B, Falkowski P (2001) Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium. Science 294:1534–1537PubMedGoogle Scholar
  11. Berman-Frank I, Lundgren P, Falkowski P (2003) Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res Microbiol 154:157–164PubMedGoogle Scholar
  12. Bhattacharya D, Medlin L (1995) The phylogeny of plastids: a review based on comparisons of small subunit ribosomal RNA coding regions. J Phycol 31:489–498Google Scholar
  13. Bhattacharya D, Yoon HS, Hackett JD (2004) Photosynthetic eukaryotes unite: Endosymbiosis connects the dots. Bioessays 26:50–60PubMedGoogle Scholar
  14. Bhattacharya D, Archibald JM, Weber APM, Reyes-Prieto A (2007) How do endosymbionts become organelles? Understanding early events in plastid evolution. Bioessays 29:1239–1246PubMedGoogle Scholar
  15. Bibby TS, Nield J, Barber J (2001a) Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria. Nature 412:743–745PubMedGoogle Scholar
  16. Bibby TS, Nield J, Partensky F, Barber J (2001b) Antenna ring around photosystem I. Nature 413:590PubMedGoogle Scholar
  17. Bibby TS, Mary I, Nield J, Partensky F, Barber J (2003a) Low-light-adapted Prochlorococcus species possess specific antennae for each photosystem. Nature 424:1051–1054PubMedGoogle Scholar
  18. Bibby TS, Nield J, Chen M, Larkum AWD, Barber J (2003b) Structure of a photosystem II supercomplex isolated from Prochloron didemni retaining its chlorophyll a/b light-harvesting system. Proc Natl Acad Sci U S A 100:9050–9054PubMedCentralPubMedGoogle Scholar
  19. Bobik TA (2006) Polyhedral organelles compartmenting bacterial metabolic processes. Appl Microbiol Biotechnol 70:517–525PubMedGoogle Scholar
  20. Boekema EJ, van Breemen JFL, van Roon H, Dekker JP (2000) Arrangement of Photosystem II supercomplexes in crystalline macrodomains within the thylakoid membrane of green plant chloroplasts. J Mol Biol 301:1123–1133PubMedGoogle Scholar
  21. Boekema EJ, Hifney A, Yakushevska AE, Piotrowski M, Keegstra W, Berry S, Michel K-P, Pistorius EK, Kruip J (2001) A giant chlorophyll-protein complex induced by iron-deficiency in cyanobacteria. Nature 412:745–748PubMedGoogle Scholar
  22. Bohm GA, Pfleiderer W, Boger P, Scherer S (1995) Structure of a novel oligosaccharide-mycosporine-amino acid ultraviolet A/B sunscreen pigment from the terrestrial cyanobacterium Nostoc commune. J Biol Chem 270:8536–8539PubMedGoogle Scholar
  23. Bothe H, Tripp HJ, Zehr JP (2010) Unicellular cyanobacteria with a new mode of life: the lack of photosynthetic oxygen evolution allows nitrogen fixation to proceed. Arch Microbiol 192:783–790PubMedGoogle Scholar
  24. Braun-Howland EB, Nierzwicki-Bauer SA (1990) Occurrence of the 32-kDa QB-binding protein of Photosystem II in vegetative cells, heterocysts and akinetes of Azolla caroliniana cyanobionts. Planta 180:361–371Google Scholar
  25. Brocks JJ, Logan GA, Buick R, Summons RE (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036PubMedGoogle Scholar
  26. Brocks JJ, Buick R, Logan GA, Summons RE (2003) Composition and syngeneity of molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Pilbara Craton, Western Australia. Geochim Cosmochim Acta 67:4289–4319Google Scholar
  27. Buchanan RE, Gibbons NE (1974) Bergey’s manual of determinative bacteriology, 8th edn. Williams and Wilkins, Co., BaltimoreGoogle Scholar
  28. Bumba L, Prasil O, Vacha F (2005) Antenna ring around trimeric Photosystem I in chlorophyll b containing cyanobacterium Prochlorothrix hollandica. Biochim Biophys Acta 1708:1–5PubMedGoogle Scholar
  29. Burger-Wiersma T, Veenhuis M, Korthals HJ, Van de Wiel CCM, Mur LR (1986) A new prokaryote containing chlorophylls a and b. Nature 320:262–264Google Scholar
  30. Cabeen MT, Jacobs-Wagner C (2005) Bacterial cell shape. Nat Rev Microbiol 3:601–610PubMedGoogle Scholar
  31. Cannon GC, Bradburne CE, Aldrich HC, Baker SH, Heinhorst S, Shively JM (2001) Microcompartments in prokaryotes: carboxysomes and related polyhedral. Appl Environ Microbiol 67:5351–5361PubMedCentralPubMedGoogle Scholar
  32. Cannon GC, Heinhorst S, Bradburne CE, Shively JM (2002) Carboxysome genomics: a status report. Funct Plant Biol 29:175–182Google Scholar
  33. Carballido-Lopez R, Errington J (2003) The bacterial cytoskeleton: in vivo dynamics of the actin-like protein Mbl of Bacillus subtilis. Dev Cell 4:19–28PubMedGoogle Scholar
  34. Chen M, Bibby TS, Nield J, Larkum A, Barber J (2005a) Iron deficiency induces a chlorophyll d-binding Pcb antenna system around Photosystem I in Acaryochloris marina. Biochim Biophys Acta 1708:367–374PubMedGoogle Scholar
  35. Chen M, Bibby TS, Nield J, Larkum AWD, Barber J (2005b) Structure of a large photosystem II supercomplex from Acarychloris marina. FEBS Lett 579:1306–1310PubMedGoogle Scholar
  36. Chen M, Hiller RG, Howe CJ, Larkum AWD (2005c) Unique origin and lateral transfer of prokaryotic Chlorophyll-b and Chlorophyll-d light-harvesting systems. Mol Biol Evol 22:21–28PubMedGoogle Scholar
  37. Chen M, Floetenmeyer M, Bibby TS (2009) Supramolecular organization of phycobiliproteins in the chlorophyll d-containing cyanobacterium Acaryochloris marina. FEBS Lett 583:2535–2539PubMedGoogle Scholar
  38. Chisholm SW (1992) Phytoplankton size. In: Falkowski PG, Woodhead AD (eds) Primary productivity and biogeochemical cycles in the sea. Plenum Press, New York, pp 213–237Google Scholar
  39. Chisholm SW, Olson RJ, Zettler ER, Goericke R, Waterbury JB, Welschmeyer NA (1988) A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334:340–343Google Scholar
  40. Clayton RK (1980) Photosynthesis: physical mechanisms and chemical patterns. Cambridge Unviersity Press, LondonGoogle Scholar
  41. Compaore J, Stal LJ (2010) Oxygen and the light-dark cycle of nitrogenase activity in two unicellular cyanobacteria. Environ Microbiol 12:54–62PubMedGoogle Scholar
  42. De Pedro MA, Yong KD, Holtje JV, Schwarz H (2003) Branching in Escherichia coli cells arises from multiple sites of inert peptidoglycan. J Bacteriol 185:1147–1152PubMedCentralPubMedGoogle Scholar
  43. Dekker JP, Boekema EJ (2005) Supramolecular organization of thylakoid membrane proteins in green plants. Biochim Biophys Acta 1706:12–39PubMedGoogle Scholar
  44. Delwiche CF (1999) Tracing the thread of plastid diversity through the tapestry of life. Am Nat 154:S164–S177PubMedGoogle Scholar
  45. Dou Z, Heinhorst S, Williams EB, Murin CD, Shively JM, Cannon GC (2008) CO2 fixation kinetics of Halothiobacillus neapolitanus mutant carboxysomes lacking carbonic anhydrase suggest the shell acts as a diffusional barrier for CO2. J Biol Chem 283:10377–10384PubMedGoogle Scholar
  46. Ehling-Schulz M, Bilger W, Scherer S (1997) UB-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J Bacteriol 179:1940–1945PubMedCentralPubMedGoogle Scholar
  47. Ezraty B, Chabalier M, Ducret A, Maisonneuve E, Dukan S (2011) CO2 exacerbates oxygen toxicity. EMBO Rep 12:321–326PubMedCentralPubMedGoogle Scholar
  48. Fay P, Lang NJ (1971) The heterocysts of blue-green algae. I. Ultrastructural integrity after isolation. Proc R Soc Lond B Biol Sci 178:185–192Google Scholar
  49. Fewer D, Friedl T, Budel B (2002) Chroococcidiopsis and heterocyst-differentiating cyanobacteria are each other’s closest living relatives. Mol Phylogenet Evol 23:82–90PubMedGoogle Scholar
  50. Fieldler G, Arnold M, Hannus S, Maldener I (1998) The DevBCA exporter is essential for envelope formation in heterocysts of the cyanboacterium Anabaena sp. strain PCC 7120. Mol Microbiol 27:1193–1202Google Scholar
  51. Figge RM, Divakaruni AV, Gober JW (2004) MreB, the cell shape-determining bacterial actin homologue, co-ordinates cell wall morphogenesis in Caulobacter crescentus. Mol Microbiol 51:1321–1332PubMedGoogle Scholar
  52. Fleming ED, Castenholz RW (2007) Effects of periodic desiccation on the synthesis of the UV-screening compound, scytonemin, in cyanobacteria. Environ Microbiol 9:1448–1455PubMedGoogle Scholar
  53. Flores E, Herrero A (1994) Assimilatory nitrogen metabolism and its regulation. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, The Netherlands, pp 487–517Google Scholar
  54. Flores E, Herrero A, Wolk CP, Maldener I (2006) Is the periplasm continuous in filamentous multicellular cyanobacteria? Trends Microbiol 14:339–443Google Scholar
  55. Fogg GE (1986) Picoplankton. Proc R Soc Lond B Biol Sci 228:1–30Google Scholar
  56. Fritsch FE (1935) The structure and reproduction of algae. The University Press, CambridgeGoogle Scholar
  57. Gantt E (1994) Supramolecular membrane organization. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, The Netherlands, pp 119–138Google Scholar
  58. Gantt E, Conti SF (1969) Ultrastructure of blue-green algae. J Bacteriol 97:1486–1493PubMedCentralPubMedGoogle Scholar
  59. Garcia-Pichel F, Sherry ND, Castenholz RW (1992) Evidence for an ultraviolet sunscreen role of the extracellular pigment scytonemin in the terrestrial cyanobacterium Chlorogloeopsis sp. Photochem Photobiol 56:17–23PubMedGoogle Scholar
  60. Giddings TH, Staehelin LA (1978) Plasma membrane architecture of Anabaena cylindrica: occurrence of microplasmodesmata and changes associated with heterocyst development and the cell cycle. Cytobiologica 16:235–249Google Scholar
  61. Giddings TH, Withers NW, Staehelin LA (1980) Supramolecular structure of stacked and unstacked regions of the photosynthetic membranes of Prochloron sp., a prokaryote. Proc Natl Acad Sci U S A 77:352–356PubMedCentralPubMedGoogle Scholar
  62. Giovannoni SF, Turner S, Olsen G, Barns S, Lane DJ, Pace NR (1988) Evolutionary relationships among Cyanobacteria and green chloroplasts. J Bacteriol 170:3584–3592PubMedCentralPubMedGoogle Scholar
  63. Gitai Z, Dye NA, Shapiro L (2004) An actin-like gene can determine cell polarity in bacteria. Proc Natl Acad Sci U S A 101:8643–8648PubMedCentralPubMedGoogle Scholar
  64. Golecki JR (1988) Analysis of the structure and development of bacterial membranes (outer, cytoplasmic and intracytoplasmic membranes). Methods Microbiol 20:61–77Google Scholar
  65. Golubic S, Hernandez-Marine M, Hoffmann L (1996) Developmental aspects of branching in filamentous Cyanophyta/Cyanobacteria. Arch Hydrobiol Suppl 117:303–329Google Scholar
  66. Gray MW (1992) The endosymbiont hypothesis revisited. Int Rev Cytol 141:233–357PubMedGoogle Scholar
  67. Gugger MF, Hoffmann L (2004) Polyphyly of true branching cyanobacteria (Stigonematales). Int J Syst Evol Microbiol 54:349–3357PubMedGoogle Scholar
  68. Hansel A, Tadros MH (1998) Characterization of two pore-forming proteins isolated from the outer membrane of Synechococcus PCC 6301. Curr Microbiol 36:321–326PubMedGoogle Scholar
  69. Hansel A, Pattus F, Jurgens UJ, Tadros MH (1998) Cloning and characterization of the genes coding for two porins in the unicellular cyanobacterium Synechococcus PCC 6301. Biochim Biophys Acta 1399:31–39PubMedGoogle Scholar
  70. Hofmann HJ (1976) Precambrian microflora, Belcher Islands, Canada: significance and systematics. J Paleontol 50:1040–1073Google Scholar
  71. Hoiczyk E (1998) Structural and biochemical analysis of o the sheath of Phormidium uncinatum. J Bacteriol 180:3923–3932PubMedCentralPubMedGoogle Scholar
  72. Hoiczyk E, Baumeister W (1995) Envelope structure of four gliding filamentous cyanobacteria. J Bacteriol 177:2387–2395PubMedCentralPubMedGoogle Scholar
  73. Hoiczyk E, Baumeister W (1997) Oscillin, an extracellular, Ca+2-binding glycoprotein essential for gliding motility of cyanobacteria. Mol Microbiol 26:699–708PubMedGoogle Scholar
  74. Hoiczyk E, Hansel A (2000) Caynobacterial cell walls: news from an unusual prokaryotic envelope. J Bacteriol 182:1191–1199PubMedCentralPubMedGoogle Scholar
  75. Holland HD (2006) The oxygenation of the atmosphere and oceans. Phil Trans R Soc B 361:903–915PubMedCentralPubMedGoogle Scholar
  76. Howitt CA, Udall PK, Vermaas WFJ (1999) Type 2 NADH dehydrogenases in the cyanobacterium Synechocystis sp. strain PCC6803 are involved in regulation rather than respiration. J Bacteriol 181:3994–4003PubMedCentralPubMedGoogle Scholar
  77. Hu Q, Marquardt J, Iwasaki I, Miyashita H, Kurano N, Morschel E, Miyachi S (1999) Molecular structure, localization and function of biliproteins in the chlorophyll a/d containing oxygenic photosynthetic prokaryote Acaryochloris marina. Biochim Biophys Acta 1412:250–261PubMedGoogle Scholar
  78. Hu B, Yang G, Zhao W, Zhang Y, Zhao J (2007) MreB is important for cell shape but not for chromosome segregation of the filamentous cyanobacterium Anabaena sp. PCC 7120. Mol Microbiol 63:1640–1652PubMedGoogle Scholar
  79. Iancu CV, Ding HJ, Morris DM, Dias DP, Gonzales AD, Martino A, Jensen GJ (2007) The structure of isolated Synechococcus strain WH8102 carboxysomes revealed by electron cryotomography. J Mol Biol 372:764–773PubMedCentralPubMedGoogle Scholar
  80. Iancu CV, Morris DM, Dou Z, Heinhorst S, Cannon GC, Jensen GJ (2010) Organization, structure, and assembly of alpha-carboxysomes determined by electron cryotomography of intact cells. J Mol Biol 396:105–117PubMedCentralPubMedGoogle Scholar
  81. Ingram LO, van Baalen C (1970) Characteristics of a stable, filamentous mutant of a coccoid blue-green alga. J Bacteriol 102:784–789PubMedCentralPubMedGoogle Scholar
  82. Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward EMS, Chisholm SW (2006) Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311:1737–1740PubMedGoogle Scholar
  83. Jones LJ, Carballido-Lopz R, Errington J (2001) Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104:913–922PubMedGoogle Scholar
  84. Jurgens UJ, Mantele W (1991) Orientation of carotenoids in the outer membrane of Synechocystis PCC 6714 (Cyanobacteria). Biochim Biophys Acta 1067:208–212PubMedGoogle Scholar
  85. Jurgens UJ, Weckesser J (1986) Polysaccharide covalently linked to the peptidoglycan of the cyanobacterium Synechocystis sp. strain PCC6714. J Bacteriol 168:568–573PubMedCentralPubMedGoogle Scholar
  86. Jurgens UJ, Drews G, Weckesser J (1983) Primary structure of the peptidoglycan from the unicellular cyanobacterium Synechocystis sp. strain PCC 6714. J Bacteriol 154:471–478PubMedCentralPubMedGoogle Scholar
  87. Jurgens UJ, Golecki JR, Weckesser J (1985) Characterization of the cell wall of the unicellular cyanobacterium Synechocystis PCC 6714. Arch Microbiol 142:168–174Google Scholar
  88. Kerfeld CA, Sawaya MR, Tanaka S, Nguyen CV, Phillips M, Beeby M, Yeates TO (2005) Protein structures forming the shell of primitive bacterial organelles. Science 309:936–938PubMedGoogle Scholar
  89. Kirk JTO (1975) A theoretical analysis of the contribution of algal cells to the attenuation of light within natural waters. II. Spherical cells. New Phytol 75:21–36Google Scholar
  90. Kirk JTO (1976) A theoretical analysis of the contribution of algal cells to the attenuation of light within natural waters. III. Cylindrical and spheroidal cells. New Phytol 77:341–358Google Scholar
  91. Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  92. Knoll AH (2003a) Life on a young planet. The First three billion years of evolution on earth. Princeton University Press, PrincetonGoogle Scholar
  93. Knoll AH (2003b) The geological consequences of evolution. Geobiology 1:3–14Google Scholar
  94. Kobayashi H, Viale AM, Takabe T, Akazawa T, Wada K, Shinozaki K, Kobayashi K, Suiura M (1991) Sequence and expression of genes encoding the large and small subunits of ribulose 1,5-bisphosphate carboxylase/oxygenase from Chromatium vinosum. Gene 97:55–62PubMedGoogle Scholar
  95. Koksharova OA, Klint J, Rasmussen U (2007) Comparative proteomics of cell division mutants and wild-type of Synechococcus sp. strain PCC 7942. Microbiol 153:2505–2517Google Scholar
  96. Kroos L, Maddock JR (2003) Prokaryotic development: emerging insights. J Bacteriol 185:1128–1146PubMedCentralPubMedGoogle Scholar
  97. Kuhl M, Chen M, Ralph PJ, Schreiber U, Larkum AWD (2005) A niche for cyanobacteria containing chlorophyll d. Nature 433:820PubMedGoogle Scholar
  98. Kunkel DD (1982) Thylakoid centers: structures associated with the cyanobacterial photosynthetic membrane system. Arch Microbiol 133:97–99Google Scholar
  99. La Roche J, van der Staay GWM, Partensky F, Ducret A, Aebersold R, Li R, Golden SS, Hiller RG, Wrench PM, Larkum AWD, Green BR (1996) Independent evolution of the prochlorophyte and green plant chlorophyll a/b light harvesting proteins. Proc Natl Acad Sci U S A 93:15244–15248PubMedCentralPubMedGoogle Scholar
  100. Lang NJ, Fay P (1971) The heterocysts of blue-green algae. II. Details of ultrastructure. Proc R Soc Lond B Biol Sci 178:193–203Google Scholar
  101. Liberton M, Berg RH, Heuser J, Roth R, Pakrasi HB (2006) Ultrastructure of the membrane systems in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. Protoplasma 227:129–138PubMedGoogle Scholar
  102. Liberton M, Austin JR, Berg RH, Pakrasi HB (2011) Unique thylakoid membrane architecture of a unicellular N2-fixing cyanobacterium revealed by electron tomography. Plant Physiol 155:1656–1666PubMedCentralPubMedGoogle Scholar
  103. Lichtle C, Thomas JC, Spilar A (1995) Immunological and ultrastructural characterization of the photosynthetic complexes of the Prochlorophyte Prochlorococcus (Oxychlorobacteria). J Phycol 31:934–941Google Scholar
  104. Livaitis MK (2002) A molecular test of cyanobacterial phylogeny: inferences from constraint analyses. Hydrobiological 468:135–145Google Scholar
  105. Marquardt J, Senger H, Miyashita H, Miyachi S, Morschel E (1997) Isolation and characterization of biliprotein aggregates from Acaryochloris marina, a Prochloron-like prokaryote containing mainly chlorophyll d. FEBS Lett 410:428–432PubMedGoogle Scholar
  106. Marquardt J, Morschel E, Rhiel E, Westermann M (2000) Ultrastructure of Acaryochloris marina, an oxyphotobacterium containing mainly chlorophyll d. Arch Microbiol 174:181–188PubMedGoogle Scholar
  107. McFadden GI (2001) Chloroplast origin and integration. Plant Physiol 125:50–53PubMedCentralPubMedGoogle Scholar
  108. McKay RML, Gibbs SP, Espie GS (1993) Effect of dissolved inorganic carbon on the expression of carboxysomes, localization of Rubisco and the mode of inorganic carbon transport in cells of the cyanobacterium Synechococcus UTEX 625. Arch Microbiol 159:21–29Google Scholar
  109. Medinas DB, Cerchiaro G, Trindale DF, Augusto O (2007) The carbonate radical and related oxidants derived from bicarbonate buffer. IUBMB Life 59:255–262PubMedGoogle Scholar
  110. Miller KR, Jacob JS, Burger-Wiersma T, Matthijs HCP (1988) Supramolecular structure of the thylakoid membrane of Prochlorothrix hollandica: a chlorophyll b-containing prokaryote. J Cell Sci 91:577–586PubMedGoogle Scholar
  111. Miller SR, Augustine S, Olson TL, Blankenship RE, Selker J, Wood AM (2005) Discovery of a free-living chlorophyll d-producing cyanobacterium with a hybrid proteobacterial/cyanobacterial small-subunit rRNA gene. Proc Natl Acad Sci U S A 102:850–855PubMedCentralPubMedGoogle Scholar
  112. Mimuro M, Tomo T, Tsuchiya T (2008) Two unique cyanobacteria lead to a traceable approach of the first appearance of oxygenic photosynthesis. Photosynth Res 97:167–176PubMedGoogle Scholar
  113. Miyashita H, Ikemoto H, Kurano N, Adachi K, Chihara M, Miyachi S (1996) Chlorophyll d as a major pigment. Nature 383:402Google Scholar
  114. Miyashita H, Ikemoto H, Kurano N, Miyachi S, Chihara M (2003) Acarychloris marina gen. et sp. nov. (cyanobacteria), an oxygenic photosynthetic prokaryote containing Chl d as a major pigment. J Phycol 39:1247–1253Google Scholar
  115. Mobley HL, Koch AL, Doyle RJ, Streips UN (1984) Insertion and fate of the cell wall in Bacillus subtilis. J Bacteriol 158:169–179PubMedCentralPubMedGoogle Scholar
  116. Moisander PH, Beinart RA, Hewson I, White AE, Johnson KS, Carlson CA, Montoya JP, Zehr JP (2010) Unicellular cyanobacterial distributions broaden the oceanic N2 fixation domain. Science 327:1512–1514PubMedGoogle Scholar
  117. Moreira D, Le Guyader H, Philippe H (2000) The origin of red algae and the evolution of chloroplasts. Nature 405:69–72PubMedGoogle Scholar
  118. Morel A, Bricaud A (1981) Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep-Sea Res 28:1375–1393Google Scholar
  119. Mullineaux CW (2005) Function and evolution of grana. Trends Plant Sci 10:521–525PubMedGoogle Scholar
  120. Nelissen B, van de Peer Y, Wilmotte A, De Wachter R (1995) An early origin of plastids within the cyanobacterial divergence is suggested by evolutionary trees based on complete 16S rRNA sequences. Mol Biol Evol 12:1166–1173PubMedGoogle Scholar
  121. Nevo R, Charuvi D, Shimoni E, Schwarz R, Kaplan A, Ohad I, Reich Z (2007) Thylakoid membrane perforations and connectivity enable intracellular traffic in cyanobacteria. EMBO J 26:1467–1473PubMedCentralPubMedGoogle Scholar
  122. Nevo R, Chuartzman SG, Tsabari O, Reich Z, Charuvi D, Shimoni E (2009) Architecture of thylakoid membrane networks. In: Wada H, Murata N (eds) Lipids in photosynthesis: essential and regulatory functions. Springer Science, Dordrecht, pp 295–328Google Scholar
  123. Nierzwicki-Bauer SA, Balkwill DL, Stevens SE (1983) Three-dimensional ultrastructure of a unicellular cyanobacterium. J Cell Biol 97:713–722PubMedGoogle Scholar
  124. Olson JM (2006) Photosynthesis in the archaen era. Photosynth Res 88:109–117PubMedGoogle Scholar
  125. Oren A, Gunde-Cimerman N (2007) Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites? FEMS Microbiol Lett 269:1–10PubMedGoogle Scholar
  126. Orus MI, Rodriguez-Buey ML, Marco E, Fernandez-Valiente E (2001) Changes in carboxysome structure and grouping and in photosynthetic affinity for inorganic carbon in Anabaena strain PCC 7119 (Cyanophyta) in response to modification of CO2 and Na+supply. Plant Cell Physiol 42:46–53PubMedGoogle Scholar
  127. Paerl HW (1984) Cyanobacterial carotenoids: their roles in maintaining optimal photosynthetic production among aquatic bloom forming genera. Oecologia 61:143–149Google Scholar
  128. Paerl HW (1994) Spatial segregation of CO2 fixation in Trichodesmium spp.: linkage to N2 fixation potential. J Phycol 30:790–799Google Scholar
  129. Palenik B, Haselkorn R (1992) Multiple evolutionary origins of prochlorophytes, the chlorophyll b-containing prokaryotes. Nature 355:265–267PubMedGoogle Scholar
  130. Palenik B, Brahamsha B, Larimer FW, Land M, Hauser L, Chain P, Lamerdin J, Regala W, Allen EE, McCarren J, Paulsen I, Dufresne A, Partensky F, Webb EA, Waterbury J (2003) The genome of a motile marine Synechococcus. Nature 424:1037–1042PubMedGoogle Scholar
  131. Penrod JT, Roth JR (2006) Conserving a volatile metabolite: a role for carboxysome-like organelles in Salmonella enterica. J Bacteriol 188:2865–2874PubMedCentralPubMedGoogle Scholar
  132. Price GD, Woodger FJ, Badger MR, Howitt SM, Tucker L (2004) Identification of a SulP-type bicarbonate transporter in marine cyanobacteria. Proc Natl Acad Sci U S A 101:18228–18233PubMedCentralPubMedGoogle Scholar
  133. Proteau PJ, Gerwick WH, Garcia-Pichel F, Castenholz R (1993) The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia 49:825–829PubMedGoogle Scholar
  134. Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–1104PubMedGoogle Scholar
  135. Raven JA (1986) Physiological consequences of extremely small size for autotrophic organisms in the sea. In: Platt T, Li WKW (eds) Photosynthetic Picoplankton, Can Bull Fish Aquat Sci 214:1–70Google Scholar
  136. Raven JA (1998) The twelfth Tansley Lecture. Small is beautiful: the picophytoplankton. Func Ecol 12:503–513Google Scholar
  137. Resch CM, Gibson J (1983) Isolation of the carotenoid-containing cell wall of three unicellular cyanobacteria. J Bacteriol 155:345–350PubMedCentralPubMedGoogle Scholar
  138. Rexroth S, Mullineaux CW, Ellinger D, Sendtko E, Rogner M, Koenig F (2011) The plasma membrane of the cyanboacterium Gloeobacter violaceus contains segregated bioenergetic domains. Plant Cell 23:2379–2390PubMedCentralPubMedGoogle Scholar
  139. Reyes-Prieto A, Bhattacharya D (2007) Phylogeny of Calvin cycle enzymes supports Plantae monophyly. Mol Phylogenet Evol 45:384–391PubMedGoogle Scholar
  140. Richardson DE, Regino CAS, Yao HR, Johnson JV (2003) Methionine oxidation by peroxymonocarbonate, a reactive oxygen species formed from CO2/bicarbonate and hydrogen peroxide. Free Radic Biol Med 35:1538–1550PubMedGoogle Scholar
  141. Rippka R, Waterbury J, Cohen-Bazire G (1974) A cyanobacterium which lacks thylakoids. Arch Microbiol 100:419–436Google Scholar
  142. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1061Google Scholar
  143. Ris H, Singh RN (1961) Electron microscope studies on blue-green algae. J Biophys Biochem Cytol 9:63–80PubMedCentralPubMedGoogle Scholar
  144. Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, Arellano A, Coleman M, Hauser L, Hess WR et al (2003) Genome divergence in two Prochlorococcus ecotypes reflects oceaninc niche differentiation. Nature 424:1042–1047PubMedGoogle Scholar
  145. Savage DF, Afonso B, Chen AH, Silver PA (2010) Spatially ordered dynamics of the bacterial carbon fixation machinery. Science 327:1258–1261PubMedGoogle Scholar
  146. Scherer S, Chen TW, Boger P (1988) A new UV-A/B protecting pigment in the terrestrial cyanobacterium Nostoc commune. Plant Physiol 88:1055–1057PubMedCentralPubMedGoogle Scholar
  147. Schmetterer G (1994) Cyanobacterial respiration. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, The Netherlands, pp 409–435Google Scholar
  148. Schmid MF, Paredes AM, Khant HA, Soyer F, Aldrich HC, Chiu W, Shively JM (2006) Structure of the Halothiobacillus neapolitanus carboxysomes by cryo-electron tomography. J Mol Biol 364:526–535PubMedCentralPubMedGoogle Scholar
  149. Schopf JW (1993) Microfossils of the early archean apex chert: new evidence of the antiquity of life. Science 260:640–646PubMedGoogle Scholar
  150. Schopf JW (2000) The fossil record: tracing the roots of the cyanobacterial lineage. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer Academic Publishers, DordechtGoogle Scholar
  151. Shafirovich V, Dourandin A, Huang W, Geacintov NE (2001) The carbonate radical is a site-selective oxidizing agent of guanine in double-stranded oligonucleotides. J Biol Chem 276:24621–24626PubMedGoogle Scholar
  152. Sherman DM, Troyan TA, Sherman LA (1994) Localization of membrane proteins in the cyanobacterium Synechococcus sp. PCC7942. Plant Physiol 106:251–262PubMedCentralPubMedGoogle Scholar
  153. Sherman LA, Meunier P, Colon-Lopez MS (1998) Diurnal rhythms in metabolism: a day in the life of a unicellular, diazotrophic cyanobacterium. Photosynth Res 58:25–42Google Scholar
  154. Shively JM, Vankeulen G, Meijer WG (1998) Something from nothing – carbon dioxide fixation in chemoautotrophs. Ann Rev Microbiol 52:191–230Google Scholar
  155. Siefert JL, Fox GE (1998) Phylogenetic mapping of bacterial morphology. Microbiology 144:2803–2808PubMedGoogle Scholar
  156. Simon RD (1981) Gliding motility in Aphanothece halophytica: analysis of wall proteins in mot mutants. J Bacteriol 148:315–321PubMedCentralPubMedGoogle Scholar
  157. Singh SP, Montgomery BL (2011) Determining cell shape: adaptive regulation of cyanobacterial cellular differentiation and morphology. Trends Microbiol 19:278–285PubMedGoogle Scholar
  158. So AK-C, Espie GS, Williams EB, Shively JM, Heinhorst S, Cannon GC (2004) A novel evolutionary lineage of carbonic anhydrase (εClass) is a component of the carboxysome shell. J Bacteriol 186:623–630PubMedCentralPubMedGoogle Scholar
  159. Stadtman ER, Berlett BS (1991) Fenton chemistry. Amino acid oxidation. J Biol Chem 266:17201–17211PubMedGoogle Scholar
  160. Stanier RY (1988) Fine structure of cyanobacteria. In: Packer L, Glazer AN (eds) Methods in enzymology. Academic, New York, pp 157–172, Vol 167Google Scholar
  161. Stanier RY, van Niel CB (1962) The concept of a bacterium. Arch Mikrobiol 42:17–35PubMedGoogle Scholar
  162. Stanier RY, Sistrom WR, Hansen TA, Whitton BA, Castenholz RW, Pfenig N, Gorlenko VN, Kondratieva EMN, Eimhjellen KE, Whittenbury R, Gherna RL, Truper HG (1978) Proposal to place the nomenclature of the cyanobacteria (blue-green algae) under the rules of the International Code of Nomenclature of Bacteria. Int J Sys Bacteriol 28:335–336Google Scholar
  163. Summons RE, Jahnke LL, Hope LM, Logan GA (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400:554–557PubMedGoogle Scholar
  164. Tabita FR (1988) Molecular and cellular regulation of autotrophic carbon dioxide fixation in microorganisms. Microbiol Rev 52:155–189PubMedCentralPubMedGoogle Scholar
  165. Tabita FR (1999) Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a different perspective. Photosynth Res 60:1–28Google Scholar
  166. Tanaka S, Kerfeld CA, Sawaya MR, Cai F, Heinhorst S, Canon GC, Yeates TO (2008) Atomic-level models of the bacterial carboxysome shell. Science 319:1083–1086PubMedGoogle Scholar
  167. Thiel T, Hartnett T, Pakrasi HB (1990) Examination of Photosystem II in heterocysts of the cyanobacterium Nostoc sp. ATCC 29150. In: Murata N (ed) Current research in photosynthesis. Kluwer, Dordrecht, pp 291–294, Vol 1Google Scholar
  168. Thompson AW, Foster RA, Krupke A, Carter BJ, Musat N, Vaulot D, Kuypers MMM, Zehr JP (2012) Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. Science 337:1546–1550PubMedGoogle Scholar
  169. Ting CS, Hsieh C, Sundararaman S, Mannella C, Marko M (2007) Cryo-electron tomography reveals the comparative three-dimensional architecture of Prochlorococcus, a globally important marine cyanobacterium. J Bacteriol 189:4485–4493PubMedCentralPubMedGoogle Scholar
  170. Ting CS, Ramsey ME, Wang YL, Frost AM, Jun E, Durham T (2009) Minimal genomes, maximal productivity: comparative genomics of the photosystem and light-harvesting complexes in the marine cyanobacterium, Prochlorococcus. Photosynth Res 101:1–19PubMedGoogle Scholar
  171. Tripp HJ, Bench SR, Turk KA, Foster RA, Desany BA, Niazi F, Affourtit JP, Zehr JP (2010) Metabolic streamlining in an open ocean nitrogen-fixing cyanobacterium. Nature 464:90–94PubMedGoogle Scholar
  172. Trissl H-W, Wilhelm C (1993) Why do thylakoid membranes from higher plants form grana stacks? Trends Biochem Sci 18:415–419PubMedGoogle Scholar
  173. Turner S (1997) Molecular systematics of oxygenic photosynthetic bacteria. Plant Syst Evol 11:14–52Google Scholar
  174. Turner S, Burger-Wiersma T, Giovannoni SJ, Mur LR, Pace NR (1989) The relationship of a prochlorophyte, Prochlorothrix hollandica, to green chloroplasts. Nature 337:380–382PubMedGoogle Scholar
  175. Umeda H, Aiba H, Mizuno T (1996) som A, a novel gene that encodes a major outer-membrane protein of Synechococcus sp. PCC 7942. Microbiology 142:2121–2128PubMedGoogle Scholar
  176. Urbach E, Robertson DL, Chisholm SW (1992) Multiple evolutionary origins of prochlorophytes within the cyanobacterial radiation. Nature 355:267–270PubMedGoogle Scholar
  177. Vaara T (1982) The outermost surface structures in chroococcacean cyanobacteria. Can J Microbiol 28:929–941Google Scholar
  178. Van de Meene AML, Hohmann-Marriott MF, Vermaas WFJ, Roberson RW (2006) The three-dimensional structure of the cyanobacterium Synechocystis sp. PCC 6803. Arch Microbiol 184:259–270PubMedGoogle Scholar
  179. Vermaas WFJ, Shen G, Styring S (1994) Electrons generated by photosystem II are utilized by an oxidase in the absence of photosystem I in the cyanobacterium Synechocystis PCC 6803. FEBS Lett 337:103–108PubMedGoogle Scholar
  180. Wachi M, Doi M, Tamaki S, Park W (1987) Mutant isolation and molecular cloning of mre genes, which determine cell shape, sensitivity to mecillinam, and amount of penicillin-binding proteins in Escherichia coli. J Bacteriol 169:4935–4940PubMedCentralPubMedGoogle Scholar
  181. Walsby AE (1985) The permeability of heterocysts to the gases nitrogen and oxygen. Proc R Soc Lond B 226:345–366Google Scholar
  182. Walsby AE (2007) Cyanobacterial heterocysts: terminal pores proposed as sites of gas exchange. Trends Microbiol 15:340–349PubMedGoogle Scholar
  183. Wilcox M, Mitchison GJ, Smith RJ (1973) Pattern formation in the blue-green alga Anabaena. J Cell Sci 13:637–649PubMedGoogle Scholar
  184. Wildon DC, Mercer FV (1963) The ultrastructure of the vegetative cell of blue-green algae. Aust J Biol Sci 16:585–596Google Scholar
  185. Wilmotte A (1994) Molecular evolution and taxonomy of the cyanobacteria. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, The Netherlands, pp 1–25Google Scholar
  186. Wilmotte A, Golubic S (1991) Morphological and genetic criteria in the taxonomy of Cyanophyta/Cyanobacteria. Arch Hydrobiol, Suppl 92, Algological Studies 64:1–24Google Scholar
  187. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271PubMedCentralPubMedGoogle Scholar
  188. Wolk CP, Ernst A, Elhai J (1994) Heterocyst metabolism and development. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp 769–823Google Scholar
  189. Yeates TO, Kerfeld CA, Heinhorst S, Cannon GC (2008) Protein-based organelles in bacteria: Carboxysomes and related microcompartments. Nat Rev Microbiol 6:681–691PubMedGoogle Scholar
  190. Yentsch CS, Phinney DA (1989) A bridge between ocean optics and microbial ecology. Limnol Oceanogr 34:1694–1705Google Scholar
  191. Young KD (2003) Bacterial shape. Mol Microbiol 49:571–580PubMedGoogle Scholar
  192. Young KD (2006) The selective value of bacterial shape. Microbiol Mol Biol Rev 70:660–703PubMedCentralPubMedGoogle Scholar
  193. Zak E, Norling B, Maitra R, Huang F, Andersson B, Pakrasi HB (2001) The initial steps of biogenesis of cyanobacterial photosystems occur in plasma membranes. Proc Natl Acad Sci U S A 98:13443–13448PubMedCentralPubMedGoogle Scholar
  194. Zehr JP (2011) Nitrogen fixation by marine cyanobacteria. Trends Microbiol 19:162–173PubMedGoogle Scholar
  195. Zehr JP, Mellon MT, Hiorns WD (1997) Phylogeny of cyanobacterial nifH genes: evolutionary implications and potential applications to natural assemblages. Microbiology 143:1443–1450PubMedGoogle Scholar
  196. Zehr JP, Bench SR, Carter BJ, Hewson I, Niazi F, Shi T, Tripp HJ, Affourtit JP (2008) Globally distributed uncultivated oceanic N2-fixing cyanobacteria lack oxygenic Photosystem II. Science 322:1110–1112PubMedGoogle Scholar
  197. Zhang C-C, Laurent S, Sakr S, Peng L, Bedu S (2006) Heterocyst differentiation and pattern formation in cyanobacteria: a chorus of signals. Mol Microbiol 59:367–375PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2014

Authors and Affiliations

  1. 1.Department of BiologyWilliams CollegeWilliamstownUSA

Personalised recommendations