Advertisement

Energy Conservation in Heliobacteria: Photosynthesis and Central Carbon Metabolism

  • W. Matthew SattleyEmail author
  • Marie Asao
  • Joseph Kuo-Hsiang Tang
  • Aaron M. Collins
Chapter
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 39)

Summary

Heliobacteria are a group of anoxygenic phototrophic bacteria that use a unique pigment, bacteriochlorophyll g, for photosynthetic energy conversion within a type I homodimeric reaction center. Like their nonphotosynthetic relatives the clostridia, heliobacteria have a gram-positive cell structure and can form heat-resistant endospores. Heliobacteria are also unusual in that they are the only anaerobic anoxygenic phototrophs that lack a mechanism for autotrophic growth. Growth of heliobacteria is therefore dependent upon the presence of usable organic carbon sources and occurs either photoheterotrophically or chemotrophically (via pyruvate fermentation). While knowledge of heliobacterial photosynthesis and physiology has steadily increased since the relatively recent discovery of these phototrophs in the 1980s, high-resolution structural data pertaining to features of the heliobacterial photosynthetic apparatus are not yet available. This chapter summarizes our current understanding of energy conservation in heliobacteria as it relates to central carbon metabolism (in both light and dark conditions), electron transport, and light harvesting and photochemistry within the reaction center.

Keywords

Green Sulfur Bacterium Phototrophic Bacterium Central Carbon Metabolism Anoxygenic Phototrophic Bacterium Anoxygenic Phototroph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations:

A0

– Chlorophyll acting as an electron carrier within a reaction center;

A1

– Quinone acting as an electron carrier within a reaction center;

ATP

– –Adenosine triphosphate;

BChl

– –Bacteriochlorophyll;

Chl

– Chlorophyll;

CoA

– Coenzyme A;

ED pathway

– –Entner-Doudoroff pathway;

EMP pathway

– Embden-Meyerhof-Parnas pathway;

FeS-type RC

– –Reaction center where iron-sulfur clusters are the terminal electron carriers;

FX FA, FB

– Iron-sulfur electron carrier;

GSB

– Green sulfur bacteria;

KDH

– α-ketoglutarate dehydrogenase;

OTCA cycle

– Oxidative or forward tricarboxylic acid cycle;

P800

– Primary electron donor in the heliobacterial RC;

PEPCK

– Phosphoenolpyruvate carboxykinase;

PFOR

– Pyruvate:ferredoxin oxidoreductase;

PSI

– Photosystem I;

Q-type RC

– Reaction center where quinones are the terminal electron acceptors;

RC

– Reaction center;

RTCA cycle

– Reductive or reverse tricarboxylic acid cycle;

TCA cycle

– Tricarboxylic acid cycle

Notes

Acknowledgments

We thank Drs. Robert Blankenship and Michael Madigan for helpful comments and discussions during the preparation of the manuscript and Ann Sattley for assistance in preparing some of the figures.

References

  1. Amesz J (1995a) The antenna-reaction center complex of heliobacteria. In: Blankenship RE, Madigan MT, Bauer CE, Amesz J (eds) Anoxygenic photosynthetic bacteria, vol 2. Kluwer Academic Publishers, Dordrecht, pp 687–697, Advances in Photosynthesis and RespirationGoogle Scholar
  2. Amesz J (1995b) The heliobacteria, a new group of photosynthetic bacteria. J Photochem Photobiol B Biol 30:89–96CrossRefGoogle Scholar
  3. Asao M, Madigan MT (2010) Taxonomy, phylogeny, and ecology of the heliobacteria. In: Golbeck J (ed) Photosynthetic phototrophs with homodimeric type-I reaction centers. Photosynth Res 104:103–111Google Scholar
  4. Asao M, Jung DO, Achenbach LA, Madigan MT (2006) Heliorestis convoluta sp. nov., a coiled, alkaliphilic heliobacterium from the Wadi El Natroun, Egypt. Extremophiles 10:403–410PubMedCrossRefGoogle Scholar
  5. Asao M, Takaichi S, Madigan MT (2012) Amino acid-assimilating phototrophic heliobacteria from soda lake environments: Heliorestis acidaminivorans sp. nov. and ‘Candidatus Heliomonas lunata’. Extremophiles 16:585–595PubMedCrossRefGoogle Scholar
  6. Brettel K (1997) Electron transfer and arrangement of the redox cofactors in photosystem I. Biochim Biophys Acta 1318:322–373CrossRefGoogle Scholar
  7. Brettel K, Leibl W, Liebl U (1998) Electron transfer in the heliobacterial reaction center: evidence against a quinone-type electron acceptor functioning analogous to A1 in photosystem I. Biochim Biophys Acta 1363:175–181PubMedCrossRefGoogle Scholar
  8. Brockmann H, Lipinski A (1983) Bacteriochlorophyll g. A new bacteriochlorophyll from Heliobacterium chlorum. Arch Microbiol 136:17–19CrossRefGoogle Scholar
  9. Bryantseva IA, Gorlenko VM, Kompantseva EI, Achenbach LA, Madigan MT (1999) Heliorestis daurensis, gen. nov. sp.nov., an alkaliphilic rod-to-coiled-shaped phototrophic heliobacterium from a siberian soda lake. Arch Microbiol 172:167–174PubMedCrossRefGoogle Scholar
  10. Bryantseva IA, Gorlenko VM, Kompantseva EI, Tourova TP, Kuznetsov BB, Osipov GA (2000) Alkaliphilic heliobacterium Heliorestis baculata sp. nov. and emended description of the genus Heliorestis. Arch Microbiol 174:283–291PubMedCrossRefGoogle Scholar
  11. Collins AM, Redding KE, Blankenship RE (2010) Modulation of fluorescence in Heliobacterium modesticaldum cells. In: Golbeck J (ed) Photosynthetic phototrophs with homodimeric type-I reaction centers. Photosynth Res 104:283–292Google Scholar
  12. Evans MC, Buchanan BB, Arnon DI (1966a) New cyclic process for carbon assimilation by a photosynthetic bacterium. Science 152:673PubMedCrossRefGoogle Scholar
  13. Evans MC, Buchanan BB, Arnon DI (1966b) A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc Natl Acad Sci U S A 55:928–934PubMedCentralPubMedCrossRefGoogle Scholar
  14. Felsenstein J (1989) PHYLIP-Phylogeny inference package (Version 3.2). Cladistics 5:164–166Google Scholar
  15. Feng X, Tang KH, Blankenship RE, Tang YJ (2010) Metabolic flux analysis of the mixotrophic metabolisms in the green sulfur bacterium Chlorobaculum tepidum. J Biol Chem 285:39544–39550PubMedCentralPubMedCrossRefGoogle Scholar
  16. Fuller RC, Sprague SG, Gest H, Blankenship RE (1985) A unique photosynthetic reaction center from Heliobacterium chlorum. FEBS Lett 182:345–349CrossRefGoogle Scholar
  17. Hauska G, Schoedl T, Remigy H, Tsiotis G (2001) The reaction center of green sulfur bacteria. Biochim Biophys Acta 1507:260–277PubMedCrossRefGoogle Scholar
  18. Heinnickel M, Golbeck J (2007) Heliobacterial photosynthesis. Photosynth Res 92:35–53PubMedCrossRefGoogle Scholar
  19. Heinnickel M, Agalarov R, Svensen N, Krebs C, Golbeck JH (2006) Identification of FX in the heliobacterial reaction center as a [4Fe–4S] cluster with an S = 3/2 ground spin state. Biochemistry 45:6756–6764PubMedCrossRefGoogle Scholar
  20. Heinnickel M, Shen G, Golbeck JH (2007) Identification and characterization of PshB, the dicluster ferredoxin that harbors the terminal electron acceptors FA and FB in Heliobacterium modesticaldum. Biochemistry 46:2530–2536PubMedCrossRefGoogle Scholar
  21. Hiraishi A (1989) Occurrence of menaquinone as the sole isoprenoid quinone in the photosynthetic bacterium Heliobacterium chlorum. Arch Microbiol 151:378–379CrossRefGoogle Scholar
  22. Hügler M, Sievert SM (2011) Beyond the calvin cycle: autotrophic carbon fixation in the ocean. Annu Rev Mar Sci 3:261–289CrossRefGoogle Scholar
  23. Jahn U, Huber H, Eisenreich W, Hugler M, Fuchs G (2007) Insights into the autotrophic CO2 fixation pathway of the archaeon Ignicoccus hospitalis: comprehensive analysis of the central carbon metabolism. J Bacteriol 189:4108–4119PubMedCentralPubMedCrossRefGoogle Scholar
  24. Ke B (1973) The primary electron acceptor of photosystem I. Biochim Biophys Acta 301:1–33PubMedCrossRefGoogle Scholar
  25. Kimble LK, Stevenson AK, Madigan MT (1994) Chemotrophic growth of heliobacteria in darkness. FEMS Microbiol Lett 115:51–55PubMedCrossRefGoogle Scholar
  26. Kimble LK, Mandelco L, Woese CR, Madigan MT (1995) Heliobacterium modesticaldum, sp. nov., a thermophilic heliobacterium of hot springs and volcanic soils. Arch Microbiol 163:259–267CrossRefGoogle Scholar
  27. Kleinherenbrink FAM, Ikegami I, Hiraishi A, Otte SCM, Amesz J (1993) Electron transfer in menaquinone-depleted membranes of Heliobacterium chlorum. Biochim Biophys Acta 1142:69–73CrossRefGoogle Scholar
  28. Kleinherenbrink FAM, Chiou H-C, LoBrutto R, Blankenship RE (1994) Spectroscopic evidence for the presence of an iron-sulfur center similar to FX of Photosystem I Heliobacillus mobilis. Photosynth Res 41:115–123PubMedCrossRefGoogle Scholar
  29. Kobayashi M, van de Meent EJ, Erkelens C, Amesz J, Ikegami I, Watanabe T (1991a) Bacteriochlorophyll g epimer as a possible reaction center component of heliobacteria. Biochim Biophys Acta 1057:89–96CrossRefGoogle Scholar
  30. Kobayashi M, Watanabe T, Ikegami I, van de Meent EJ, Amesz J (1991b) Enrichment of bacteriochlorophyll g’ in membranes of Heliobacterium chlorum by ether extraction: unequivocal evidence for its existence in vivo. FEBS Lett 284:129–131PubMedCrossRefGoogle Scholar
  31. Kobayashi M, Hamano T, Akiyama M, Watanabe T, Inoue K, Oh-oka H, Amesz J, Yamamura M, Kise H (1998) Light-independent isomerization of bacteriochlorophyll g to chlorophyll a catalyzed by weak acid in vitro. Anal Chim Acta 365:199–203CrossRefGoogle Scholar
  32. Kramer DM, Schoepp B, Liebl U, Nitschke W (1997) Cyclic electron transfer in Heliobacillus mobilis involving a menaquinol-oxidizing cytochrome bc complex and an RCI-type reaction center. Biochemistry 36:4203–4211PubMedCrossRefGoogle Scholar
  33. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948PubMedCrossRefGoogle Scholar
  34. Li F, Hagemeier CH, Seedorf H, Gottschalk G, Thauer RK (2007) Re-citrate synthase from Clostridium kluyveri is phylogenetically related to homocitrate synthase and isopropylmalate synthase rather than to Si-citrate synthase. J Bacteriol 189:4299–4304PubMedCentralPubMedCrossRefGoogle Scholar
  35. Liebl U, Mockensturm-Wilson M, Trost JT, Brune DC, Blankenship RE, Vermaas W (1993) Single core polypeptide in the reaction center of the photosynthetic bacterium Heliobacillus mobilis: structural implications and relations to other photosystems. Proc Natl Acad Sci U S A 90:7124–7128PubMedCentralPubMedCrossRefGoogle Scholar
  36. Lin S, Chiou HC, Kleinherenbrink FA, Blankenship RE (1994) Time-resolved spectroscopy of energy and electron transfer processes in the photosynthetic bacterium Heliobacillus mobilis. Biophys J 66:437–445PubMedCentralPubMedCrossRefGoogle Scholar
  37. Lin S, Chiou HC, Blankenship RE (1995) Secondary electron transfer processes in membranes of Heliobacillus mobilis. Biochemistry 34:12761–12767PubMedCrossRefGoogle Scholar
  38. Madigan MT (2001) Heliobacteriaceae. In: Boone DR, Castenholtz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 625–630CrossRefGoogle Scholar
  39. Madigan MT (2006) The family Heliobacteriaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 4, 3rd edn. Springer, New York, pp 951–964Google Scholar
  40. Michalski TJ, Hunt JE, Bowman MK, Smith U, Bardeen K, Gest H, Norris JR, Katz JJ (1987) Bacteriopheophytin g: properties and some speculations on a possible primary role for bacteriochlorophylls b and g in the biosynthesis of chlorophylls. Proc Natl Acad Sci U S A 84:2570–2574PubMedCentralPubMedCrossRefGoogle Scholar
  41. Miyamoto R, Iwaki M, Mino H, Harada J, Itoh S, Oh-oka H (2006) ESR signal of the iron-sulfur center FX and its function in the homodimeric reaction center of Heliobacterium modesticaldum. Biochemistry 45:6306–6316PubMedCrossRefGoogle Scholar
  42. Miyamoto R, Mino H, Kondo T, Itoh S, Oh-oka H (2008) An electron spin-polarized signal of the P800 + A1 (Q)- state in the homodimeric reaction center core complex of Heliobacterium modesticaldum. Biochemistry 47:4386–4393PubMedCrossRefGoogle Scholar
  43. Mizoguchi T, Oh-oka H, Tamiaki H (2005) Determination of stereochemistry of bacteriochlorophyll g F and 81-hydroxy-chlorophyll a F from Heliobacterium modesticaldum. Photochem Photobiol 81:666–673PubMedCrossRefGoogle Scholar
  44. Neerken S, Amesz J (2001) The antenna reaction center complex of heliobacteria: composition, energy conversion and electron transfer. Biochim Biophys Acta 1507:278–290PubMedCrossRefGoogle Scholar
  45. Nitschke W, Setif P, Liebl U, Feiler U, Rutherford AW (1990) Reaction center photochemistry of Heliobacterium chlorum. Biochemistry 29:11079–11088PubMedCrossRefGoogle Scholar
  46. Nuijs AM, Dorssen RJ, Duysens LNM, Amesz J (1985) Excited states and primary photochemical reactions in the photosynthetic bacterium Heliobacterium chlorum. Proc Natl Acad Sci U S A 82:6865–6868PubMedCentralPubMedCrossRefGoogle Scholar
  47. Oelze J (1985) Analysis of bacteriochlorophylls. Meth Microbiol 18:257–284CrossRefGoogle Scholar
  48. Ohashi S, Iemura T, Okada N, Itoh S, Furukawa H, Okuda M, Ohnishi-Kameyama M, Ogawa T, Miyashita H, Watanabe T, Itoh S, Oh-oka H, Inoue K, Kobayashi M (2010) An overview on chlorophylls and quinones in the photosystem I-type reaction centers. Photosynth Res 104:305–319PubMedCrossRefGoogle Scholar
  49. Oh-oka H (2007) Type 1 reaction center of photosynthetic heliobacteria. Photochem Photobiol 83:177–186PubMedCrossRefGoogle Scholar
  50. Oh-oka H, Iwaki M, Itoh S (2002) Electron donation from membrane-bound cytochrome c to the photosynthetic reaction center in whole cells and isolated membranes of Heliobacterium gestii. Photosynth Res 71:137–147PubMedCrossRefGoogle Scholar
  51. Ormerod J, Nesbakken T, Torgerson Y (1990) Phototrophic bacteria that form heat-resistant endospores. In: Baltscheffsky M (ed) Current research in photosynthesis, vol 4. Kluwer, Dordrecht, pp 935–938Google Scholar
  52. Overmann J (2006) The family Chlorobiaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 7, 3rd edn. Springer, New York, pp 359–378Google Scholar
  53. Pickett MW, Williamson MP, Kelly DJ (1994) An enzyme and 13C-NMR of carbon metabolism in heliobacteria. Photosynth Res 41:75–88PubMedCrossRefGoogle Scholar
  54. Pingitore F, Tang Y, Kruppa GH, Keasling JD (2007) Analysis of amino acid isotopomers using FT-ICR MS. Anal Chem 79:2483–2490PubMedCrossRefGoogle Scholar
  55. Prince RC, Gest H, Blankenship RE (1985) Thermodynamic properties of the photochemical reaction center of Heliobacterium chlorum. Biochim Biophys Acta 810:377–384CrossRefGoogle Scholar
  56. Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Ann Rev Microbiol 57:369–394CrossRefGoogle Scholar
  57. Romberger S, Golbeck J (2010) The bound iron–sulfur clusters of Type-I homodimeric reaction centers. Photosynth Res 104:333–346PubMedCrossRefGoogle Scholar
  58. Romberger S, Castro C, Sun Y, Golbeck J (2010) Identification and characterization of PshBII, a second FA/FB-containing polypeptide in the photosynthetic reaction center of Heliobacterium modesticaldum. Photosynth Res 104:293–303PubMedCrossRefGoogle Scholar
  59. Sattley WM, Madigan MT, Swingley WD, Cheung PC, Clocksin KM, Conrad AL, Dejesa LC, Honchak BM, Jung DO, Karbach LE, Kurdoglu A, Lahiri S, Mastrian SD, Page LE, Taylor HL, Wang ZT, Raymond J, Chen M, Blankenship RE, Touchman JW (2008) The genome of Heliobacterium modesticaldum, a phototrophic representative of the Firmicutes containing the simplest photosynthetic apparatus. J Bacteriol 190:4687–4696PubMedCentralPubMedCrossRefGoogle Scholar
  60. Sattley WM, Blankenship RE (2010) Insights into heliobacterial photosynthesis and physiology from the genome of Heliobacterium modesticaldum. Photosynth Res 104:113–122PubMedCrossRefGoogle Scholar
  61. Scheer H (2006) An overview of chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. In: Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls, vol 25. Springer, The Netherlands, pp 1–26, Advances in Photosynthesis and RespirationCrossRefGoogle Scholar
  62. Sirevåg R (1995) Carbon metabolism in green bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Amsterdam, pp 871–883Google Scholar
  63. Sirevåg R, Ormerod JG (1970) Carbon dioxide—fixation in photosynthetic green sulfur bacteria. Science 169:186–188PubMedCrossRefGoogle Scholar
  64. Stevenson AK, Kimble LK, Woese CR, Madigan MT (1997) Characterization of new phototrophic heliobacteria and their habitats. Photosynth Res 53:1–11CrossRefGoogle Scholar
  65. Takaichi S, Inoue K, Akaike M, Kobayashi M, Oh-Oka H, Madigan MT (1997) The major carotenoid in all species of heliobacteria is the C30 carotenoid 4,4′-diaponeurosporene, not neurosporene. Arch Microbiol 168:277–281PubMedCrossRefGoogle Scholar
  66. Takaichi S, Oh-Oka H, Maoka T, Jung DO, Madigan MT (2003) Novel carotenoid glucoside esters from alkaliphilic heliobacteria. Arch Microbiol 179:95–100PubMedGoogle Scholar
  67. Tang KH, Blankenship RE (2010) Both forward and reverse TCA cycles operate in green sulfur bacteria. J Biol Chem 285:35848–35854PubMedCentralPubMedCrossRefGoogle Scholar
  68. Tang YJ, Yi S, Zhuang WQ, Zinder SH, Keasling JD, Alvarez-Cohen L (2009) Investigation of carbon metabolism in “Dehalococcoides ethenogenes” strain 195 by use of isotopomer and transcriptomic analyses. J Bacteriol 191:5224–5231PubMedCentralPubMedCrossRefGoogle Scholar
  69. Tang KH, Feng X, Zhuang WQ, Alvarez-Cohen L, Blankenship RE, Tang YJ (2010a) Carbon flow of heliobacteria is related more to clostridia than to the green sulfur bacteria. J Biol Chem 285:35104–35112PubMedCentralPubMedCrossRefGoogle Scholar
  70. Tang KH, Yue H, Blankenship RE (2010b) Energy metabolism of Heliobacterium modesticaldum during phototrophic and chemotrophic growth. BMC Microbiol 10:150PubMedCentralPubMedCrossRefGoogle Scholar
  71. Trost JT, Blankenship RE (1989) Isolation of a photoactive photosynthetic reaction center-core antenna complex from Heliobacillus mobilis. Biochemistry 28:9898–9904PubMedCrossRefGoogle Scholar
  72. Trost JT, Brune DC, Blankenship RE (1992) Protein sequences and redox titrations indicate that the electron acceptors in reaction centers from heliobacteria are similar to Photosystem I. Photosynth Res 32:11–22CrossRefGoogle Scholar
  73. van de Meent EJ, Kleinherenbrink FAM, Amesz J (1990) Purification and properties of an antenna-reaction center complex from heliobacteria. Biochim Biophys Acta 1015:223–230CrossRefGoogle Scholar
  74. van de Meent EJ, Kobayashi M, Erkelens C, van Veelen PA, Amesz J, Watanabe T (1991) Identification of 81-hydroxychlorophyll a as a functional reaction center pigment in heliobacteria. Biochim Biophys Acta 1058:356–362CrossRefGoogle Scholar
  75. van Dorssen RJ, Vasmel H, Amesz J (1985) Antenna organization and energy transfer in membranes of Heliobacterium chlorum. Biochim Biophys Acta 809:199–203CrossRefGoogle Scholar
  76. Woese CR, Debrunner-Vossbrinck BA, Oyaizu H, Stackebrandt E, Ludwig W (1985) Gram-positive bacteria: possible photosynthetic ancestry. Science 229:762–765PubMedCrossRefGoogle Scholar
  77. Xiong J, Inoue K, Bauer CE (1998) Tracking molecular evolution of photosynthesis by characterization of a major photosynthesis gene cluster from Heliobacillus mobilis. Proc Natl Acad Sci U S A 95:14851–14856PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2014

Authors and Affiliations

  • W. Matthew Sattley
    • 1
    Email author
  • Marie Asao
    • 2
  • Joseph Kuo-Hsiang Tang
    • 3
  • Aaron M. Collins
    • 4
  1. 1.Division of Natural SciencesIndiana Wesleyan UniversityMarionUSA
  2. 2.Department of MicrobiologyThe Ohio State UniversityColumbusUSA
  3. 3.Carlson School of Chemistry and Biochemistry, and Department of BiologyClark UniversityWorcesterUSA
  4. 4.Center for Integrated NanotechnologiesLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations