Respiratory Chain Supercomplexes in Mitochondria

  • Natalya V. DudkinaEmail author
  • Egbert J. Boekema
  • Hans-Peter Braun
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 39)


Mitochondria have an intricate, heavily folded inner membrane, which is occupied by many copies of the respiratory chain complexes (I, II, III, IV). These complexes, together with the ATP synthase complex (complex V), are responsible for energy production stored as ATP. All five complexes specifically interact and form defined supercomplexes. Electron microscopy has provided structural data describing the interaction between complexes I and III, among I, III and IV and between two ATP synthase monomers in a dimeric form of complex V. Cryo-electron tomography has given new insights how these supercomplexes are arranged within intact mitochondria. The structural data can help to define the functional role of these supercomplexes, in particular for the dimeric ATP synthase complex, which appears to be responsible for the folding of the inner mitochondrial membrane.


Respiratory Chain Complex OXPHOS Complex OXPHOS System Peripheral Stalk Mobile Electron Carrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



– Adenosine diphosphate;


– Adenosine triphosphate;


– Blue native polyacrylamide gel electrophoresis;


– Electron microscopy;


– Membrane-embedded part of the ATP synthase;


– Extra-membranous part of the ATP synthase;


– Flavine mononucleotide;


– Nicotinamide adenine dinucleotide reduced form;


– Oxidative phosphorylation;


– Sodium dodecyl sulphate



Research in our laboratories is supported by The Netherlands Organisation for Scientific Research (NWO) and the Deutsche Forschungsgemeinschaft (DFG).


  1. Acín-Pérez R, Bayona-Bafaluy M, Fernández-Silva P, Moreno-Loshuertos R, Pérez-Martos A, Bruno C, Moraes C, Enríquez J (2004) Respiratory complex III is required to maintain complex I in mammalian mitochondria. Mol Cell 13:805–815PubMedCentralPubMedCrossRefGoogle Scholar
  2. Acín-Pérez R, Fernández-Silva P, Peleato ML, Pérez-Martos A, Enriquez JA (2008) Respiratory active mitochondrial supercomplexes. Mol Cell 32:529–539PubMedCrossRefGoogle Scholar
  3. Allen RD, Schroeder CC, Fok AK (1989) An investigation of mitochondrial inner membranes by rapid-freeze deep-etch techniques. J Cell Biol 108:2233–2240PubMedCrossRefGoogle Scholar
  4. Arnold I, Pfeiffer K, Neupert W, Stuart RA, Schägger H (1998) Yeast mitochondrial F1F0-ATP synthase exists as a dimer: identification of three dimer-specific subunits. EMBO J 17:7170–7178PubMedCentralPubMedCrossRefGoogle Scholar
  5. Atteia A, van Lis R, Mendoza-Hernandez G, Henze K, Martin W, Riveros-Rosas H, Gonzalez-Halphen D (2003) Bifunctional aldehyde/alcohol dehydrogenase (ADHE) in chlorophyte algal mitochondria. Plant Mol Biol 53:175–188PubMedCrossRefGoogle Scholar
  6. Balabaskaran NP, Dudkina NV, Kane LA, van Eyk JE, Boekema EJ, Mather MW, Vaidya AB (2010) Highly divergent mitochondrial ATP synthase complexes in Tetrahymena thermophila. PLoS Biol 8(7):e1000418CrossRefGoogle Scholar
  7. Berry EA, Guergova-Kuras M, Huang LS, Crofts AR (2000) Structure and function of cytochrome bc complexes. Annu Rev Biochem 69:1005–1075PubMedCrossRefGoogle Scholar
  8. Bianchi C, Genova ML, Castelli GP, Lenaz G (2004) The mitochondrial respiratory chain is partially organized in a supercomplex assembly: kinetic evidence using flux control analysis. J Biol Chem 279:36562–36569PubMedCrossRefGoogle Scholar
  9. Blakely EL, Mitchell AL, Fisher N, Meunier B, Nijtmans LG, Schaefer AM, Jackson MJ, Turnbull DM, Taylor RW (2005) A mitochondrial cytochrome b mutation causing severe respiration chain enzyme deficiency in humans and yeast. FEBS J 14:3583–3592CrossRefGoogle Scholar
  10. Boumans H, Grivell LA, Berden JA (1998) The respiratory chain in yeast behaves as a single functional unit. J Biol Chem 273:4872–4877PubMedCrossRefGoogle Scholar
  11. Braun HP, Emmermann M, Kruft V, Schmitz UK (1992) The general mitochondrial processing peptidase from potato is an integral part of cytochrome c reductase of the respiratory chain. EMBO J 11:3219–3227PubMedCentralPubMedGoogle Scholar
  12. Bultema JB, Braun HP, Boekema EJ, Kouřil R (2009) Megacomplex organization of the oxidative phosphorylation system by structural analysis of respiratory supercomplexes from potato. Biochim Biophys Acta 1767:60–67CrossRefGoogle Scholar
  13. Carroll J, Fearnley IM, Shannon RJ, Hirst J, Walker JE (2003) Analysis of the subunit composition of complex I from bovine heart mitochondria. Mol Cell Proteomics 2:117–126PubMedCrossRefGoogle Scholar
  14. Chance B, Williams GR (1955) A method for the localization of sites for oxidative phosphorylation. Nature 176:250–254PubMedCrossRefGoogle Scholar
  15. Davies KM, Strauss M, Daum B, Kief JH, Osiewacz HD, Rycovska A, Zickermann V, Kühlbrandt W (2011) Macromolecular organization of ATP synthase and complex I in whole mitochondria. Proc Natl Acad Sci U S A 108:14121–14126PubMedCentralPubMedCrossRefGoogle Scholar
  16. Diaz F, Fukui H, Garcia S, Moraes CT (2006) Cytochrome c oxidase is required for the assembly/stability of respiratory complex I in mouse fibroblasts. Mol Cell Biol 26:4872–4881PubMedCentralPubMedCrossRefGoogle Scholar
  17. Dudkina NV, Eubel H, Keegstra W, Boekema EJ, Braun HP (2005a) Structure of a mitochondrial supercomplex formed by respiratory-chain complexes I and III. Proc Natl Acad Sci U S A 102:3225–3229PubMedCentralPubMedCrossRefGoogle Scholar
  18. Dudkina NV, Heinemeyer J, Keegstra W, Boekema EJ, Braun HP (2005b) Structure of dimeric ATP synthase from mitochondria: an angular association of monomers induces the strong curvature of the inner membrane. FEBS Lett 579:5769–5772PubMedCrossRefGoogle Scholar
  19. Dudkina NV, Heinemeyer J, Sunderhaus S, Boekema EJ, Braun HP (2006a) Respiratory chain supercomplexes in the plant mitochondrial membrane. Trends Plant Sci 11:232–240PubMedCrossRefGoogle Scholar
  20. Dudkina NV, Sunderhaus S, Braun HP, Boekema EJ (2006b) Characterization of dimeric ATP synthase and cristae membrane ultrastructure from Saccharomyces and Polytomella mitochondria. FEBS Lett 580:3427–3432PubMedCrossRefGoogle Scholar
  21. Dudkina NV, Sunderhaus S, Boekema EJ, Braun HP (2008) The higher level of organization of the oxidative phosphorylation system: mitochondrial supercomplexes. J Bioenerg Biomembr 40:419–424PubMedCentralPubMedCrossRefGoogle Scholar
  22. Dudkina NV, Oostergetel GT, Lewejohann D, Braun HP, Boekema EJ (2010a) Row-like organization of ATP synthase in intact mitochondria determined by cryo-electron tomography. Biochim Biophys Acta 1797:272–277PubMedCrossRefGoogle Scholar
  23. Dudkina NV, Kouřil R, Bultema JB, Boekema EJ (2010b) Imaging of organelles by electron microscopy reveals protein-protein interactions in mitochondria and chloroplasts. FEBS Lett 584:2510–2515PubMedCrossRefGoogle Scholar
  24. Dudkina NV, Kudryashev M, Stahlberg H, Boekema EJ (2011) Interaction of complexes I, III and IV within the bovine respirasome by single particle cryoelectron tomography. Proc Natl Acad Sci U S A 108:15196–15200PubMedCentralPubMedCrossRefGoogle Scholar
  25. Dutilleul C, Garmier M, Noctor G, Mathieu C, Chétrit P, Foyer CH, De Paepe R (2003) Leaf mitochondria modulate whole cell redox homeostasis, set antioxidant capacity, and determine stress resistance through altered signaling and diurnal regulation. Plant Cell 15:1212–1226PubMedCentralPubMedCrossRefGoogle Scholar
  26. Efremov RG, Baradaran R, Sazanov LA (2010) The architecture of respiratory complex I. Nature 465:441–445PubMedCrossRefGoogle Scholar
  27. Eubel H, Jänsch L, Braun HP (2003) New insights into the respiratory chain of plant mitochondria supercomplexes and a unique compositions of complex II. Plant Physiol 133:274–286PubMedCentralPubMedCrossRefGoogle Scholar
  28. Eubel H, Heinemeyer J, Sunderhaus S, Braun HP (2004a) Respiratory chain supercomplexes in plant mitochondria. Plant Physiol Biochem 42:937–942PubMedCrossRefGoogle Scholar
  29. Eubel H, Heinemeyer J, Braun HP (2004b) Identification and characterization of respirasomes in potato mitochondria. Plant Physiol 134:1450–1459PubMedCentralPubMedCrossRefGoogle Scholar
  30. Giraud MF, Paumard P, Soubannier V, Vaillier J, Arselin G, Salin B, Schaeffer J, Brethes D, di Rago P, Velours J (2002) Is there a relationship between the supramolecular organization of the mitochondrial ATP synthase and the formation of cristae? Biochim Biophys Acta 1555:174–180PubMedCrossRefGoogle Scholar
  31. Guerrero-Castillo S, Vázquez-Acevedo M, González-Halphen D, Uribe-Carvajal S (2009) In Yarrowia lipolytica mitochondria, the alternative NADH dehydrogenase interacts specifically with the cytochrome complexes of the classic respiratory pathway. Biochim Biophys Acta 1787:75–85PubMedCrossRefGoogle Scholar
  32. Hackenbrock CR, Chazotte B, Gupte SS (1986) The random collision model and a critical assessment of diffusion and collision in mitochondrial electron transport. J Bioenerg Biomembr 427(18):331–368CrossRefGoogle Scholar
  33. Heinemeyer J, Braun HP, Boekema EJ, Kouřil R (2007) A structural model of the cytochrome c reductase/oxidase supercomplex from yeast mitochondria. J Biol Chem 282:12240–12248PubMedCrossRefGoogle Scholar
  34. Horsefield R, Iwata S, Byrne B (2004) Complex II from a structural perspective. Curr Protein Pept Sci 5:107–118PubMedCrossRefGoogle Scholar
  35. Hunte C, Koepke J, Lange C, Rossmanith T, Michel H (2000) Structure at 2.3 Å resolution of the cytochrome bc 1 complex from the yeast Saccharomyces cerevisiae co-crystallized with an antibody Fv fragment. Structure 8:669–684PubMedCrossRefGoogle Scholar
  36. Hunte C, Zickermann V, Brandt U (2010) Functional modules and structural basis of conformational coupling in mitochondrial complex I. Science 329:448–451Google Scholar
  37. Iwata S, Lee JW, Okada K, Lee JK, Iwata M, Rasmussen B, Link TA, Ramaswamy S, Jap BK (1998) Complete structure of the 11-subunit bovine mitochondrial cytochrome bc 1 complex. Science 281:64–71PubMedCrossRefGoogle Scholar
  38. Klodmann J, Braun HP (2011) Proteomic approach to characterize mitochondrial complex I from plants. Phytochemistry 72:1071–1080Google Scholar
  39. Krause F, Scheckhuber CQ, Werner A, Rexroth S, Reifschneider NH, Dencher NA, Osiewacz HD (2004a) Supramolecular organization of cytochrome c oxidase- and alternative oxidase-dependent respiratory chains in the filamentous fungus Podospora anserina. J Biol Chem 279:26453–26461PubMedCrossRefGoogle Scholar
  40. Krause F, Reifschneider NH, Vocke D, Seelert H, Rexroth S, Dencher NA (2004b) “Respirasome”-like supercomplexes in green leaf mitochondria of spinach. J Biol Chem 279:48369–48375PubMedCrossRefGoogle Scholar
  41. Krause F, Reifschneider NH, Goto S, Dencher NA (2005) Active oligomeric ATP synthases in mammalian mitochondria. Biochem Biophys Res Commun 329:583–590PubMedCrossRefGoogle Scholar
  42. Lenaz G, Genova ML (2009) Structural and functional organization of the mitochondrial respiratory chain: a dynamic super-assembly. Int J Biochem Cell Biol 41:1750–1772PubMedCrossRefGoogle Scholar
  43. Millar AH, Eubel H, Jänsch L, Kruft V, Heazlewood L, Braun HP (2004) Mitochondrial cytochrome c oxidase and succinate dehydrogenase contain plant-specific subunits. Plant Mol Biol 56:77–89PubMedCrossRefGoogle Scholar
  44. Minauro-Sanmiguel F, Wilkens S, García JJ (2005) Structure of dimeric mitochondrial ATP synthase: novel F0 bridging features and the structural basis of mitochondrial cristae biogenesis. Proc Natl Acad Sci U S A 102:12356–12358PubMedCentralPubMedCrossRefGoogle Scholar
  45. Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148PubMedCrossRefGoogle Scholar
  46. Møller IM (2002) A new dawn for plant mitochondrial NAD(P)H dehydrogenases. Trends Plant Sci 7:235–237PubMedCrossRefGoogle Scholar
  47. Nübel E, Wittig I, Kerscher S, Brandt U, Schägger H (2009) Two-dimensional native electrophoretic analysis of respiratory supercomplexes from Yarrowia lipolytica. Proteomics 9:2408–2418PubMedCrossRefGoogle Scholar
  48. Paumard P, Vaillier J, Coulary B, Schaeffer J, Soubannier V, Mueller DM, Brethes D, di Rago JP, Velours J (2002) The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J 21:221–230PubMedCentralPubMedCrossRefGoogle Scholar
  49. Peters K, Dudkina NV, Jänsch L, Braun HP, Boekema EJ (2008) A structural investigation of complex I and I+III2 supercomplex from Zea mays at 11–13 Å resolution: assignment of the carbonic anhydrase domain and evidence for structural heterogeneity within complex I. Biochim Biophys Acta 1777:84–93PubMedCrossRefGoogle Scholar
  50. Pfeiffer K, Gohil V, Stuart RA, Hunte C, Brandt U, Greenberg ML, Schägger H (2003) Cardiolipin stabilizes respiratory chain supercomplexes. J Biol Chem 278:52873–52880PubMedCrossRefGoogle Scholar
  51. Pineau B, Mathieu C, Gerard-Hirne C, De Paepe R, Chetrit P (2005) Targeting the NAD7 subunit to mitochondria restores a functional complex I and a wild type phenotype in the Nicotiana sylvestris CMS II mutant lacking nad7. J Biol Chem 280:25994–26001PubMedCrossRefGoogle Scholar
  52. Richter OM, Ludwig B (2003) Cytochrome c oxidase–structure, function, and physiology of a redox-driven molecular machine. Rev Physiol Biochem Pharmacol 147:47–74PubMedCrossRefGoogle Scholar
  53. Sabar M, Balk J, Leaver CJ (2005) Histochemical staining and quantification of plant mitochondrial respiratory chain complexes using blue-native polyacrylamide gel electrophoresis. Plant J 44:893–901PubMedCrossRefGoogle Scholar
  54. Sazanov LA, Hinchliffe P (2006) Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311:1430–1436PubMedCrossRefGoogle Scholar
  55. Schäfer E, Seelert H, Reifschneider NH, Krause F, Dencher NA, Vonck J (2006) Architecture of active mammalian respiratory chain supercomplexes. J Biol Chem 281:15370–15375PubMedCrossRefGoogle Scholar
  56. Schägger H (2001) Respiratory chain supercomplexes. IUBMB Life 52:119–128PubMedCrossRefGoogle Scholar
  57. Schägger H, Pfeiffer K (2000) Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J 19:1777–1783PubMedCentralPubMedCrossRefGoogle Scholar
  58. Schägger H, de Coo R, Bauer MF, Hofmann S, Godinot C, Brandt U (2004) Significance of respirasomes for the assembly/stability of human respiratory chain complex I. J Biol Chem 279:36349–36353PubMedCrossRefGoogle Scholar
  59. Soubannier V, Vaillier J, Paumard P, Coulary B, Schaeffer J, Velours J (2002) In the absence of the first membrane-spanning segment of subunit 4(b), the yeast ATP synthase is functional but does not dimerize or oligomerise. J Biol Chem 277:10739–10745PubMedCrossRefGoogle Scholar
  60. Stock D, Gibbons C, Arechaga I, Leslie AGW, Walker JE (2000) Rotary mechanism of ATP synthase. Curr Opin Struct Biol 10:672–679PubMedCrossRefGoogle Scholar
  61. Strauss M, Hofhaus G, Schröder RR, Kühlbrandt W (2008) Dimer ribbons of ATP synthase shape the inner mitochondrial membrane. EMBO J 27:1154–1160PubMedCentralPubMedCrossRefGoogle Scholar
  62. Suthammarak W, Morgan PG, Sedensky MM (2010) Mutations in mitochondrial complex III uniquely affect complex I in Caenorhabditis elegans. J Biol Chem 285:40724–40731PubMedCentralPubMedCrossRefGoogle Scholar
  63. Taylor NL, Heazlewood JL, Day DA, Millar AH (2005) Differential impact of environmental stresses on the pea mitochondrial proteome. Mol Cell Proteomics 4:1122–1133PubMedCrossRefGoogle Scholar
  64. Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å. Science 272:1136–1144PubMedCrossRefGoogle Scholar
  65. Ugalde C, Janssen RJ, van den Heuvel LP, Smeitink JA, Nijtmans LG (2004) Differences in assembly or stability of complex I and other mitochondrial OXPHOS complexes in inherited complex I deficiency. Hum Mol Genet 13:659–667PubMedCrossRefGoogle Scholar
  66. van Lis R, Atteia A, Mendoza-Hernandez G, Gonzalez-Halphen D (2003) Identification of novel mitochondrial protein components of Chlamydomonas reinhardtii. A proteomic approach. Plant Physiol 132:318–330PubMedCentralPubMedCrossRefGoogle Scholar
  67. Velours J, Stines-Chaumeil C, Habersetzer J, Chaignepain S, Dautant A, Brethes D (2011) Evidence of the proximity of ATP synthase subunits 6 (a) in the innermitochondrial membrane and in the supramolecular forms of Saccharomyces cerevisiae ATP synthase. J Biol Chem 286:35477–35484PubMedCentralPubMedCrossRefGoogle Scholar
  68. Wittig I, Schägger H (2008) Structural organization of mitochondrial ATP synthase. Biochim Biophys Acta 1777:592–598PubMedCrossRefGoogle Scholar
  69. Wittig I, Carrozzo R, Santorelli FM, Schägger H (2006) Supercomplexes and subcomplexes of mitochondrial oxidative phosphorylation. Biochim Biophys Acta 1757:1066–1072PubMedCrossRefGoogle Scholar
  70. Zhang M, Mileykovskaya E, Dowhan W (2002) Gluing the respiratory chain together. Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane. J Biol Chem 277:43553–43556PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2014

Authors and Affiliations

  • Natalya V. Dudkina
    • 1
    Email author
  • Egbert J. Boekema
    • 2
  • Hans-Peter Braun
    • 3
  1. 1.Department of Biological Sciences, BirkbeckUniversity of LondonLondonUK
  2. 2.Department of Biophysical Chemistry, GBBUniversity of GroningenGroningenThe Netherlands
  3. 3.Institute of Plant GeneticsUniversity of HannoverHannoverGermany

Personalised recommendations