Skip to main content
Book cover

Nanomaterial pp 157–182Cite as

Design, Synthesis, and Functionalization of Nanomaterials for Therapeutic Drug Delivery

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 811))

Abstract

Nanomaterials have the potential to solve some of the toughest challenges facing modern medicine. Their unique optical, magnetic and chemical properties at the nanoscale make them different from their macroscale counterparts. Successful application of nanomaterials can revolutionize therapeutics, diagnostics and imaging in several biomedical applications. Self-assembled amphiphilic polymeric nanoparticles have been employed to carry poorly soluble chemotherapeutic drugs. Loading of anticancer chemotherapeutic drugs into self assembled polymeric nanoparticles have shown to increase their circulation time, tumor localization and therapeutic potential. This book chapter provides an introductory discussion to organic nanotechnologies for drug delivery. Promising advances in the field of nanomedicine will be discussed and an outlook to the future will be provided.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

mL:

Milliliters

nm:

Nanometer

NP:

Nanoparticle

PEG:

Poly (ethyleneglycol)

QD:

Quantum Dots

μL:

Microliters

μm:

Micrometer

References

  1. Ingram VM (1957) Gene mutations in human haemoglobin: the chemical difference between normal and sickle cell haemoglobin. Nature 180:326–328

    Article  CAS  PubMed  Google Scholar 

  2. Initiative NN (2000) http://www.nano.gov/nanotech-101/what/definition

  3. Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci 23:22–36

    Google Scholar 

  4. Hoffman AS, Stayton PS, Ei-Sayed MEH, Murthy N, Bulmus V, Lackey C et al (2007) Design of “Smart” nano-scale delivery systems for biomolecular therapeutics. J Biomed Nanotechnol 3:213–217

    Article  CAS  Google Scholar 

  5. Mody VV, Siwale R, Singh A, Mody HR (2010) Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2:282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  7. Zhong W (2009) Nanomaterials in fluorescence-based biosensing. Anal Bioanal Chem 394:47–59

    Article  CAS  PubMed  Google Scholar 

  8. Alshehri AH, Jakubowska M, Młożniak A, Horaczek M, Rudka D, Free C et al (2012) Enhanced electrical conductivity of silver nanoparticles for high frequency electronic applications. ACS Appl Mater Interfaces 4:7007–7010

    Article  CAS  PubMed  Google Scholar 

  9. Ortega RA (2010) A new model of iron oxide nanoparticle magnetic properties to guide design of novel nanomaterials. Vanderbilt University, Nashville

    Google Scholar 

  10. Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:MR17–MR71

    Article  PubMed  Google Scholar 

  11. Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35:583–592

    Article  CAS  PubMed  Google Scholar 

  12. Bielecki S, Kalinowska H (2008) Biotechnological nanomaterials. Postepy Mikrobiologii 47:163–169

    CAS  Google Scholar 

  13. Torchilin VP, Trubetskoy VS, Whiteman KR, Caliceti P, Ferruti P, Veronese FM (1995) New synthetic amphiphilic polymers for steric protection of liposomes in vivo. J Pharm Sci 84:1049–1053

    Article  CAS  PubMed  Google Scholar 

  14. Weissig V, Whiteman KR, Torchilin VP (1998) Accumulation of protein-loaded long-circulating micelles and liposomes in subcutaneous Lewis lung carcinoma in mice. Pharm Res 15:1552–1556

    Article  CAS  PubMed  Google Scholar 

  15. Cervantes F, Cazin B, Simonnet J-T (1999) Nanoemulsion based on nonionic amphiphilic lipids and aminated silicones and uses. Google Patents: AU1998056451

    Google Scholar 

  16. Quina FH, Nassar PM, Bonilha JBS, Bales BL (1995) Growth of sodium dodecyl sulfate micelles with detergent concentration. J Phys Chem 99:17028–17031

    Article  CAS  Google Scholar 

  17. Huang H-C, Barua S, Sharma G, Dey SK, Rege K (2011) Inorganic nanoparticles for cancer imaging and therapy. J Control Release 155:344–357

    Article  CAS  PubMed  Google Scholar 

  18. Huang H-C, Ramos J, Grandhi TSP, Potta T, Rege K (2010) Gold nanoparticles in cancer imaging and therapeutics. Nano LIFE (NL) 01:289–307

    Article  CAS  Google Scholar 

  19. Park K (2013) Facing the truth about nanotechnology in drug delivery. ACS Nano 7:7442–7447

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Bae YH, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 153:198–205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Kwon G, Suwa S, Yokoyama M, Okano T, Sakurai Y, Kataoka K (1994) Enhanced tumor accumulation and prolonged circulation times of micelle-forming poly (ethylene oxide-aspartate) block copolymer-adriamycin conjugates. J Control Release 29:17–23

    Article  CAS  Google Scholar 

  22. Torchilin VP (2004) Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci 61:2549–2559

    Article  CAS  PubMed  Google Scholar 

  23. Ma Z, Sui SF (2002) Naked‐Eye sensitive detection of immunoglubulin G by enlargement of Au nanoparticles in vitro. Angew Chem Int Ed 41:2176–2179

    Article  CAS  Google Scholar 

  24. Azzazy HME, Mansour MMH (2009) In vitro diagnostic prospects of nanoparticles. Clin Chim Acta 403:1–8

    Article  CAS  PubMed  Google Scholar 

  25. Kobayashi H, Brechbiel MW (2005) Nano-sized MRI contrast agents with dendrimer cores. Adv Drug Deliv Rev 57:2271–2286

    Article  CAS  PubMed  Google Scholar 

  26. Wang Y-XJ, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11:2319–2331

    Article  CAS  PubMed  Google Scholar 

  27. Jain TK, Richey J, Strand M, Leslie-Pelecky DL, Flask CA, Labhasetwar V (2008) Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials 29:4012–4021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Stephens-Altus JS, West JL (2008) Nanotechnology for tissue engineering. In: Advances in tissue engineering. Imperial College Press, London, p 333

    Chapter  Google Scholar 

  29. Anseth K. Nanotechnology in tissue engineering. American Institute of Chemical Engineers National Meeting, Cincinnati, November 2005

    Google Scholar 

  30. Khang D, Carpenter J, Chun YW, Pareta R, Webster TJ (2010) Nanotechnology for regenerative medicine. Biomed Microdevices 12:575–587

    Article  CAS  PubMed  Google Scholar 

  31. Sumer B, Gao J (2008) Theranostic nanomedicine for cancer. Nanomedicine 3:137–140

    Article  PubMed  Google Scholar 

  32. Park JH, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2008) Micellar hybrid nanoparticles for simultaneous magnetofluorescent imaging and drug delivery. Angew Chem Int Ed Engl 120:7394–7398

    Article  Google Scholar 

  33. Chandler D (2005) Interfaces and the driving force of hydrophobic assembly. Nature 437:640–647

    Article  CAS  PubMed  Google Scholar 

  34. Harada A, Kataoka K (1995) Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block copolymers with poly (ethylene glycol) segments. Macromolecules 28:5294–5299

    Article  CAS  Google Scholar 

  35. Zhang J (2011) Novel emulsion-based delivery systems

    Google Scholar 

  36. Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701

    Article  CAS  PubMed  Google Scholar 

  37. Hu X, Jing X (2009) Biodegradable amphiphilic polymer-drug conjugate micelles

    Google Scholar 

  38. Lu J, Owen SC, Shoichet MS (2011) Stability of self-assembled polymeric micelles in serum. Macromolecules 44:6002–6008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Moghimi SM, Patel HM (1998) Serum-mediated recognition of liposomes by phagocytic cells of the reticuloendothelial system–the concept of tissue specificity. Adv Drug Deliv Rev 32:45–60

    Article  CAS  PubMed  Google Scholar 

  40. Liu J, Zeng F, Allen C (2005) Influence of serum protein on polycarbonate-based copolymer micelles as a delivery system for a hydrophobic anti-cancer agent. J Control Release 103:481–497

    Article  CAS  PubMed  Google Scholar 

  41. Greish K (2010) Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol Biol 624 25–37

    Google Scholar 

  42. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284

    Article  CAS  PubMed  Google Scholar 

  43. Maeda H, Fang J, Inutsuka T, Kitamoto Y (2003) Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int Immunopharmacol 3:319–328

    Article  CAS  PubMed  Google Scholar 

  44. Li S-D, Huang L (2010) Stealth nanoparticles: high density but sheddable PEG is a key for tumor targeting. J Control Release 145:178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Unezaki S, Maruyama K, Hosoda J-I, Nagae I, Koyanagi Y, Nakata M et al (1996) Direct measurement of the extravasation of polyethyleneglycol-coated liposomes into solid tumor tissue by in vivo fluorescence microscopy. Int J Pharm 144:11–17

    Article  CAS  Google Scholar 

  46. Danhier F, Feron O, Préat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148:135–146

    Article  CAS  PubMed  Google Scholar 

  47. Torchilin V (2011) Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 63:131–135

    Article  CAS  PubMed  Google Scholar 

  48. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical Carriers. Nat Rev Drug Discov 4:145–160

    Article  CAS  PubMed  Google Scholar 

  49. Peters H (2001) Das Photoreaktionszentrum aus Rhodobacter sphaeroides als Modellmembranprotein zur Reinigung, Rekonstitution in Liposomen aus ungewöhnlichen Phospholipiden, Charakterisierung und heterologen Expression

    Google Scholar 

  50. Gregoriadis G (2006) Liposome technology, volume III: interactions of liposomes with the biological milieu: CRC press

    Book  Google Scholar 

  51. Gregoriadis G (1984) Liposome technology. In: Incorporation of drugs, proteins and genetic material, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  52. Lasic DD (1993) Liposomes: from physics to applications. Elsevier, Amsterdam/New York

    Google Scholar 

  53. Small DM (1986) The physical chemistry of lipids. From alkanes to phospholipids, Handbook of lipid research. Plenum Press, New York

    Book  Google Scholar 

  54. Szoka F Jr, Papahadjopoulos D (1980) Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng 9:467–508

    Article  CAS  PubMed  Google Scholar 

  55. Redondo-Morata L, Giannotti MI, Sanz F (2012) Influence of cholesterol on the phase transition of lipid bilayers: a temperature-controlled force spectroscopy study. Langmuir 28:12851–12860

    Article  CAS  PubMed  Google Scholar 

  56. Mayer LD, Bally MB, Hope MJ, Cullis PR (1986) Techniques for encapsulating bioactive agents into liposomes. Chem Phys Lipids 40:333–345

    Article  CAS  PubMed  Google Scholar 

  57. Kirby C, Clarke J, Gregoriadis G (1980) Effect of the cholesterol content of small unilamellar liposomes on their stability > in vivo and in vitro. Biochem 186:591–598

    Google Scholar 

  58. Simon SA, McIntosh TJ, Latorre R (1982) Influence of cholesterol on water penetration into bilayers. Science 216:65–67

    Article  CAS  PubMed  Google Scholar 

  59. Simon SA, McIntosh TJ (1986) Depth of water penetration into lipid bilayers. Methods Enzymol 127:511–521

    Article  CAS  PubMed  Google Scholar 

  60. Crowe JH, Crowe LM, Carpenter JF, Wistrom CA (1987) Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem J 242:1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Hu C-MJ, Aryal S, Zhang L (2010) Nanoparticle-assisted combination therapies for effective cancer treatment. Ther Deliv 1:323–334

    Article  CAS  PubMed  Google Scholar 

  62. Xu Y-M, Zhang S-B, Hu J-J, Liu D-L, Qiao W-H, Li Z-S (2004–2005) Liposomes for gene delivery. J Dalian Natl Univ

    Google Scholar 

  63. Lasic DD (1997) Liposomes in gene delivery. CRC Press, Boca Raton

    Google Scholar 

  64. Martins S, Sarmento B, Ferreira DC, Souto EB (2007) Lipid-based colloidal carriers for peptide and protein delivery–liposomes versus lipid nanoparticles. Int J Nanomedicine 2:595

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Deissler V, Rüger R, Frank W, Fahr A, Kaiser WA, Hilger I (2008) Fluorescent liposomes as contrast agents for in vivo optical imaging of edemas in mice. Small 4:1240–1246

    Article  CAS  PubMed  Google Scholar 

  66. Safra T, Muggia F, Jeffers S, Tsao-Wei DD, Groshen S, Lyass O et al (2000) Pegylated liposomal doxorubicin (doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Ann Oncol 11:1029–1033

    Article  CAS  PubMed  Google Scholar 

  67. Mulder WJM, Strijkers GJ, Griffioen AW, van Bloois L, Molema G, Storm G et al (2004) A liposomal system for contrast-enhanced magnetic resonance imaging of molecular targets. Bioconjug Chem 15:799–806

    Article  CAS  PubMed  Google Scholar 

  68. Chen C-S, Yao J, Durst RA (2006) Liposome encapsulation of fluorescent nanoparticles: quantum dots and silica nanoparticles. J Nanopart Res 8:1033–1038

    Article  CAS  Google Scholar 

  69. Woodle MC (1993) 67Gallium-labeled liposomes with prolonged circulation: preparation and potential as nuclear imaging agents. Nucl Med Biol 20:149–155

    Article  CAS  PubMed  Google Scholar 

  70. Park JW, Hong K, Kirpotin DB, Colbern G, Shalaby R, Baselga J et al (2002) Anti-HER2 immunoliposomes enhanced efficacy attributable to targeted delivery. Clin Cancer Res 8:1172–1181

    CAS  PubMed  Google Scholar 

  71. Maruyama K (2011) Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Adv Drug Deliv Rev 63:161–169

    Article  CAS  PubMed  Google Scholar 

  72. Riaz M (1996) Liposomes preparation methods. Pak J Pharm Sci 19:65–77

    Google Scholar 

  73. Deamer D, Bangham AD (1976) Large volume liposomes by an ether vaporization method. Biochim Biophys Acta 443:629–634

    Article  CAS  PubMed  Google Scholar 

  74. Batzri S, Korn ED (1973) Single bilayer liposomes prepared without sonication. Biochim Biophys Acta 298:1015–1019

    Article  CAS  PubMed  Google Scholar 

  75. Szoka F, Papahadjopoulos D (1978) Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci 75:4194–4198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Dua JS, Rana AC, Bhandari AK (2012) Liposomes methods of preparation and applications. Int J Pharm Stud Res 3:14–20

    Google Scholar 

  77. Crosasso P, Ceruti M, Brusa P, Arpicco S, Dosio F, Cattel L (2000) Preparation, characterization and properties of sterically stabilized paclitaxel-containing liposomes. J Control Release 63:19–30

    Article  CAS  PubMed  Google Scholar 

  78. Mayer LD, Bally MB, Cullis PR (1986) Uptake of adriamycin into large unilamellar vesicles in response to a pH gradient. Biochim Biophys Acta 857:123–126

    Article  CAS  PubMed  Google Scholar 

  79. Mayer LD, Tai LCL, Bally MB, Mitilenes GN, Ginsberg RS, Cullis PR (1990) Characterization of liposomal systems containing doxorubicin entrapped in response to pH gradients. Biochim Biophys Acta 1025:143–151

    Article  CAS  PubMed  Google Scholar 

  80. Li X, Hirsh DJ, Cabral-Lilly D, Zirkel A, Gruner SM, Janoff AS et al (1998) Doxorubicin physical state in solution and inside liposomes loaded via a pH gradient. Biochim Biophys Acta 1415:23–40

    Article  CAS  PubMed  Google Scholar 

  81. Haran G, Cohen R, Bar LK, Barenholz Y (1993) Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim Biophys Acta 1151:201–215

    Article  CAS  PubMed  Google Scholar 

  82. Gubernator J (2011) Active methods of drug loading into liposomes: recent strategies for stable drug entrapment and increased in vivo activity. Expert Opin Drug Deliv 8:565–580

    Article  CAS  PubMed  Google Scholar 

  83. Fritze A, Hens F, Kimpfler A, Schubert R, Peschka-Süss R (2006) Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient. Biochim Biophys Acta 1758:1633–1640

    Article  CAS  PubMed  Google Scholar 

  84. Drummond DC, Zignani M, Leroux J-C (2000) Current status of pH-sensitive liposomes in drug delivery. Prog Lipid Res 39:409–460

    Article  CAS  PubMed  Google Scholar 

  85. Al-Ahmady ZS, Al-Jamal WT, Bossche JV, Bui TT, Drake AF, Mason AJ et al (2012) Lipid–peptide vesicle nanoscale hybrids for triggered drug release by mild hyperthermia in vitro and in vivo. ACS Nano 6:9335–9346

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Basel MT, Shrestha TB, Troyer DL, Bossmann SH (2011) Protease-sensitive, polymer-caged liposomes: a method for making highly targeted liposomes using triggered release. ACS Nano 5:2162–2175

    Article  CAS  PubMed  Google Scholar 

  87. Schroeder A, Kost J, Barenholz Y (2009) Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes. Chem Phys Lipids 162:1–16

    Article  CAS  PubMed  Google Scholar 

  88. Brody EN, Gold L (2000) Aptamers as therapeutic and diagnostic agents. Rev Mol Biotechnol 74:5–13

    Article  CAS  Google Scholar 

  89. Janssen A, Schiffelers RM, Ten Hagen TLM, Koning GA, Schraa AJ, Kok RJ et al (2003) Peptide-targeted PEG-liposomes in anti-angiogenic therapy. Int J Pharm 254:55–58

    Article  CAS  PubMed  Google Scholar 

  90. Huang A, Huang L, Kennel SJ (1980) Monoclonal antibody covalently coupled with fatty acid. A reagent for in vitro liposome targeting. J Biol Chem 255:8015–8018

    CAS  PubMed  Google Scholar 

  91. Dattagupta N, Das AR, Sridhar CN, Patel JR (1998) Method for the intracellular delivery of biomolecules using liposomes containing cationic lipids and vitamin D. Google Patents: US 5711964 A

    Google Scholar 

  92. Dass CR (2008) Drug delivery in cancer using liposomes. Methods Mol Biol 437:177–182

    Google Scholar 

  93. Balazs DA, Godbey WT (2010) Liposomes for use in gene delivery. J Drug Deliv 2011:326497

    PubMed Central  PubMed  Google Scholar 

  94. Weiner AL (1994) Liposomes for protein delivery: selecting manufacture and development processes. Immunomethods 4:201–209

    Article  CAS  PubMed  Google Scholar 

  95. Saul JM, Annapragada AV, Bellamkonda RV (2006) A dual-ligand approach for enhancing targeting selectivity of therapeutic nanocarriers. J Control Release 114:277–287

    Article  CAS  PubMed  Google Scholar 

  96. Yang F-Y, Wong T-T, Teng M-C, Liu R-S, Lu M, Liang H-F et al (2012) Focused ultrasound and interleukin-4 receptor-targeted liposomal doxorubicin for enhanced targeted drug delivery and antitumor effect in glioblastoma multiforme. J Control Release 160:652–658

    Article  CAS  PubMed  Google Scholar 

  97. Meng S, Su B, Li W, Ding Y, Tang L, Zhou W et al (2010) Enhanced antitumor effect of novel dual-targeted paclitaxel liposomes. Nanotechnology 21:415103

    Article  PubMed  CAS  Google Scholar 

  98. Straubinger RM, Hong K, Friend DS, Papahadjopoulos D (1983) Endocytosis of liposomes and intracellular fate of encapsulated molecules: encounter with a low pH compartment after internalization in coated vesicles. Cell 32:1069–1079

    Article  CAS  PubMed  Google Scholar 

  99. Torchilin V (2008) Intracellular delivery of protein and peptide therapeutics. Drug Discov Today Technol 5:e95–e103

    Article  PubMed  Google Scholar 

  100. Mizuguchi H, Nakanishi M, Nakanishi T, Nakagawa T, Nakagawa S, Mayumi T (1996) Application of fusogenic liposomes containing fragment A of diphtheria toxin to cancer therapy. Br J Cancer 73:472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Kunisawa J, Nakagawa S, Mayumi T (2001) Pharmacotherapy by intracellular delivery of drugs using fusogenic liposomes: application to vaccine development. Adv Drug Deliv Rev 52:177–186

    Article  CAS  PubMed  Google Scholar 

  102. Kunisawa J, Masuda T, Katayama K, Yoshikawa T, Tsutsumi Y, Akashi M et al (2005) Fusogenic liposome delivers encapsulated nanoparticles for cytosolic controlled gene release. J Control Release 105:344–353

    Article  CAS  PubMed  Google Scholar 

  103. Rückert P, Bates SR, Fisher AB (2003) Role of clathrin-and actin-dependent endocytotic pathways in lung phospholipid uptake. Am J Physiol Lung Cell Mol Physiol 284:L981–L989

    Article  PubMed  Google Scholar 

  104. Simões S, Moreira JN, Fonseca C, Düzgüneş N, Pedroso de Lima MC (2004) On the formulation of pH-sensitive liposomes with long circulation times. Adv Drug Deliv Rev 56:947–965

    Article  PubMed  CAS  Google Scholar 

  105. Romberg B, Hennink WE, Storm G (2008) Sheddable coatings for long-circulating nanoparticles. Pharm Res 25:55–71

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Guo X, Szoka FC (2001) Steric stabilization of fusogenic liposomes by a low-pH sensitive PEG-diortho ester-lipid conjugate. Bioconjug Chem 12:291–300

    Article  CAS  PubMed  Google Scholar 

  107. Metalloprotease M (2012) 2-Responsive multifunctional liposomal nanocarrier for enhanced tumor targeting Zhu, Lin; Kate, Pooja; Torchilin, Vladimir P. ACS Nano 6:3491–3498

    Article  CAS  Google Scholar 

  108. Zhu L, Kate P, Torchilin VP (2012) Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting. ACS Nano 6:3491–3498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. O’Brien MER, Wigler N, Inbar M, Rosso R, Grischke E, Santoro A et al (2004) Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX (TM)/Doxil (R)) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol 15:440–449

    Article  PubMed  Google Scholar 

  110. Barenholz YC (2012) Doxil®—the first fda-approved nano-drug: lessons learned. J Control Release 160:117–134

    Google Scholar 

  111. Lipshultz SE, Colan SD, Gelber RD, Perez-Atayde AR, Sallan SE, Sanders SP (1991) Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N Engl J Med 324:808–815

    Article  CAS  PubMed  Google Scholar 

  112. Rahman A, More N, Schein PS (1982) Doxorubicin-induced chronic cardiotoxicity and its protection by liposomal administration. Cancer Res 42:1817–1825

    CAS  PubMed  Google Scholar 

  113. Working PK, Newman MS, Huang SK, Mayhew E, Vaage J, Lasic DD (1994) Pharmacokinetics, Biodistribution and therapeutic efficacy of doxorubicin encapsulated in Stealth® liposomes (Doxil®). J Liposome Res 4:667–687

    Article  Google Scholar 

  114. Meyerhoff A (1999) US Food and Drug Administration approval of Am Bisome (liposomal amphotericin B) for treatment of visceral leishmaniasis. Clin Infect Dis 28:42–48

    Article  CAS  PubMed  Google Scholar 

  115. Forssen EA, Ross ME (1994) Daunoxome® treatment of solid tumors: preclinical and clinical investigations. J Liposome Res 4:481–512

    Article  Google Scholar 

  116. Burgess DJ, Hussain AS, Ingallinera TS, Chen M-L (2002) Assuring quality and performance of sustained and controlled release parenterals: AAPS workshop report, co-sponsored by FDA and USP. Pharm Res 19:1761–1768

    Article  CAS  PubMed  Google Scholar 

  117. Chang H-I, Yeh M-K (2012) Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int J Nanomedicine 7:49

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Kim S, Shi YZ, Kim JY, Park K, Cheng JX (2010) Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle-cell interaction. Expert Opin Drug Deliv 7:49–62

    Article  CAS  PubMed  Google Scholar 

  119. Förster S, Konrad M (2003) From self-organizing polymers to nano-and biomaterials. J Mater Chem 13:2671–2688

    Article  CAS  Google Scholar 

  120. Zhang N, Wardwell PR, Bader RA (2013) Polysaccharide-based micelles for drug delivery. Pharmaceutics 5:329–352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. Kataoka K, Harada A, Nagasaki Y (2012) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 47(1):113–131

    Article  Google Scholar 

  122. Tanford C (1978) Hydrophobic effect and organization of living matter. Science 200:1012–1018

    Article  CAS  PubMed  Google Scholar 

  123. Corkill JM, Goodman JF, Harrold SP (1964) Thermodynamics of micellization of non-ionic detergents. Trans Faraday Soc 60:202–207

    Article  CAS  Google Scholar 

  124. Bae YH, Yin H (2008) Stability issues of polymeric micelles. J Control Release 131:2–4

    Article  CAS  PubMed  Google Scholar 

  125. Kim S, Park K (2010) 19 Polymer micelles for drug delivery. Targeted delivery of small and macromolecular drugs. CRC Press

    Google Scholar 

  126. Xu W, Ling P, Zhang T (2013) Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv 2013:340315

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  127. Torchilin VP (2001) Structure and design of polymeric surfactant-based drug delivery systems. J Control Release 73:137–172

    Article  CAS  PubMed  Google Scholar 

  128. van Vlerken LE, Vyas TK, Amiji MM (2007) Poly (ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm Res 24:1405–1414

    Article  PubMed  CAS  Google Scholar 

  129. Chiappetta DA, Sosnik A (2007) Poly (ethylene oxide)–poly (propylene oxide) block copolymer micelles as drug delivery agents: improved hydrosolubility, stability and bioavailability of drugs. Eur J Pharm Biopharm 66:303–317

    Article  CAS  PubMed  Google Scholar 

  130. Letchford K, Liggins R, Burt H (2008) Solubilization of hydrophobic drugs by methoxy poly(ethylene glycol)-block-polycaprolactone diblock copolymer micelles: theoretical and experimental data and correlations. J Pharm Sci 97:1179–1190

    Article  CAS  PubMed  Google Scholar 

  131. Deng LD, Li AG, Yao CM, Sun DX, Dong AJ (2005) Methoxy poly(ethylene glycol)-b-poly(L-lactic acid) copolymer nanoparticles as delivery vehicles for paclitaxel. J Appl Polym Sci 98:2116–2122

    Article  CAS  Google Scholar 

  132. Gill KK, Nazzal S, Kaddoumi A (2011) Paclitaxel loaded PEG(5000)-DSPE micelles as pulmonary delivery platform: formulation characterization, tissue distribution, plasma pharmacokinetics, and toxicological evaluation. Eur J Pharm Biopharm 79:276–284

    Article  CAS  PubMed  Google Scholar 

  133. Knop K, Hoogenboom R, Fischer D, Schubert US (2010) Poly (ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed 49:6288–6308

    Article  CAS  Google Scholar 

  134. Jeong JH, Kim SW, Park TG (2003) Novel intracellular delivery system of antisense oligonucleotide by self-assembled hybrid micelles composed of DNA/PEG conjugate and cationic fusogenic peptide. Bioconjug Chem 14:473–479

    Article  CAS  PubMed  Google Scholar 

  135. Gaucher G, Dufresne MH, Sant VP, Kang N, Maysinger D, Leroux JC (2005) Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release 109:169–188

    Article  CAS  PubMed  Google Scholar 

  136. Ko J, Park K, Kim Y-S, Kim MS, Han JK, Kim K et al (2007) Tumoral acidic extracellular pH targeting of pH-responsive MPEG-poly (β-amino ester) block copolymer micelles for cancer therapy. J Control Release 123:109–115

    Article  CAS  PubMed  Google Scholar 

  137. Wu XL, Kim JH, Koo H, Bae SM, Shin H, Kim MS et al (2010) Tumor-targeting peptide conjugated pH-responsive micelles as a potential drug carrier for cancer therapy. Bioconjug Chem 21:208–213

    Article  PubMed  CAS  Google Scholar 

  138. Zhang X, Jackson JK, Burt HM (1996) Development of amphiphilic diblock copolymers as micellar carriers of taxol. Int J Pharm 132:195–206

    Article  CAS  Google Scholar 

  139. Elsabahy M, Perron M-È, Bertrand N, Yu GE, Leroux J-C (2007) Solubilization of docetaxel in poly (ethylene oxide)-block-poly (butylene/styrene oxide) micelles. Biomacromolecules 8:2250–2257

    Article  CAS  PubMed  Google Scholar 

  140. Thambi T, Yoon HY, Kim K, Kwon IC, Yoo CK, Park JH (2011) Bioreducible block copolymers based on poly (ethylene glycol) and poly (γ-benzyl L-glutamate) for intracellular delivery of camptothecin. Bioconjug Chem 22:1924–1931

    Article  CAS  PubMed  Google Scholar 

  141. Taylor DJ, Parsons CE, Han HY, Jayaraman A, Rege K (2011) Parallel screening of FDA-approved antineoplastic drugs for identifying sensitizers of TRAIL-induced apoptosis in cancer cells. BMC Cancer 11:470

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  142. Zhao X, Poon Z, Engler AC, Bonner DK, Hammond PT (2012) Enhanced stability of polymeric micelles based on postfunctionalized poly (ethylene glycol)-b-poly (γ-propargyl l-glutamate): the substituent effect. Biomacromolecules 13:1315–1322

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. Xu P, Tang H, Li S, Ren J, Van Kirk E, Murdoch WJ et al (2004) Enhanced stability of core-surface cross-linked micelles fabricated from amphiphilic brush copolymers. Biomacromolecules 5:1736–1744

    Article  CAS  PubMed  Google Scholar 

  144. Kataoka K, Matsumoto T, Yokoyama M, Okano T, Sakurai Y, Fukushima S et al (2000) Doxorubicin-loaded poly (ethylene glycol)–poly (β-benzyl-l-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance. J Control Release 64:143–153

    Article  CAS  PubMed  Google Scholar 

  145. La SB, Okano T, Kataoka K (1996) Preparation and characterization of the micelle‐forming polymeric drug indomethacin‐incorporated poly (ethylene oxide)–poly (β‐benzyl L‐aspartate) block copolymer micelles. J Pharm Sci 85:85–90

    Article  CAS  PubMed  Google Scholar 

  146. Huh KM, Lee SC, Cho YW, Lee J, Jeong JH, Park K (2005) Hydrotropic polymer micelle system for delivery of paclitaxel. J Control Release 101:59–68

    Article  CAS  PubMed  Google Scholar 

  147. Lee J, Lee SC, Acharya G, Chang CJ, Park K (2003) Hydrotropic solubilization of paclitaxel: analysis of chemical structures for hydrotropic property. Pharm Res 20:1022–1030

    Article  CAS  PubMed  Google Scholar 

  148. Lee SC, Huh KM, Lee J, Cho YW, Galinsky RE, Park K (2007) Hydrotropic polymeric micelles for enhanced paclitaxel solubility: in vitro and in vivo characterization. Biomacromolecules 8:202–208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  149. Shuai XT, Merdan T, Schaper AK, Xi F, Kissel T (2004) Core-cross-linked polymeric micelles as paclitaxel carriers. Bioconjug Chem 15:441–448

    Article  CAS  PubMed  Google Scholar 

  150. Tian L, Yam L, Wang J, Tat H, Uhrich KE (2004) Core crosslinkable polymeric micelles from PEG–lipid amphiphiles as drug carriers. J Mater Chem 14:2317–2324

    Article  CAS  Google Scholar 

  151. Yokoyama M, Kwon GS, Okano T, Sakurai Y, Seto T, Kataoka K (1992) Preparation of micelle-forming polymer-drug conjugates. Bioconjug Chem 3:295–301

    Article  CAS  PubMed  Google Scholar 

  152. Masayuki Y, Mizue M, Noriko Y, Teruo O, Yasuhisa S, Kazunori K et al (1990) Polymer micelles as novel drug carrier: adriamycin-conjugated poly (ethylene glycol)-poly (aspartic acid) block copolymer. J Control Release 11:269–278

    Article  Google Scholar 

  153. Yokoyama M, Miyauchi M, Yamada N, Okano T, Sakurai Y, Kataoka K et al (1990) Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. Cancer Res 50:1693–1700

    CAS  PubMed  Google Scholar 

  154. Yokoyama M, Fukushima S, Uehara R, Okamoto K, Sakurai Y, Okano T (1998) Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor. J Control Release 50:79–92

    Article  CAS  PubMed  Google Scholar 

  155. Gullotti E, Yeo Y (2009) Extracellularly activated nanocarriers: a new paradigm of tumor targeted drug delivery. Mol Pharm 6:1041–1051

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  156. Bae YH (2009) Drug targeting and tumor heterogeneity. J Control Release 133:2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  157. Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M et al (2011) Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 6:815–823

    Article  CAS  PubMed  Google Scholar 

  158. Netti PA, Roberge S, Boucher Y, Baxter LT, Jain RK (1996) Effect of transvascular fluid exchange on pressure–flow relationship in tumors: a proposed mechanism for tumor blood flow heterogeneity. Microvasc Res 52:27–46

    Article  CAS  PubMed  Google Scholar 

  159. Heldin C-H, Rubin K, Pietras K, Östman A (2004) High interstitial fluid pressure—an obstacle in cancer therapy. Nat Rev Cancer 4:806–813

    Article  CAS  PubMed  Google Scholar 

  160. Hong R-L, Huang C-J, Tseng Y-L, Pang VF, Chen S-T, Liu J-J et al (1999) Direct comparison of liposomal doxorubicin with or without polyethylene glycol coating in C-26 tumor-bearing mice is surface coating with polyethylene glycol beneficial? Clin Cancer Res 5:3645–3652

    CAS  PubMed  Google Scholar 

  161. Torchilin VP (2010) Passive and active drug targeting: drug delivery to tumors as an example. Handb Exp Pharmacol 197:3–53

    Google Scholar 

  162. Zwicke GL, Mansoori GA, Jeffery CJ (2012) Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev 3

    Google Scholar 

  163. Sudimack J, Lee RJ (2000) Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 41:147–162

    Article  CAS  PubMed  Google Scholar 

  164. Noh T, Kook YH, Park C, Youn H, Kim H, Oh ET et al (2008) Block copolymer micelles conjugated with anti‐EGFR antibody for targeted delivery of anticancer drug. J Polym Sci Part A Polym Chem 46:7321–7331

    Article  CAS  Google Scholar 

  165. Han X, Liu J, Liu M, Xie C, Zhan C, Gu B et al (2009) 9-NC-loaded folate-conjugated polymer micelles as tumor targeted drug delivery system: preparation and evaluation in vitro. Int J Pharm 372:125–131

    Article  CAS  PubMed  Google Scholar 

  166. Liang X-J, Wei T, Liu J, Ma H, Cheng Q, Huang Y et al (2013) Functionalized nanoscale micelles improve the drug delivery for cancer in vitro and in vivo. Nano Lett 13(6):2528–2534

    Article  PubMed  CAS  Google Scholar 

  167. Wu YL, Chen W, Meng FH, Wang ZJ, Cheng R, Deng C et al (2012) Core-crosslinked pH-sensitive degradable micelles: a promising approach to resolve the extracellular stability versus intracellular drug release dilemma. J Control Release 164:338–345

    Article  CAS  PubMed  Google Scholar 

  168. Yang M, Ding Y, Zhang L, Qian X, Jiang X, Liu B (2007) Novel thermosensitive polymeric micelles for docetaxel delivery. J Biomed Mater Res A 81:847–857

    Article  PubMed  CAS  Google Scholar 

  169. Lee GY, Park K, Kim SY, Byun Y (2007) MMPs-specific PEGylated peptide–DOX conjugate micelles that can contain free doxorubicin. Eur J Pharm Biopharm 67:646–654

    Article  CAS  PubMed  Google Scholar 

  170. Bae Y, Nishiyama N, Kataoka K (2007) In vivo antitumor activity of the folate-conjugated pH-sensitive polymeric micelle selectively releasing adriamycin in the intracellular acidic compartments. Bioconjug Chem 18:1131–1139

    Article  CAS  PubMed  Google Scholar 

  171. Gao Z-G, Tian L, Hu J, Park I-S, Bae YH (2011) Prevention of metastasis in a 4T1 murine breast cancer model by doxorubicin carried by folate conjugated pH sensitive polymeric micelles. J Control Release 152:84–89

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  172. Hamaguchi T, Kato K, Yasui H, Morizane C, Ikeda M, Ueno H et al (2007) A phase I and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. Br J Cancer 97:170–176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  173. Danson S, Ferry D, Alakhov V, Margison J, Kerr D, Jowle D et al (2004) Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer. Br J Cancer 90:2085–2091

    PubMed Central  CAS  PubMed  Google Scholar 

  174. Lee KS, Chung HC, Im SA, Park YH, Kim CS, Kim S-B et al (2008) Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat 108:241–250

    Article  CAS  PubMed  Google Scholar 

  175. Saif MW, Podoltsev NA, Rubin MS, Figueroa JA, Lee MY, Kwon J et al (2010) Phase II clinical trial of paclitaxel loaded polymeric micelle in patients with advanced pancreatic cancer. Cancer Invest 28:186–194

    Article  CAS  PubMed  Google Scholar 

  176. Weiss RB, Donehower RC, Wiernik PH, Ohnuma T, Gralla RJ, Trump DL et al (1990) Hypersensitivity reactions from taxol. J Clin Oncol 8:1263–1268

    CAS  PubMed  Google Scholar 

  177. Sissung TM, Mross K, Steinberg SM, Behringer D, Figg WD, Sparreboom A et al (2006) Association of ABCB1 genotypes with paclitaxel-mediated peripheral neuropathy and neutropenia. Eur J Cancer 42:2893–2896

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  178. Lü J-M, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q et al (2009) Current advances in research and clinical applications of PLGA-based nanotechnology. 2009. Expert Rev Mol Diagn 9(4):325–41

    Article  PubMed Central  PubMed  Google Scholar 

  179. Zambaux MF, Bonneaux F, Gref R, Maincent P, Dellacherie E, Alonso MJ et al (1998) Influence of experimental parameters on the characteristics of poly (lactic acid) nanoparticles prepared by a double emulsion method. J Control Release 50:31–40

    Article  CAS  PubMed  Google Scholar 

  180. Avgoustakis K (2004) Pegylated poly (lactide) and poly (lactide-co-glycolide) nanoparticles: preparation, properties and possible applications in drug delivery. Curr Drug Deliv 1:321–333

    Article  CAS  PubMed  Google Scholar 

  181. Yoo HS, Park TG (2004) Folate receptor targeted biodegradable polymeric doxorubicin micelles. J Control Release 96:273–283

    Article  CAS  PubMed  Google Scholar 

  182. Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55(3):329–347

    Article  CAS  PubMed  Google Scholar 

  183. Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ (2008) Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt (IV) prodrug-PLGA–PEG nanoparticles. Proc Natl Acad Sci 105:17356–17361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  184. Huang H-C, Yang Y, Nanda A, Koria P, Rege K (2011) Synergistic administration of photothermal therapy and chemotherapy to cancer cells using polypeptide-based degradable plasmonic matrices. Nanomedicine 6:459–473

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  185. Park JH, von Maltzahn G, Ong LL, Centrone A, Hatton TA, Ruoslahti E et al (2010) Cooperative nanoparticles for tumor detection and photothermally triggered drug delivery. Adv Mater 22:880–885

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  186. Von Maltzahn G, Park J-H, Lin KY, Singh N, Schwöppe C, Mesters R et al (2011) Nanoparticles that communicate in vivo to amplify tumour targeting. Nat Mater 10:545–552

    Article  CAS  Google Scholar 

  187. Ashley CE, Carnes EC, Phillips GK, Padilla D, Durfee PN, Brown PA et al (2011) The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat Mater 10:389–397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  188. Wong C, Stylianopoulos T, Cui J, Martin J, Chauhan VP, Jiang W et al (2011) Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc Natl Acad Sci 108:2426–2431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  189. Mitragotri S, Barua S (2013) Synergistic targeting of cell membrane, cytoplasm and nucleus of cancer cells using rod-shaped nanoparticles. ACS Nano 7(11):9558–9570

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  190. Kipp JE (2004) The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int J Pharm 284:109–122

    Article  CAS  PubMed  Google Scholar 

  191. Schroeder A, Goldberg MS, Kastrup C, Wang Y, Jiang S, Joseph BJ et al (2012) Remotely activated protein-producing nanoparticles. Nano Lett 12:2685–2689

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Science Foundation (NSF grants CBET-0829128 and CBET-1067840). The authors thank Dr. Bhavani Miryala, Ms. Amrita Mallik, Mr. James Ramos, and Mr. Karthik Pushpavanam in the Molecular and Nanoscale Bioengineering (Rege) laboratory for several useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushal Rege .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Grandhi, T.S.P., Rege, K. (2014). Design, Synthesis, and Functionalization of Nanomaterials for Therapeutic Drug Delivery. In: Capco, D., Chen, Y. (eds) Nanomaterial. Advances in Experimental Medicine and Biology, vol 811. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8739-0_9

Download citation

Publish with us

Policies and ethics