Skip to main content

Nanomaterials: Impact on Cells and Cell Organelles

  • Chapter
  • First Online:
Book cover Nanomaterial

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 811))

Abstract

Colloidal nanoparticles designed for the interactions with cells are very small, nanoscale objects usually consisting of inorganic cores and organic shells that are dispersed in a buffer or biological medium. By tuning the material properties of the nanoparticles a number of different biological applications of nanomaterials are enabled i.e. targeting, labelling, drug delivery, use as diagnostic tools or therapy. For all biological applications of nanoparticles, it is important to understand their interactions with the surrounding biological environment in order to predict their biological impact, in particular when designing the nanoparticles for diagnostic and therapeutic purpose. Due to the high surface-to-volume ratio, the surface of nanomaterials is very reactive. When exposed to biological fluids, the proteins and biomolecules present therein tend to associate with the nanoparticles’ surface. This phenomenon is defined as biomolecular corona formation. The biomolecular corona plays a key role in the interaction between nanoparticles and biological systems, impacting on how these particles interact with biological systems on a cellular and molecular level. This book chapter describes the nature of the interactions at the bio-nano interface, shows the design strategy of nanoparticles for nanomedicine, and defines the concepts of biomolecular corona and biological identity of nanoparticles. Moreover, it describes the interaction of functionalised nanomaterials with cell organelles and intracellular fate of nanoparticles and it shows therapeutic application of gold nanoparticles as dose enhancers in radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Willson R (2008) The use of gold nanoparticles in diagnostics and detection. Chem Soc Rev 37:2028–2045

    Article  Google Scholar 

  2. Vigderman L, Zubarev ER (2013) Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules. Adv Drug Deliv Rev 65:663–676

    Article  CAS  PubMed  Google Scholar 

  3. Sanhai WR, Sakamoto JH, Canady R, Ferrari M (2008) Seven challenges for nanomedicine. Nat Nanotechnol 3:242–244

    Article  CAS  PubMed  Google Scholar 

  4. Valentini P, Pompa PP (2013) Gold nanoparticles for naked-eye DNA detection: smart designs for sensitive assays. RSC Adv 3:19181–19190

    Article  CAS  Google Scholar 

  5. Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60:1307–1315

    Article  CAS  PubMed  Google Scholar 

  6. Butterworth KT, Mcmahon SJ, Currell FJ, Prise KM (2012) Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale 4:4830–4838

    Article  CAS  PubMed  Google Scholar 

  7. Mcmahon SJ, Hyland WB, Brun E, Butterworth KT, Coulter JA, Douki T, Hirst DG, Jain S, Kavanagh AP, Krpetic Z, Mendenhall MH, Muir MF, Prise KM, Requardt H, Sanche L, Schettino G, Currell FJ, Sicard-Roselli C (2011) Energy dependence of gold nanoparticle radiosensitization in plasmid DNA. J Phys Chem C 115:20160–20167

    Article  CAS  Google Scholar 

  8. Laromaine A, Koh L, Murugesan M, Ulijn RV, Stevens MM (2007) Protease-triggered dispersion of nanoparticle assemblies. J Am Chem Soc 129:4156–4157

    Article  CAS  PubMed  Google Scholar 

  9. Lin M, Pei H, Yang F, Fan C, Zuo X (2013) Applications of gold nanoparticles in the detection and identification of infectious diseases and biothreats. Adv Mater 25:3490–3496

    Article  CAS  PubMed  Google Scholar 

  10. Kneipp J, Kneipp H, Mclaughlin M, Brown B, Kneipp K (2006) In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. Nano Lett 6:2225–2231

    Article  CAS  PubMed  Google Scholar 

  11. Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170

    Article  CAS  PubMed  Google Scholar 

  12. Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJ (2004) Nanotoxicology. Occup Environ Med 61:727–728

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Monopoli MP, Aberg C, Salvati A, Dawson KA (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7:779–786

    Article  CAS  PubMed  Google Scholar 

  14. Walczyk D, Bombelli FB, Monopoli MP, Lynch I, Dawson KA (2010) What the cell “sees” in bionanoscience. J Am Chem Soc 132:5761–5768

    Article  CAS  PubMed  Google Scholar 

  15. Gratton SEA, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, Desimone JM (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A 105:11613–11618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Roebben G, Ramirez-Garcia S, Hackley VA, Hackley VA, Roesslein M, Klaessig F, Kestens V, Lynch I, Garner CM, RAWLE A, Elder A, Colvin VL, Kreyling W, Krug HF, Lewicka ZA, Mcneil S, Nel A, Patri A, Wick P, Wiesner M, Xia T, Oberdorster G, Dawson KA (2011) Interlaboratory comparison of size and surface charge measurements on nanoparticles prior to biological impact assessment. J Nanoparticle Res 13:2675–2687

    Article  Google Scholar 

  17. Cedervall T, Lynch I, Lindman S, Berggard T, THULIN E, Nilsson H, Dawson KA, Linse S (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104:2050–2055

    Google Scholar 

  18. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105:14265–14270

    Google Scholar 

  19. Lynch I, Salvati A, Dawson KA (2009) Protein-nanoparticle interactions what does the cell see? Nat Nanotechnol 4:546–547

    Article  CAS  PubMed  Google Scholar 

  20. Dagastine RR, Manica R, Carnie SL, CHAN DYC, Stevens GW, Grieser F (2006) Dynamic forces between two deformable oil droplets in water. Science 313:210–213

    Article  CAS  PubMed  Google Scholar 

  21. Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422:37–44

    Article  CAS  PubMed  Google Scholar 

  22. Van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124

    Article  PubMed Central  PubMed  Google Scholar 

  23. Ikonen E (2008) Cellular cholesterol trafficking and compartmentalization. Nat Rev Mol Cell Biol 9:125–138

    Article  CAS  PubMed  Google Scholar 

  24. Bethani I, Skanland SS, Dikic I, Acker-Palmer A (2010) Spatial organization of transmembrane receptor signalling. EMBO J 29:2677–2688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Mcmahon HT, Boucrot E (2011) Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 12:517–533

    Article  CAS  PubMed  Google Scholar 

  26. Feick JD, Chukwumah N, Noel AE, Velegol D (2004) Altering surface charge nonuniformity on individual colloidal particles. Langmuir 20:3090–3095

    Article  CAS  PubMed  Google Scholar 

  27. Cioran AM, Musteti AD, Teixidor F, Krpetic Z, Prior IA, He Q, Kiely CJ, Brust M, Vinas C (2012) Mercaptocarborane-capped gold nanoparticles: electron pools and ion traps with switchable hydrophilicity. J Am Chem Soc 134:212–221

    Article  CAS  PubMed  Google Scholar 

  28. Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson KA, Aberg C (2013) Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J Am Chem Soc 135:1438–1444

    Article  CAS  PubMed  Google Scholar 

  29. Varela JA, Bexiga MG, ABERG C, Simpson JC, Dawson KA (2012) Quantifying size-dependent interactions between fluorescently labeled polystyrene nanoparticles and mammalian cells. J Nanobiotechnol 10

    Google Scholar 

  30. Hillaireau H, Couvreur P (2009) Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci 66:2873–2896

    Article  CAS  PubMed  Google Scholar 

  31. Sahay G, Alakhova DY, Kabanov AV (2010) Endocytosis of nanomedicines. J Control Release 145:182–195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557

    Article  CAS  PubMed  Google Scholar 

  33. Gao H, Shi W, Freund LB (2005) Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci U S A 102:9469–9474

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Chen HM, Langer R, Edwards DA (1997) A film tension theory of phagocytosis. J Colloid Interface Sci 190:118–133

    Article  CAS  PubMed  Google Scholar 

  35. Rejman J, Oberle V, Zuhorn IS, Hoekstra D (2004) Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J 377:159–169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Salvati A, Pitek AS, Monopoli MP, Prapainop K, Bombelli FB, Hristov DR, Kelly PM, Aberg C, Mahon E, Dawson KA (2013) Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 8:137–143

    Article  CAS  PubMed  Google Scholar 

  37. Yue ZG, Wei W, Lv PP, Yue H, Wang LY, Su ZG, Ma GH (2011) Surface charge affects cellular uptake and intracellular trafficking of chitosan-based nanoparticles. Biomacromolecules 12:2440–2446

    Article  CAS  PubMed  Google Scholar 

  38. Saha K, Kim ST, Yan B, Miranda OR, Alfonso FS, Shlosman D, Rotello VM (2013) Surface functionality of nanoparticles determines cellular uptake mechanisms in mammalian cells. Small 9:300–305

    Article  PubMed Central  PubMed  Google Scholar 

  39. Xia T, Kovochich M, Liong M, Zink JI, Nel AE (2008) Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano 2:85–96

    Article  CAS  PubMed  Google Scholar 

  40. Sperling RA, Parak WJ (2010) Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos Transact A Math Phys Eng Sci 368:1333–1383

    Article  CAS  Google Scholar 

  41. Aaseth J, Haugen M, Forre O (1998) Rheumatoid arthritis and metal compounds–perspectives on the role of oxygen radical detoxification. Analyst 123:3–6

    Article  CAS  PubMed  Google Scholar 

  42. Duchesne L, gentili D, Comes-Franchini M, Fernig DG (2008) Robust ligand shells for biological applications of gold nanoparticles. Langmuir 24:13572–13580

    Article  CAS  PubMed  Google Scholar 

  43. Kanaras A G, Kamounah FS, Schaumburg K, Kiely CJ, Brust M (2002) Thioalkylated tetraethylene glycol: a new ligand for water soluble monolayer protected gold clusters. Chem Commun 2294–2295

    Google Scholar 

  44. Levy R, Thanh NTK, Doty RC, Hussain I, Nichols RJ, Schiffrin DJ, Brust M, Fernig DG (2004) Rational and combinatorial design of peptide capping ligands for gold nanoparticles. J Am Chem Soc 126:10076–10084

    Article  CAS  PubMed  Google Scholar 

  45. Strong L, Whitesides GM (1988) Structures of self-assembled monolayer films of organosulfur compounds adsorbed on gold single crystals: electron diffraction studies. Langmuir 4:546–558

    Article  CAS  Google Scholar 

  46. Templeton AC, Wuelfing WP, Murray RW (2000) Monolayer-protected cluster molecules. Acc Chem Res 33:27–36

    Article  CAS  PubMed  Google Scholar 

  47. Wilson R (2003) Haptenylated mercaptodextran-coated gold nanoparticles for biomolecular assays. Cheml Commun 1:108–109

    Article  Google Scholar 

  48. Krpetic Z, Guerrini L, Larmour IA, Reglinski J, Faulds K, Graham D (2012) Importance of nanoparticle size in colorimetric and SERS-based multimodal trace detection of Ni(II) ions with functional gold nanoparticles. Small 8:707–714

    Article  CAS  PubMed  Google Scholar 

  49. Krpetic Z, Singh I, Su W, Guerrini L, Faulds K, Burley GA, Graham D (2012) Directed assembly of DNA-functionalized gold nanoparticles using pyrrole-imidazole polyamides. J Am Chem Soc 134:8356–8359

    Article  CAS  PubMed  Google Scholar 

  50. Doty RC, Tshikhudo TR, Brust M, Fernig DG (2005) Extremely stable water-soluble Ag nanoparticles. Chem Mater 17:4630–4635

    Article  CAS  Google Scholar 

  51. Krpetic Z, Saleemi S, Prior IA, See V, Qureshi R, Brust M (2011) Negotiation of intracellular membrane barriers by TAT-modified gold nanoparticles. ACS Nano 5:5195–5201

    Article  CAS  PubMed  Google Scholar 

  52. Levy R, Wang ZX, Duchesne L, Doty RC, Cooper AI, Brust M, Fernig DG (2006) A generic approach to monofunctionalized protein-like gold nanoparticles based on immobilized metal ion affinity chromatography. Chembiochem 7:592–594

    Article  CAS  PubMed  Google Scholar 

  53. Levy R (2006) Peptide-capped gold nanoparticles: towards artificial proteins. Chembiochem 7:1141–1145

    Article  CAS  PubMed  Google Scholar 

  54. Bastús NG, Comenge J, Puntes V (2011) Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir 27:11098–11105

    Article  PubMed  Google Scholar 

  55. Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37:1783–1791

    Article  CAS  PubMed  Google Scholar 

  56. Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1:845–867

    Article  CAS  PubMed  Google Scholar 

  57. Tenzer S, Docter D, Rosfa S, Wlodarski A, Kuharev J, Rekik A, Knauer SK, Bantz C, Nawroth T, Bier C, Sirirattanapan J, Mann W, Treuel L, Zellner R, Maskos M, Schild H, Stauber RH (2011) Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano 5:7155–7167

    Article  CAS  PubMed  Google Scholar 

  58. Roach P, Farrar D, Perry CC (2006) Surface tailoring for controlled protein adsorption: effect of topography at the nanometer scale and chemistry. J Am Chem Soc 128:3939–3945

    Article  CAS  PubMed  Google Scholar 

  59. Dobrovolskaia MA, Patri AK, Zheng JW, Clogston JD, Ayub N, Aggarwal P, Neun BW, Hall JB, Mcneil SE (2009) Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomedicine 5:106–117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V (2010) Time evolution of the nanoparticle protein corona. ACS Nano 4:3623–3632

    Article  CAS  PubMed  Google Scholar 

  61. Dell’Orco D, Lundqvist M, Oslakovic C, Cedervall T, Linse S (2010) Modeling the time evolution of the nanoparticle-protein corona in a body fluid. PLoS One 5

    Google Scholar 

  62. Hu WB, Peng C, Lv M, Li XM, Zhang YJ, CHEN N, Fan CH, Huang Q (2011) Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 5:3693–3700

    Article  CAS  PubMed  Google Scholar 

  63. Lesniak A, Fenaroli F, Monopoli MR, Aberg C, Dawson KA, Salvati A (2012) Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 6:5845–5857

    Article  CAS  PubMed  Google Scholar 

  64. Otsuka H, Nagasaki Y, Kataoka K (2003) PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 55:403–419

    Article  CAS  PubMed  Google Scholar 

  65. Tokumitsu S, Liebich A, Herrwerth S, Eck W, Himmelhaus M, Grunze M (2002) Grafting of alkanethiol-terminated poly(ethylene glycol) on gold. Langmuir 18:8862–8870

    Article  CAS  Google Scholar 

  66. Gref R, Luck M, Quellec P, Marchand M, Dellacherie E, Harnisch S, Blunk T, Muller RH (2000) ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces 18:301–313

    Article  CAS  PubMed  Google Scholar 

  67. Knop K, Hoogenboom R, Fischer D, Schubert US (2010) Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed 49:6288–6308

    Article  CAS  Google Scholar 

  68. Maeda H, Wua J, Sawaa T, Matsumurab Y, Horic K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284

    Article  CAS  PubMed  Google Scholar 

  69. Deng ZJ, Liang MT, Monteiro M, Toth I, Minchin RF (2011) Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat Nanotechnol 6:39–44

    Article  CAS  PubMed  Google Scholar 

  70. Kah JCY, Chen J, Zubieta A, Hamad-Schifferli K (2012) Exploiting the protein corona around gold nanorods for loading and triggered release. ACS Nano 6:6730–6740

    Article  CAS  PubMed  Google Scholar 

  71. Iversen TG, Skotland T, Sandvig K (2011) Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today 6:176–185

    Article  CAS  Google Scholar 

  72. Mayor S, Pagano RE (2007) Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 8:603–612

    Article  CAS  PubMed  Google Scholar 

  73. Kim JA, Aberg C, Salvati A, Dawson KA (2012) Role of cell cycle on the cellular uptake and dilution of nanoparticles in a cell population. Nat Nanotechnol 7:62–68

    Article  CAS  Google Scholar 

  74. Sandin P, Fitzpatrick LW, Simpson JC, Dawson KA (2012) High-speed imaging of Rab family small GTPases reveals rare events in nanoparticle trafficking in living cells. ACS Nano 6:1513–1521

    Article  CAS  PubMed  Google Scholar 

  75. Lai SK, Hida K, Man ST, Chen C, Machamer C, Schroer TA, Hanes J (2007) Privileged delivery of polymer nanoparticles to the perinuclear region of live cells via a non-clathrin, non-degradative pathway. Biomaterials 28:2876–2884

    Article  CAS  PubMed  Google Scholar 

  76. Wang F, Yu L, Monopoli MP, Sandin P, Mahon E, Salvati A, Dawson KA (2013) The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes. Nanomedicine 9:1159–1168

    Article  CAS  PubMed  Google Scholar 

  77. Bexiga MG, Varela JA, Wang F, Fenaroli F, Salvati A, Lynch I, Simpson JC, Dawson KA (2011) Cationic nanoparticles induce caspase 3-, 7- and 9-mediated cytotoxicity in a human astrocytoma cell line. Nanotoxicology 5:557–567

    Article  CAS  PubMed  Google Scholar 

  78. Wang F, Bexiga MG, Anguissola S, Boya P, Simpson JC, Salvati A, Dawson KA (2013) Time resolved study of cell death mechanisms induced by amine-modified polystyrene nanoparticles. Nanoscale 5:10868–10876

    Article  CAS  PubMed  Google Scholar 

  79. Torchilin VP (2006) Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu Rev Biomed Eng 8:343–375

    Article  CAS  PubMed  Google Scholar 

  80. Dam DHM, Lee JH, Sisco PN, Co DT, Zhang M, Wasielewski MR, Odom TW (2012) Direct observation of nanoparticle-cancer cell nucleus interactions. ACS Nano 6:3318–3326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Marrache S, Dhar S (2012) Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc Natl Acad Sci USA 109:16288–16293

    Google Scholar 

  82. Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6:513–519

    Article  CAS  PubMed  Google Scholar 

  83. Bartczak D, Nitti S, Millar TM, Kanaras AG (2012) Exocytosis of peptide functionalized gold nanoparticles in endothelial cells. Nanoscale 4:4470–4472

    Article  CAS  PubMed  Google Scholar 

  84. Zhang Y, Yu LC (2008) Single-cell microinjection technology in cell biology. Bioessays 30:606–610

    Article  PubMed  Google Scholar 

  85. Tsong TY (1991) Electroporation of cell-membranes. Biophys J 60:297–306

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Lang KS, Lang PA, Bauer C, Duranton C, Wieder T, Huber SM, Lang F (2005) Mechanisms of suicidal erythrocyte death. Cell Physiol Biochem 15:195–202

    Article  CAS  PubMed  Google Scholar 

  87. Nativo P, Prior IA, Brust M (2008) Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano 2:1639–1644

    Article  CAS  PubMed  Google Scholar 

  88. Jackson AM, Myerson JW, Stellacci F (2004) Spontaneous assembly of subnanometre-ordered domains in the ligand shell of monolayer-protected nanoparticles. Nat Mater 3:330–336

    Article  CAS  PubMed  Google Scholar 

  89. Javier AM, Del Pino P, Bedard MF, Skirtach AG, Sukhorukov GB, Plank C, Parak WJ (2008) Photoactivated release of cargo from the cavity of polyelectrolyte capsules to the cytosol of cells. Langmuir 24:12517–12520

    Article  Google Scholar 

  90. Krpetic Z, Nativo P, See V, Prior IA, Brust M, Volk M (2010) Inflicting controlled nonthermal damage to subcellular structures by laser-activated gold nanoparticles. Nano Lett 10:4549–4554

    Article  CAS  PubMed  Google Scholar 

  91. Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49:N309–N315

    Article  CAS  PubMed  Google Scholar 

  92. Mcmahon SJ, Hyland WB, Muir MF, Coulter JA, Jain S, Butterworth KT, Schettino G, Dickson GR, Hounsell AR, O’sullivan JM, Prise KM, Hirst DG, Currell FJ (2011) Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Sci Rep 1:18

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Funding from Helmholtz Virtual Institute Nano Tracking project supported by the Helmholtz Initiative and Networking fund are gratefully acknowledged. Funding from QualityNano, the European Union Seventh Framework Program (FP7/2007–2013) under grant agreement no 262163 and BisNano, the European Union Seventh Framework Program (FP7/2007–2013) under grant agreement no 263878 is greatly acknowledged. Moreover, we also acknowledge Irish Research Council for Science, Engineering and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth A. Dawson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Krpetić, Ž., Anguissola, S., Garry, D., Kelly, P.M., Dawson, K.A. (2014). Nanomaterials: Impact on Cells and Cell Organelles. In: Capco, D., Chen, Y. (eds) Nanomaterial. Advances in Experimental Medicine and Biology, vol 811. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8739-0_8

Download citation

Publish with us

Policies and ethics