Skip to main content

Influences of Nanomaterials on the Barrier Function of Epithelial Cells

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 811))

Abstract

Recent advances in nanotechnology have led to exciting opportunities in medicine, energy, manufacturing, and other fields. Nevertheless, it is important to adequately assess the potential impacts of nanomaterial exposure. This chapter focuses on the interactions of nanomaterials with epithelial barriers in the lungs, intestine, kidneys, skin, and placenta. Methods for determining transepithelial electrical resistance and paracellular permeability are described. Effects on cell viability and barrier integrity depend on the chemical nature of the nanomaterial, nanoparticle size, surface coatings, and concentration. Disruption of tight junctions can affect permeability and interfere with normal regulatory processes of the epithelial barrier. Future research is needed to better understand the possibilities and the limits of novel approaches in nanotechnology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bangor Daily News (1990) Ambulance damages 3 pickup trucks at Fort Kent on way to emergency call. Bangor Daily News, 24 January, p 6

    Google Scholar 

  2. Bohnsack JP, Assemi S, Miller JD et al (2012) The primacy of physicochemical characterization of nanomaterials for reliable toxicity assessment: a review of the zebrafish nanotoxicology model. Methods Mol Biol 926:261–316. doi:10.1007/978-1-62703-002-1_19.:261-316

    Article  CAS  PubMed  Google Scholar 

  3. Donaldson K, Stone V, Tran CL et al (2004) Nanotoxicology. Occup Environ Med 61:727–728

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Kumar V, Robbins SL (eds) (2007) Robbins basic pathology. Saunders/Elsevier, Philadelphia

    Google Scholar 

  5. Yamada T (ed) (2009) Textbook of gastroenterology. Blackwell Publishing, West Sussex

    Google Scholar 

  6. Félétou M (2011) The endothelium: Part 1: multiple functions of the endothelial cells—focus on endothelium-derived vasoactive mediators. Morgan & Claypool Life Sciences, San Rafael

    Google Scholar 

  7. Marchiando AM, Graham WV, Turner JR (2010) Epithelial barriers in homeostasis and disease. Annu Rev Pathol 5:119–144

    Article  CAS  PubMed  Google Scholar 

  8. Blikslager AT, Moeser AJ, Gookin JL et al (2007) Restoration of barrier function in injured intestinal mucosa. Physiol Rev 87:545–564

    Article  CAS  PubMed  Google Scholar 

  9. Poulsen MS, Rytting E, Mose T et al (2009) Modeling placental transport: correlation of in vitro BeWo cell permeability and ex vivo human placental perfusion. Toxicol In Vitro 23:1380–1386

    Article  CAS  PubMed  Google Scholar 

  10. Rieux A, Fievez V, Garinot M et al (2006) Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release 116:1–27

    Article  PubMed  Google Scholar 

  11. Ensign LM, Cone R, Hanes J (2012) Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev 64:557–570

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Ensign LM, Schneider C, Suk JS et al (2012) Mucus penetrating nanoparticles: biophysical tool and method of drug and gene delivery. Adv Mater 24:3887–3894

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Lai S, Wang YY, Cone R et al (2009) Altering mucus rheology to “solidify” human mucus at the nanoscale. PLoS ONE 4:e4294

    Article  PubMed Central  PubMed  Google Scholar 

  14. Coyuco JC, Liu Y, Tan BJ et al (2011) Functionalized carbon nanomaterials: exploring the interactions with Caco-2 cells for potential oral drug delivery. Int J Nanomedicine 6:2253–2263

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Sadekar S, Ghandehari H (2012) Transepithelial transport and toxicity of PAMAM dendrimers: implications for oral drug delivery. Adv Drug Deliv Rev 64:571–588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Yang Y, Pan D, Luo K et al (2013) Biodegradable and amphiphilic block copolymer-doxorubicin conjugate as polymeric nanoscale drug delivery vehicle for breast cancer therapy. Biomaterials 34:8430–8443

    Article  CAS  PubMed  Google Scholar 

  17. Bakhru SH, Furtado S, Morello AP et al (2013) Oral delivery of proteins by biodegradable nanoparticles. Adv Drug Deliv Rev 65:811–821

    Article  CAS  PubMed  Google Scholar 

  18. Shi L, Wang XL, Zhao F et al (2013) In vitro evaluation of 5-aminolevulinic acid (ALA) loaded PLGA nanoparticles. Int J Nanomedicine 8:2669–2676

    Article  PubMed Central  PubMed  Google Scholar 

  19. Horev-Azaria L, Baldi G, Beno D et al (2013) Predictive toxicology of cobalt ferrite nanoparticles: comparative in-vitro study of different cellular models using methods of knowledge discovery from data. Part Fibre Toxicol 10:32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Bouwmeester H, Poortman J, Peters R et al (2011) Characterization of translocation of silver nanoparticles and effects on whole-genome gene expression using an intestinal epithelium coculture model. ACS Nano 5:4091–4103

    Article  CAS  PubMed  Google Scholar 

  21. Ward HE, Nicholas TE (1984) Alveolar type I and type II cells. Aust N Z J Med 14:731–734

    Article  CAS  PubMed  Google Scholar 

  22. Rytting E, Nguyen J, Wang X et al (2008) Biodegradable polymeric nanocarriers for pulmonary drug delivery. Expert Opin Drug Deliv 5:629–639

    Article  CAS  PubMed  Google Scholar 

  23. Rabanel J, Aoun V, Elkin I et al (2012) Drug-loaded nanocarriers: passive targeting and crossing of biological barriers. Curr Med Chem 19:3070–3102

    Article  CAS  PubMed  Google Scholar 

  24. Kleinstreuer C, Zhang Z, Donohue JF (2008) Targeted drug-aerosol delivery in the human respiratory system. Annu Rev Biomed Eng 10:195–220

    Article  CAS  PubMed  Google Scholar 

  25. Tsapis N, Bennett D, Jackson B et al (2002) Trojan particles: large porous carriers of nanoparticles for drug delivery. Proc Natl Acad Sci U S A 99:12001–12005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Tsapis N, Bennett D, O’Driscoll K et al (2003) Direct lung delivery of para-aminosalicylic acid by aerosol particles. Tuberculosis (Edinb) 83:379–385

    Article  CAS  Google Scholar 

  27. Henning A, Schneider M, Nafee N et al (2010) Influence of particle size and material properties on mucociliary clearance from the airways. J Aerosol Med Pulm Drug Deliv 23:233–241

    Article  CAS  PubMed  Google Scholar 

  28. Schuster BS, Suk JS, Woodworth GF et al (2013) Nanoparticle diffusion in respiratory mucus from humans without lung disease. Biomaterials 34:3439–3446

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Beck-Broichsitter M, Ruppert C, Schmehl T et al (2014) Biophysical inhibition of synthetic vs. naturally-derived pulmonary surfactant preparations by polymeric nanoparticles. Biochim Biophys Acta 1838:474–481

    Google Scholar 

  30. Salvador-Morales C, Townsend P, Flahaut E et al (2007) Binding of pulmonary surfactant proteins to carbon nanotubes; potential for damage to lung immune defense mechanisms. Carbon 45:607–617

    Article  CAS  Google Scholar 

  31. Schleh C, Hohlfeld J (2009) Interaction of nanoparticles with the pulmonary surfactant system. Inhal Toxicol 21(Suppl 1):97–103

    Article  CAS  PubMed  Google Scholar 

  32. Landsiedel R, Fabian E, Ma-Hock L et al (2012) Toxico-/biokinetics of nanomaterials. Arch Toxicol 86:1021–1060

    Article  CAS  PubMed  Google Scholar 

  33. Ruenraroengsak P, Novak P, Berhanu D et al (2012) Respiratory epithelial cytotoxicity and membrane damage (holes) caused by amine-modified nanoparticles. Nanotoxicology 6:94–108

    Article  CAS  PubMed  Google Scholar 

  34. Boczkowski J, Lanone S (2012) Respiratory toxicities of nanomaterials GÇö A focus on carbon nanotubes. Adv Drug Deliv Rev 64:1694–1699

    Article  CAS  PubMed  Google Scholar 

  35. Ramos-Godínez MP, González-Gómez BE, Montiel-Dávalos A et al (2013) TiO2 nanoparticles induce endothelial cell activation in a pneumocyte-endothelial co-culture model. Toxicol In Vitro 27:774–781

    Article  Google Scholar 

  36. Pandit NK (2007) Introduction to the pharmaceutical sciences. Lippincott Williams & Wilkins, Baltimore

    Google Scholar 

  37. Choi H, Liu W, Misra P et al (2007) Renal clearance of quantum dots. Nat Biotechnol 25:1165–1170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Lacerda L, Herrero MA, Venner K et al (2008) Carbon-nanotube shape and individualization critical for renal excretion. Small 4:1130–1132

    Article  CAS  PubMed  Google Scholar 

  39. Blazer-Yost BL, Banga A, Amos A et al (2011) Effect of carbon nanoparticles on renal epithelial cell structure, barrier function, and protein expression. Nanotoxicology 5:354–371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Pujalte I, Passagne I, Brouillaud B et al (2011) Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Part Fibre Toxicol 8:10. doi:10.1186/1743-8977-8-10.:10-18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Ramachandran C, Fleisher D (2000) Transdermal delivery of drugs for the treatment of bone diseases. Adv Drug Deliv Rev 42:197–223

    Article  CAS  PubMed  Google Scholar 

  42. Nohynek G, Dufour E (2012) Nano-sized cosmetic formulations or solid nanoparticles in sunscreens: a risk to human health? Arch Toxicol 86:1063–1075

    Article  CAS  PubMed  Google Scholar 

  43. Schneider M, Stracke F, Hansen S et al (2009) Nanoparticles and their interactions with the dermal barrier. Dermatoendocrinology 1:197–206

    Article  CAS  Google Scholar 

  44. Prow TW, Grice JE, Lin LL et al (2011) Nanoparticles and microparticles for skin drug delivery. Adv Drug Deliv Rev 63:470–491

    Article  CAS  PubMed  Google Scholar 

  45. Labouta HI, Schneider M (2013) Interaction of inorganic nanoparticles with the skin barrier: current status and critical review. Nanomedicine 9:39–54

    Article  CAS  PubMed  Google Scholar 

  46. Scheiblhofer S, Thalhamer J, Weiss R (2013) Laser microporation of the skin: prospects for painless application of protective and therapeutic vaccines. Expert Opin Drug Deliv 10:761–773

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Rigo C, Ferroni L, Tocco I et al (2013) Active silver nanoparticles for wound healing. Int J Mol Sci 14:4817–4840

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Monteiro-Riviere N, Tran C (eds) (2007) Nanotoxicology: characterization, dosing and health effects. Informa Healthcare, New York

    Google Scholar 

  49. Vankoningsloo S, Piret JP, Saout C et al (2010) Cytotoxicity of multi-walled carbon nanotubes in three skin cellular models: effects of sonication, dispersive agents and corneous layer of reconstructed epidermis. Nanotoxicology 4:84–97

    Article  CAS  PubMed  Google Scholar 

  50. Rytting E, Ahmed MS (2013) Fetal drug therapy. In: Mattison DR (ed) Clinical pharmacology during pregnancy. Elsevier, Amsterdam

    Google Scholar 

  51. Saunders M (2009) Transplacental transport of nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:671–684

    Article  CAS  PubMed  Google Scholar 

  52. Ali H, Kalashnikova I, White MA et al (2013) Preparation, characterization, and transport of dexamethasone-loaded polymeric nanoparticles across a human placental in vitro model. Int J Pharm 454:149–157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Cartwright L, Poulsen MS, Nielsen HM et al (2012) In vitro placental model optimization for nanoparticle transport studies. Int J Nanomedicine 7:497–510

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Correia Carreira S, Walker L, Paul K et al (2013) The toxicity, transport and uptake of nanoparticles in the in vitro BeWo b30 placental cell barrier model used within NanoTEST. Nanotoxicology. doi:10.3109/17435390.2013.833317

    PubMed  Google Scholar 

  55. Menjoge AR, Rinderknecht AL, Navath RS et al (2011) Transfer of PAMAM dendrimers across human placenta: prospects of its use as drug carrier during pregnancy. J Control Release 150:326–338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Myllynen PK, Loughran MJ, Howard CV et al (2008) Kinetics of gold nanoparticles in the human placenta. Reprod Toxicol 26:130–137

    Article  CAS  PubMed  Google Scholar 

  57. Poulsen MS, Mose T, Maroun LL et al (2013) Kinetics of silica nanoparticles in the human placenta. Nanotoxicology. doi:10.3109/17435390.2013.812259

    PubMed  Google Scholar 

  58. Refuerzo JS, Godin B, Bishop K et al (2011) Size of the nanovectors determines the transplacental passage in pregnancy: study in rats. Am J Obstet Gynecol 204:546–549

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Wick P, Malek A, Manser P et al (2010) Barrier capacity of human placenta for nanosized materials. Environ Health Perspect 118:432–436

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Yamashita K, Yoshioka Y, Higashisaka K et al (2011) Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat Nanotechnol 6:321–328

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Research support from the John Sealy Memorial Endowment Fund for Biomedical Research is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Rytting .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ali, S., Rytting, E. (2014). Influences of Nanomaterials on the Barrier Function of Epithelial Cells. In: Capco, D., Chen, Y. (eds) Nanomaterial. Advances in Experimental Medicine and Biology, vol 811. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8739-0_3

Download citation

Publish with us

Policies and ethics