Skip to main content

Nanoparticle Aggregation: Principles and Modeling

  • Chapter
  • First Online:
Nanomaterial

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 811))

Abstract

The high surface area to volume ratio of nanoparticles usually results in highly reactive and colloidal instability compared to their bulk counterparts. Aggregation as well as many other transformations (e.g., dissolution) in the environment may alter the physiochemical properties, reactivity, fate, transport, and biological interactions (e.g., bioavailability and uptake) of nanoparticles. The unique properties pertinent to nanoparticles, such as shape, size, surface characteristics, composition, and electronic structures, greatly challenge the ability of colloid science to understand nanoparticle aggregation and its environmental impacts. This review briefly introduces fundamentals about aggregation, fractal dimensions, classic and extended Derjaguin-Landau-Verwey-Overbeak (DLVO) theories, aggregation kinetic modeling, experimental measurements, followed by detailed discussions on the major factors on aggregation and subsequent effects on nanomaterial transport and reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen KL, Mylon SE, Elimelech M (2006) Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes. Environ Sci Tech 40:1516–1523

    Article  CAS  Google Scholar 

  2. Saleh NB, Pfefferle LD, Elimelech M (2008) Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: measurements and environmental implications. Environ Sci Technol 42:7963–7969

    Article  CAS  PubMed  Google Scholar 

  3. Chen KL, Elimelech M (2006) Aggregation and deposition kinetics of fullerene (C-60) nanoparticles. Langmuir 22:10994–11001

    Article  CAS  PubMed  Google Scholar 

  4. Saleh NB, Pfefferle LD, Elimelech M (2010) Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes. Environ Sci Tech 44:2412–2418

    Article  CAS  Google Scholar 

  5. Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ et al (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44:1962–1967

    Article  CAS  PubMed  Google Scholar 

  6. Petosa AR, Jaisi DP, Quevedo IR, Elimelech M, Tufenkji N (2010) Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ Sci Technol 44:6532–6549

    Article  CAS  PubMed  Google Scholar 

  7. Kim AY, Berg JC (1999) Fractal aggregation: scaling of fractal dimension with stability ratio. Langmuir 16:2101–2104

    Article  CAS  Google Scholar 

  8. Barbot E, Dussouillez P, Bottero JY, Moulin P (2010) Coagulation of bentonite suspension by polyelectrolytes or ferric chloride: floc breakage and reformation. Chem Eng J 156:83–91

    Article  CAS  Google Scholar 

  9. Runkana V, Somasundaran P, Kapur PC (2005) Reaction-limited aggregation in presence of short-range structural forces. AICHE J 51:1233–1245

    Article  CAS  Google Scholar 

  10. Hermansson M (1999) The DLVO theory in microbial adhesion. Colloids Surf B Biointerfaces 14:105–119

    Article  CAS  Google Scholar 

  11. Hoek EMV, Agarwal GK (2006) Extended DLVO interactions between spherical particles and rough surfaces. J Colloid Interface Sci 298:50–58

    Article  CAS  PubMed  Google Scholar 

  12. Gregory J (1975) Interaction of unequal double-layers at constant charge. J Colloid Interface Sci 51:44–51

    Article  Google Scholar 

  13. Butt H-J, Kappl M (2010) Surface and interfacial force. Wiley-VCH Verlag GmbH & Co., Weinheim

    Book  Google Scholar 

  14. Stumm W, Morgan JJ (1996) Aquatic chemistry, 3rd edn. Wiley, New York

    Google Scholar 

  15. Israelachvili JN (2011) Intermolecular and surface forces: revised 3rd edn. Academic Press, Elsevier Inc, Waltham, MA, USA

    Google Scholar 

  16. Hoek EMV, Bhattacharjee S, Elimelech M (2003) Effect of membrane surface roughness on colloid membrane DLVO interactions. Langmuir 19:4836–4847

    Article  CAS  Google Scholar 

  17. Richard Bowen W, Doneva TA (2000) Atomic force microscopy studies of nanofiltration membranes: surface morphology, pore size distribution and adhesion. Desalination 129:163–172

    Article  Google Scholar 

  18. Elimelech M, O’Melia CR (2002) Kinetics of deposition of colloidal particles in porous media. Environ Sci Tech 24:1528–1536

    Article  Google Scholar 

  19. Elimelech M, Xiaohua Z, Childress AE, Seungkwan H (1997) Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes. J Membr Sci 127:101–109

    Article  CAS  Google Scholar 

  20. Zita A, Hermansson M (1994) Effects of ionic strength on bacterial adhesion and stability of flocs in a wastewater activated sludge system. Appl Environ Microbiol 60:3041–3048

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Bhattacharjee S, Ko C-H, Elimelech M (1998) DLVO Interaction between rough surfaces. Langmuir 14:3365–3375

    Article  CAS  Google Scholar 

  22. Grasso D, Subramaniam K, Butkus M, Strevett K, Bergendahl J (2002) A review of non-DLVO interactions in environmental colloidal systems. Rev Environ Sci Biotechnol 1:17–38

    Article  CAS  Google Scholar 

  23. Butt H-J, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59:1–152

    Article  CAS  Google Scholar 

  24. Pashley RM, McGuiggan PM, Ninham BW, Brady J, Evans DF (2002) Direct measurements of surface forces between bilayers of double-chained quaternary ammonium acetate and bromide surfactants. J Phys Chem 90:1637–1642

    Article  Google Scholar 

  25. Bostrom M, Williams DRM, Ninham BW (2001) Specific ion effects: why DLVO theory fails for biology and colloid systems. Phys Rev Lett 87:168103

    Google Scholar 

  26. Kim HK, Tuite E, Nordén B, Ninham BW (2001) Co-ion dependence of DNA nuclease activity suggests hydrophobic cavitation as a potential source of activation energy. Eur Phys J E Soft Matter Biol Phys 4:411–417

    Article  CAS  Google Scholar 

  27. von Oss CJ (2006) Interfacial forces in aqueous media, 2nd edn. Taylor & Francis Group, Boca Raton

    Google Scholar 

  28. Hirose M, Ito H, Kamiyama Y (1996) Effect of skin layer surface structures on the flux behaviour of RO membranes. J Membr Sci 121:209–215

    Article  CAS  Google Scholar 

  29. Bhattacharjee S, Kim AS, Elimelech M (1999) Concentration polarization of interacting solute particles in cross-flow membrane filtration. J Colloid Interface Sci 212:81–99

    Article  CAS  PubMed  Google Scholar 

  30. Sun N, Walz JY (2001) A model for calculating electrostatic interactions between colloidal particles of arbitrary surface topology. J Colloid Interface Sci 234:90–105

    Article  CAS  PubMed  Google Scholar 

  31. Ninham BW (1999) On progress in forces since the DLVO theory. Adv Colloid Interface Sci 83:1–17

    Article  CAS  Google Scholar 

  32. Elimelech M, O'Melia CR (1990) Effect of particle size on collision efficiency in the deposition of Brownian particles with electrostatic energy barriers. Langmuir 6:1153–1163

    Article  CAS  Google Scholar 

  33. Walz JY (1998) The effect of surface heterogeneities on colloidal forces. Adv Colloid Interface Sci 74:119–168

    Article  CAS  Google Scholar 

  34. Butt H-J (1991) Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope. Biophys J 60:1438–1444

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Chang Y-I, Chang P-K (2002) The role of hydration force on the stability of the suspension of Saccharomyces cerevisiae-application of the extended DLVO theory. Colloids Surf A Physicochem Eng Asp 211:67–77

    Article  CAS  Google Scholar 

  36. Ong YL, Razatos A, Georgiou G, Sharma MM (1999) Adhesion forces between E. coli bacteria and biomaterial surfaces. Langmuir 15:2719–2725

    Article  CAS  Google Scholar 

  37. Marenduzzo D, Finan K, Cook PR (2006) The depletion attraction: an underappreciated force driving cellular organization. J Cell Biol 175:681–686

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Yodh AG, Lin K, Crocker JC, Dinsmore AD, Verma R, Kaplan PD (2001) Entropically driven self-assembly and interaction in suspension. Philos Trans R Soc Lond A Math Phys Eng Sci 359:921–937

    Article  CAS  Google Scholar 

  39. Rijnaarts HHM, Norde W, Lyklema J, Zehnder AJB (1999) DLVO and steric contributions to bacterial deposition in media of different ionic strengths. Colloids Surf B Biointerfaces 14:179–195

    Article  CAS  Google Scholar 

  40. Butt H-J, Jaschke M, Ducker W (1995) Measuring surface forces in aqueous electrolyte solution with the atomic force microscope. Bioelectrochem Bioenerg 38:191–201

    Article  CAS  Google Scholar 

  41. Rijnaarts HHM, Norde W, Bouwer EJ, Lyklema J, Zehnder AJB (1995) Reversibility and mechanism of bacterial adhesion. Colloids Surf B Biointerfaces 4:5–22

    Article  CAS  Google Scholar 

  42. Petsev DN, Vekilov PG (2000) Evidence for non-DLVO hydration interactions in solutions of the protein apoferritin. Phys Rev Lett 84:1339

    Article  CAS  PubMed  Google Scholar 

  43. Boström M, Deniz V, Franks GV, Ninham BW (2006) Extended DLVO theory: electrostatic and non-electrostatic forces in oxide suspensions. Adv Colloid Interface Sci 123–126:5–15

    Article  PubMed  CAS  Google Scholar 

  44. Bowen WR, Williams PM (1996) The osmotic pressure of electrostatically stabilized colloidal dispersions. J Colloid Interface Sci 184:241–250

    Article  CAS  PubMed  Google Scholar 

  45. Bowen WR, Williams PM (2001) Obtaining the osmotic pressure of electrostatically stabilized colloidal dispersions from frontal ultrafiltration experiments. J Colloid Interface Sci 233:159–163

    Article  CAS  Google Scholar 

  46. Sposito G, Grasso D (1998) Electrical double layer structure, forces, and fields at the clay-water interface. In: Hsu JP (ed) Interfacial forces and fields: theory and applications. Marcel Dekker, New York

    Google Scholar 

  47. Verwey EJW (1947) Theory of the stability of lyophobic colloids. J Phys Colloid Chem 51:631–636

    Article  CAS  PubMed  Google Scholar 

  48. von Smoluchowski M (1916) Three lectures on diffusion, Brown’s molecular movements and the coagulation of colloid parts. Physik Z 17:585–599

    Google Scholar 

  49. von Smoluchowski M (1916) Three presentations on diffusion, molecular movement according to Brown and coagulation of colloid particles. Physik Z 17:557–571

    Google Scholar 

  50. Fuchs N (1934) Theory of coagulation. Z Phys Chem Abt A Thermodynamik Kinetik Elektrochemie Eigenschaftslehre 171:199–208

    Google Scholar 

  51. von Smoluchowski M (1917) Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Z Phys Chem 92:40

    Google Scholar 

  52. Elimelech M (1995) Particle deposition and aggregation: measurement, modelling, and simulation. Butterworth-Heinemann, Oxford/Boston

    Google Scholar 

  53. Holthoff H, Egelhaaf SU, Borkovec M, Schurtenberger P, Sticher H (1996) Coagulation rate measurements of colloidal particles by simultaneous static and dynamic light scattering. Langmuir 12:5541–5549

    Article  CAS  Google Scholar 

  54. Honig EP, Roeberse G, Wiersema PH (1971) Effect of hydrodynamic interaction on coagulation rate of hydrophobic colloids. J Colloid Interface Sci 36:97

    Article  CAS  Google Scholar 

  55. Crittenden J (2005) Water treatment: principles and design, 2nd edn. Wiley, Hoboken, NJ, USA

    Google Scholar 

  56. Elimelech M, Jia X, Gregory J, Williams R (1998) Particle deposition & aggregation: measurement, modelling and simulation. Butterworth-Heinemann, Woburn, MA, USA

    Google Scholar 

  57. Mylon SE, Chen KL, Elimelech M (2004) Influence of natural organic matter and ionic composition on the kinetics and structure of hematite colloid aggregation: implications to iron depletion in estuaries. Langmuir 20:9000–9006

    Article  CAS  PubMed  Google Scholar 

  58. Mcgown DNL, Parfitt GD (1967) Improved theoretical calculation of stability ratio for colloidal systems. J Phys Chem 71:449

    Article  CAS  Google Scholar 

  59. Chen KL, Elimelech M (2009) Relating colloidal stability of fullerene (C-60) nanoparticles to nanoparticle charge and electrokinetic properties. Environ Sci Technol 43:7270–7276

    Article  CAS  PubMed  Google Scholar 

  60. French RA, Jacobson AR, Kim B, Isley SL, Penn RL, Baveye PC (2009) Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environ Sci Technol 43:1354–1359

    Article  CAS  PubMed  Google Scholar 

  61. Gao J, Youn S, Hovsepyan A, Llaneza VL, Wang Y, Bitton G et al (2009) Dispersion and toxicity of selected manufactured nanomaterials in natural river water samples: effects of water chemical composition. Environ Sci Technol 43:3322–3328

    Article  CAS  PubMed  Google Scholar 

  62. Sharma VK (2009) Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment – a review. J Environ Sci Health A Tox Hazard Subst Environ Eng 44:1485–1495

    Article  CAS  PubMed  Google Scholar 

  63. El Badawy AM, Luxton TP, Silva RG, Scheckel KG, Suidan MT, Tolaymat TM (2010) Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol 44:1260–1266

    Article  PubMed  CAS  Google Scholar 

  64. Li K, Zhang W, Huang Y, Chen Y (2011) Aggregation kinetics of CeO2 nanoparticles in KCl and CaCl2 solutions: measurements and modeling. J Nanopart Res 13:6483–6491

    Article  CAS  Google Scholar 

  65. Yi P, Chen KL (2011) Influence of surface oxidation on the aggregation and deposition kinetics of multiwalled carbon nanotubes in monovalent and divalent electrolytes. Langmuir 27:3588–3599

    Article  CAS  PubMed  Google Scholar 

  66. Behrens SH, Christl DI, Emmerzael R, Schurtenberger P, Borkovec M (2000) Charging and aggregation properties of carboxyl latex particles: experiments versus DLVO theory. Langmuir 16:2566–2575

    Article  CAS  Google Scholar 

  67. Zhang W, Rittmann B, Chen Y (2011) Size effects on adsorption of hematite nanoparticles on E. coli cells. Environ Sci Technol 45:2172–2178

    Article  CAS  PubMed  Google Scholar 

  68. Buettner KM, Rinciog CI, Mylon SE (2010) Aggregation kinetics of cerium oxide nanoparticles in monovalent and divalent electrolytes. Colloids Surf A Physicochem Eng Asp 366:74–79

    Article  CAS  Google Scholar 

  69. Huynh KA, Chen KL (2011) Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions. Environ Sci Tech 45:5564–5571

    Article  CAS  Google Scholar 

  70. Hunter RJ (2001) Foundations of colloid science, 2nd edn. Clarendon, Oxford

    Google Scholar 

  71. Elimelech M, Gregory J, Jia G, Williams R (1995) Surface interaction potentials. Butterworth-Heinemann, Woburn

    Google Scholar 

  72. Berka M, Rice JA (2005) Relation between aggregation kinetics and the structure of kaolinite aggregates. Langmuir 21:1223–1229

    Article  CAS  PubMed  Google Scholar 

  73. Zhang W, Yao Y, Li K, Huang Y, Chen Y (2011) Influence of dissolved oxygen on aggregation kinetics of citrate-coated silver nanoparticles. Environ Pollut 159:3757–3762

    Article  CAS  PubMed  Google Scholar 

  74. Kallay N, Zalac S (2002) Stability of nanodispersions: a model for kinetics of aggregation of nanoparticles. J Colloid Interface Sci 253:70–76

    Article  CAS  PubMed  Google Scholar 

  75. Penn RL (2004) Kinetics of oriented aggregation. J Phys Chem B 108:12707–12712

    Article  CAS  Google Scholar 

  76. Ribeiro C, Lee EJH, Longo E, Leite ER (2005) A kinetic model to describe nanocrystal growth by the oriented attachment mechanism. Chemphyschem 6:690–696

    Article  CAS  PubMed  Google Scholar 

  77. Zhang W, Crittenden JC, Li K, Chen Y (2012) Attachment efficiency of nanoparticle aggregation in aqueous dispersions: modeling and experimental validation. Environ Sci Technol. doi:10.1021/es203623z

    Google Scholar 

  78. Trussell RR, Tate CH (1979) Measurement of particle size distribution in water treatment. In: Advances in laboratory techniques for water quality control. American Water Works Association, Philadelphia

    Google Scholar 

  79. Delhommelle J, Petravic J (2005) Shear thickening in a model colloidal suspension. J Chem Phys 123:074707

    Article  PubMed  CAS  Google Scholar 

  80. Charbonneau P, Reichman DR (2007) Systematic characterization of thermodynamic and dynamical phase behavior in systems with short-ranged attraction. Phys Rev E Stat Phys Plasmas Fluids 75:011507

    Article  CAS  Google Scholar 

  81. Nikolakis V, Kokkoli E, Tirrell M, Tsapatsis M, Vlachos DG (2000) Zeolite growth by addition of subcolloidal particles: modeling and experimental validation. Chem Mater 12:845–853

    Article  CAS  Google Scholar 

  82. He YT, Wan JM, Tokunaga T (2008) Kinetic stability of hematite nanoparticles: the effect of particle sizes. J Nanopart Res 10:321–332

    Article  CAS  Google Scholar 

  83. Shen C, Li B, Huang Y, Jin Y (2007) Kinetics of coupled primary- and secondary-minimum deposition of colloids under unfavorable chemical conditions. Environ Sci Tech 41:6976–6982

    Article  CAS  Google Scholar 

  84. Hahn MW, Abadzic D, O’Melia CR (2004) Aquasols: on the role of secondary minima. Environ Sci Tech 38:5915–5924

    Article  CAS  Google Scholar 

  85. Tufenkji N, Elimelech M (2005) Breakdown of colloid filtration theory: role of the secondary energy minimum and surface charge heterogeneities. Langmuir 21:841–852

    Article  CAS  PubMed  Google Scholar 

  86. Rudyak VY, Krasnolutskii SL, Ivanov DA (2011) Molecular dynamics simulation of nanoparticle diffusion in dense fluids. Microfluid Nanofluidics 11:501–506

    Article  CAS  Google Scholar 

  87. Laidler KJ (1997) Chemical kinetics. Chemical kinetics. McGraw-Hill, New Delhi

    Google Scholar 

  88. Houston PL (2006) Chemical kinetics and reaction dynamics, 2nd edn. Dover Publications, WCB/McGraw-Hill, New York, USA

    Google Scholar 

  89. Pierres A, Benoliel A-M, Zhu C, Bongrand P (2001) Diffusion of microspheres in shear flow near a wall: use to measure binding rates between attached molecules. Biophys J 81:25–42

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Kendall K, Dhir A, Du SF (2009) A new measure of molecular attractions between nanoparticles near kT adhesion energy. Nanotechnology 20:275701–275704

    Article  PubMed  CAS  Google Scholar 

  91. Li K, Zhang W, Huang Y, Chen Y (2011) Aggregation kinetics of CeO2 nanoparticles in KCl and CaCl2 solutions: measurements and modeling. J Nanopart Res. doi:10.1007/s11051-011-0548-z

    Google Scholar 

  92. Ball RC, Weitz DA, Witten TA, Leyvraz F (1987) Universal kinetics in reaction-limited aggregation. Phys Rev Lett 58:274–277

    Article  PubMed  Google Scholar 

  93. Chen KL, Elimelech M (2007) Influence of humic acid on the aggregation kinetics of fullerene (C-60) nanoparticles in monovalent and divalent electrolyte solutions. J Colloid Interface Sci 309:126–134

    Article  CAS  PubMed  Google Scholar 

  94. Heidmann I, Christl I, Kretzschmar R (2005) Aggregation kinetics of kaolinite-fulvic acid colloids as affected by the sorption of Cu and Pb. Environ Sci Tech 39:807–813

    Article  CAS  Google Scholar 

  95. Waychunas G, Kim C, Banfield J (2005) Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms. J Nanopart Res 7:409–433

    Article  CAS  Google Scholar 

  96. Bacchin P, Aimar P, Sanchez V (1996) Influence of surface interaction on transfer during colloid ultrafiltration. J Membr Sci 115:49–63

    Article  CAS  Google Scholar 

  97. Pujar NS, Zydney AL (1998) Electrostatic effects on protein partitioning in size-exclusion chromatography and membrane ultrafiltration. J Chromatogr A 796:229–238

    Article  CAS  PubMed  Google Scholar 

  98. Vold MJ (1954) Van der Waals’ attraction between anisometric particles. J Colloid Sci 9:451–459

    Article  CAS  Google Scholar 

  99. Bhattacharjee S, Elimelech M (1997) Surface element integration: a novel technique for evaluation of DLVO interaction between a particle and a flat plate. J Colloid Interface Sci 193:273–285

    Article  CAS  PubMed  Google Scholar 

  100. Huynh KA, Chen KL (2011) Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions. Environ Sci Technol 45:5564–5571

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Allen HJ, Impellitteri CA, Macke DA, Heckman JL, Poynton HC, Lazorchak JM et al (2010) Effects from filtration, capping agents, and presence/absence of food on the toxicity of silver nanoparticles to daphnia magna. Environ Toxicol Chem 29:2742–2750

    Article  PubMed  CAS  Google Scholar 

  102. Kittler S, Greulich C, Koeller M, Epple M (2009) Synthesis of PVP-coated silver nanoparticles and their biological activity towards human mesenchymal stem cells. Materialwiss Werkst 40:258–264

    Article  CAS  Google Scholar 

  103. Levard C, Reinsch BC, Michel FM, Oumahi C, Lowry GV, Brown GE Jr (2011) Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate. Environ Sci Technol 45:5260–5266

    Article  CAS  PubMed  Google Scholar 

  104. Li X, Lenhart JJ (2012) Aggregation and dissolution of silver nanoparticles in natural surface water. Environ Sci Technol 46:5378–5386

    Article  CAS  PubMed  Google Scholar 

  105. Ma R, Levard C, Marinakos SM, Cheng Y, Liu J, Michel FM et al (2012) Size-controlled dissolution of organic-coated silver nanoparticles. Environ Sci Technol 46:752–759

    Article  CAS  PubMed  Google Scholar 

  106. Hezinger AFE, Teßmar J, Göpferich A (2008) Polymer coating of quantum dots – a powerful tool toward diagnostics and sensorics. Eur J Pharm Biopharm 68:138–152

    Article  CAS  PubMed  Google Scholar 

  107. Hydutsky BW, Mack EJ, Beckerman BB, Skluzacek JM, Mallouk TE (2007) Optimization of nano- and microiron transport through sand columns using polyelectrolyte mixtures. Environ Sci Technol 41:6418–6424

    Article  CAS  PubMed  Google Scholar 

  108. Mayya KS, Schoeler B, Caruso F (2003) Preparation and organization of nanoscale polyelectrolyte-coated gold nanoparticles. Adv Funct Mater 13:183–188

    Article  CAS  Google Scholar 

  109. Phenrat T, Saleh N, Sirk K, Kim H-J, Tilton R, Lowry G (2008) Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J Nanopart Res 10:795–814

    Article  CAS  Google Scholar 

  110. Rosen MJ, Kunjappu JT (2012) Surfactants and interfacial phenomena. Wiley, Hoboken, NJ, USA

    Google Scholar 

  111. Vaisman L, Wagner HD, Marom G (2006) The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci 128:37–46

    Article  PubMed  CAS  Google Scholar 

  112. Li X, Lenhart JJ, Walker HW (2011) Aggregation kinetics and dissolution of coated silver nanoparticles. Langmuir 28:1095–1104

    Article  CAS  PubMed  Google Scholar 

  113. Dederichs T, Möller M, Weichold O (2009) Colloidal stability of hydrophobic nanoparticles in ionic surfactant solutions: definition of the critical dispersion concentration. Langmuir 25:2007–2012

    Article  CAS  PubMed  Google Scholar 

  114. Moore VC, Strano MS, Haroz EH, Hauge RH, Smalley RE, Schmidt J et al (2003) Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett 3:1379–1382

    Article  CAS  Google Scholar 

  115. Brewer SH, Glomm WR, Johnson MC, Knag MK, Franzen S (2005) Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir 21:9303–9307

    Article  CAS  PubMed  Google Scholar 

  116. Yang D, Rochette J, Sacher E (2005) Spectroscopic evidence for π-π interaction between poly (diallyl dimethylammonium) chloride and multiwalled carbon nanotubes. J Phys Chem B 109:4481–4484

    Article  CAS  PubMed  Google Scholar 

  117. Chen H, Wang Y, Dong S, Wang E (2006) One-step preparation and characterization of PDDA-protected gold nanoparticles. Polymer 47:763–766

    Article  CAS  Google Scholar 

  118. Hiemenz PC, Rajagopalan R (1997) Principles of colloid and surface chemistry, revised and expanded. CRC Press, New York, USA

    Google Scholar 

  119. Li K, Chen Y (2012) Effect of natural organic matter on the aggregation kinetics of CeO2 nanoparticles in KCl and CaCl2 solutions: measurements and modeling. J Hazard Mater 209–210:264–270

    Article  PubMed  CAS  Google Scholar 

  120. Lin S, Cheng Y, Liu J, Wiesner MR (2012) Polymeric coatings on silver nanoparticles hinder autoaggregation but enhance attachment to uncoated surfaces. Langmuir 28:4178–4186

    Article  CAS  PubMed  Google Scholar 

  121. Hyung H, Fortner JD, Hughes JB, Kim J-H (2007) Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ Sci Technol 41:179–184

    Article  CAS  PubMed  Google Scholar 

  122. Plaza RC, Zurita L, Duran JDG, Gonzalez-Caballero F, Delgado AV (1998) Surface thermodynamics of hematite yttrium oxide core-shell colloidal particles. Langmuir 14:6850–6854

    Article  CAS  Google Scholar 

  123. Liu Y, Zhao Q (2005) Influence of surface energy of modified surfaces on bacterial adhesion. Biophys Chem 117:39–45

    Article  CAS  PubMed  Google Scholar 

  124. Shaw DJ, Costello B (1991) Introduction to colloid and surface chemistry. Butterworth-Heinemann, Oxford, 306 pp. ISBN 0 7506 1182 0, £ 14.95. Elsevier 1993

    Google Scholar 

  125. Lee R, Stack K, Richardson D, Lewis T, Garnier G (2012) Multi-salt coagulation of soft pitch colloids. Colloids Surf A Physicochem Eng Asp 409:74–80

    Article  CAS  Google Scholar 

  126. García-García S, Wold S, Jonsson M (2009) Effects of temperature on the stability of colloidal montmorillonite particles at different pH and ionic strength. Appl Clay Sci 43:21–26

    Article  CAS  Google Scholar 

  127. Garcia-Garcia S, Jonsson M, Wold S (2006) Temperature effect on the stability of bentonite colloids in water. J Colloid Interface Sci 298:694–705

    Article  CAS  PubMed  Google Scholar 

  128. Nel AE, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557

    Article  CAS  PubMed  Google Scholar 

  129. Ryan JN, Elimelech M (1996) Colloid mobilization and transport in groundwater. Colloids Surf A Physicochem Eng Asp 107:1–56

    Article  CAS  Google Scholar 

  130. Yongsheng C, Huang Y, Li K (2012) Temperature effect on the aggregation kinetics of CeO2 nanoparticles in monovalent and divalent electrolytes. J Environ Anal Toxicol 2:1–5

    Google Scholar 

  131. Datsko TY, Zelentsov VI (2009) Dependence of the surface charge and the fluorine adsorption by γ-aluminum oxide on the solution temperature. Surf Eng Appl Electrochem 45:404–410

    Article  Google Scholar 

  132. Rodríguez K, Araujo M (2006) Temperature and pressure effects on zeta potential values of reservoir minerals. J Colloid Interface Sci 300:788–794

    Article  PubMed  CAS  Google Scholar 

  133. Kovalchuk NM, Starov VM (2011) Aggregation in colloidal suspensions: effect of colloidal forces and hydrodynamic interactions. Adv Colloid Interface Sci. doi:10.1016/j.cis.2011.05.009

    Google Scholar 

  134. Limbach LK, Li Y, Grass RN, Brunner TJ, Hintermann MA, Muller M et al (2005) Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ Sci Technol 39:9370–9376

    Article  CAS  PubMed  Google Scholar 

  135. Prasher R, Bhattacharya P, Phelan PE (2006) Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids. J Heat Transfer 128:588–595

    Article  CAS  Google Scholar 

  136. Ding G, Peng H, Jiang W, Gao Y (2009) The migration characteristics of nanoparticles in the pool boiling process of nanorefrigerant and nanorefrigerant-oil mixture. Int J Refrig 32:114–123

    Article  CAS  Google Scholar 

  137. Rudyak VY, Kharlamov GV, Belkin AA (2000) Molecular dynamics simulation of nanoparticles diffusion in dense gases and liquids. J Aerosol Sci 31:432–433

    Article  Google Scholar 

  138. Rudyak VY, Kharlamov GV, Belkin AA (2001) Diffusion of nanoparticles and macromolecules in dense gases and liquids. High Temp 39:264–271

    Article  CAS  Google Scholar 

  139. Mädler L, Friedlander SK (2007) Transport of nanoparticles in gases: overview and recent advances. Aerosol Air Qual Res 7:304–342

    Google Scholar 

  140. Li Y, Zhang W, Li KG, Yao Y, Niu JF, Chen YS (2012) Oxidative dissolution of polymer-coated CdSe/ZnS quantum dots under UV irradiation: mechanisms and kinetics. Environ Pollut 164:259–266

    Article  CAS  PubMed  Google Scholar 

  141. Cheng Y, Yin L, Lin S, Wiesner M, Bernhardt E, Liu J (2011) Toxicity reduction of polymer-stabilized silver nanoparticles by sunlight. J Phys Chem C 115:4425–4432

    Article  CAS  Google Scholar 

  142. Shi J-P, Ma C-Y, Xu B, Zhang H-W, Yu C-P (2012) Effect of light on toxicity of nanosilver to Tetrahymena pyriformis. Environ Toxicol Chem 31:1630–1638

    Article  CAS  PubMed  Google Scholar 

  143. Gorham JM, MacCuspie RI, Klein KL, Fairbrother DH, Holbrook RD (2012) UV-induced photochemical transformations of citrate-capped silver nanoparticle suspensions. J Nanopart Res 14:1–16

    Google Scholar 

  144. Li Y, Zhang W, Niu J, Chen Y (2013) Surface coating–dependent dissolution, aggregation, and ROS generation of silver nanoparticles under different irradiation conditions. Environ Sci Technol 47:10293–10301

    Google Scholar 

  145. Zarchi AAK, Mokhtari N, Arfan M, Rehman T, Ali M, Amini M et al (2011) A sunlight-induced method for rapid biosynthesis of silver nanoparticles using an Andrachnea chordifolia ethanol extract. Appl Phys A Mater Sci Process 103:349–353

    Article  CAS  Google Scholar 

  146. Llansola Portoles MJ, David Gara PM, Kotler ML, Bertolotti S, San Roman E, Rodriguez HB et al (2010) Silicon nanoparticle photophysics and singlet oxygen generation. Langmuir 26:10953–10960

    Article  CAS  PubMed  Google Scholar 

  147. Misawa M, Takahashi J (2011) Generation of reactive oxygen species induced by gold nanoparticles under X-ray and UV irradiations. Nanomed Nanotechnol Biol Med 7:604–614

    Article  CAS  Google Scholar 

  148. Ahamed M (2011) Toxic response of nickel nanoparticles in human lung epithelial A549 cells. Toxicol In Vitro 25:930–936

    Article  CAS  PubMed  Google Scholar 

  149. Lu W, Senapati D, Wang S, Tovmachenko O, Singh AK, Yu H et al (2010) Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes. Chem Phys Lett 487:92–96

    Article  CAS  Google Scholar 

  150. Zhang W, Yao Y, Sullivan N, Chen Y (2011) Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics. Environ Sci Technol 45:4422–4428

    Article  CAS  PubMed  Google Scholar 

  151. Liu JY, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44:2169–2175

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Zhang PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zhang, W. (2014). Nanoparticle Aggregation: Principles and Modeling. In: Capco, D., Chen, Y. (eds) Nanomaterial. Advances in Experimental Medicine and Biology, vol 811. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8739-0_2

Download citation

Publish with us

Policies and ethics