Skip to main content

Stem Cells and Nanomaterials

  • Chapter
  • First Online:
Nanomaterial

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 811))

Abstract

Because of their ability to self-renew and differentiate into many cell types, stem cells offer the potential to be used for tissue regeneration and engineering. Much progress has recently been made in our understanding of the biology of stem cells and our ability to manipulate their proliferation and differentiation to obtain functional tissues. Similarly, nanomaterials have been recently developed that will accelerate discovery of mechanisms driving stem cell fate and their utilization in medicine. Nanoparticles have been developed that allow the labeling and tracking of stem cells and their differentiated phenotype within an organism. Nanosurfaces are engineered that mimic the extracellular matrix to which stem cells adhere and migrate. Scaffolds made of functionalized nanofibers can now be used to grow stem cells and regenerate damaged tissues and organs. However, the small scale of nanomaterials induces changes in their chemical and physical properties that might modify their interactions with cells and tissues, and render them toxic to stem cells. Therefore a thorough understanding of stem cell-nanomaterial interactions is still necessary not only to accelerate the success of medical treatments but also to ensure the safety of the tools provided by these novel technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cui D, Gao H (2003) Advance and prospect of bionanomaterials. Biotechnol Prog 19(3):683–692

    Article  CAS  PubMed  Google Scholar 

  2. Rajangam T, An SS (2013) Fibrinogen and fibrin based micro and nano scaffolds incorporated with drugs, proteins, cells and genes for therapeutic biomedical applications. Int J Nanomedicine 8:3641–3662

    PubMed Central  PubMed  Google Scholar 

  3. Liu W, Thomopoulos S, Xia Y (2012) Electrospun nanofibers for regenerative medicine. Adv Healthc Mater 1(1):10–25

    Article  CAS  PubMed  Google Scholar 

  4. Ozpolat B, Sood AK, Lopez-Berestein G (2010) Nanomedicine based approaches for the delivery of siRNA in cancer. J Intern Med 267(1):44–53

    Article  CAS  PubMed  Google Scholar 

  5. Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6(9):688–701

    Article  CAS  PubMed  Google Scholar 

  6. Uskokovic V (2013) Entering the era of nanoscience: time to be so small. J Biomed Nanotechnol 9(9):1441–1470

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Pandey PC, Chauhan DS, Singh V (2013) Role of nanostructured networks as analytical tools for biological systems. Front Biosci (Elite Ed) 5:622–642

    Article  Google Scholar 

  8. Vilela D, Garoz J, Colina A, Gonzalez MC, Escarpa A (2012) Carbon nanotubes press-transferred on PMMA substrates as exclusive transducers for electrochemical microfluidic sensing. Anal Chem 84(24):10838–10844

    Article  CAS  PubMed  Google Scholar 

  9. Ramulu TS, Venu R, Sinha B, Lim B, Jeon SJ, Yoon SS, Kim CG (2013) Nanowires array modified electrode for enhanced electrochemical detection of nucleic acid. Biosens Bioelectron 40(1):258–264

    Article  CAS  PubMed  Google Scholar 

  10. Kruss S, Hilmer AJ, Zhang J, Reuel NF, Mu B, Strano MS (2013) Carbon nanotubes as optical biomedical sensors. Adv Drug Deliv Rev 65(15):1933–1950

    Article  CAS  PubMed  Google Scholar 

  11. Riegler J, Nann T (2004) Application of luminescent nanocrystals as labels for biological molecules. Anal Bioanal Chem 379(7–8):913–919

    CAS  PubMed  Google Scholar 

  12. Lisdat F, Schafer D, Kapp A (2013) Quantum dots on electrodes – new tools for bioelectroanalysis. Anal Bioanal Chem 405(11):3739–3752

    Article  CAS  PubMed  Google Scholar 

  13. Premnath P, Tan B, Venkatakrishnan K (2013) Direct patterning of free standing three dimensional silicon nanofibrous network to facilitate multi-dimensional growth of fibroblasts and osteoblasts. J Biomed Nanotechnol 9(11):1875–1881

    Article  CAS  PubMed  Google Scholar 

  14. Martinelli V, Cellot G, Toma FM, Long CS, Caldwell JH, Zentilin L, Giacca M, Turco A, Prato M, Ballerini L, Mestroni L (2012) Carbon nanotubes promote growth and spontaneous electrical activity in cultured cardiac myocytes. Nano Lett 12(4):1831–1838

    Article  CAS  PubMed  Google Scholar 

  15. Solanki A, Chueng ST, Yin PT, Kappera R, Chhowalla M, Lee KB (2013) Axonal alignment and enhanced neuronal differentiation of neural stem cells on graphene-nanoparticle hybrid structures. Adv Mater 25(38):5477–5482

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Sheets K, Wunsch S, Ng C, Nain AS (2013) Shape-dependent cell migration and focal adhesion organization on suspended and aligned nanofiber scaffolds. Acta Biomater 9(7):7169–7177

    Article  CAS  PubMed  Google Scholar 

  17. Pelton TA, Bettess MD, Lake J, Rathjen J, Rathjen PD (1998) Developmental complexity of early mammalian pluripotent cell populations in vivo and in vitro. Reprod Fertil Dev 10(7–8):535–549

    Article  CAS  PubMed  Google Scholar 

  18. Meregalli M, Farini A, Torrente Y (2011) Mesenchymal stem cells as muscle reservoir. J Stem Cell Res Ther 1:105

    Google Scholar 

  19. Bobis S, Jarocha D, Majka M (2006) Mesenchymal stem cells: characteristics and clinical applications. Folia Histochem Cytobiol 44(4):215–230

    CAS  PubMed  Google Scholar 

  20. Konno M, Hamabe A, Hasegawa S, Ogawa H, Fukusumi T, Nishikawa S, Ohta K, Kano Y, Ozaki M, Noguchi Y, Sakai D, Kudoh T, Kawamoto K, Eguchi H, Satoh T, Tanemura M, Nagano H, Doki Y, Mori M, Ishii H (2013) Adipose-derived mesenchymal stem cells and regenerative medicine. Dev Growth Differ 55(3):309–318

    Article  CAS  PubMed  Google Scholar 

  21. Wilkinson AC, Gottgens B (2013) Transcriptional regulation of haematopoietic stem cells. Adv Exp Med Biol 786:187–212

    Article  CAS  PubMed  Google Scholar 

  22. Clevers H (2013) The intestinal crypt, a prototype stem cell compartment. Cell 154(2):274–284

    Article  CAS  PubMed  Google Scholar 

  23. Yeung TM, Chia LA, Kosinski CM, Kuo CJ (2011) Regulation of self-renewal and differentiation by the intestinal stem cell niche. Cell Mol Life Sci 68(15):2513–2523

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Blanpain C, Fuchs E (2009) Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 10(3):207–217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Phillips BT, Gassei K, Orwig KE (2010) Spermatogonial stem cell regulation and spermatogenesis. Philos Trans R Soc Lond B Biol Sci 365(1546):1663–1678

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Kanatsu-Shinohara M, Inoue K, Lee J, Yoshimoto M, Ogonuki N, Miki H, Baba S, Kato T, Kazuki Y, Toyokuni S, Toyoshima M, Niwa O, Oshimura M, Heike T, Nakahata T, Ishino F, Ogura A, Shinohara T (2004) Generation of pluripotent stem cells from neonatal mouse testis. Cell 119(7):1001–1012

    Article  CAS  PubMed  Google Scholar 

  27. Simon L, Ekman GC, Kostereva N, Zhang Z, Hess RA, Hofmann MC, Cooke PS (2009) Direct transdifferentiation of stem/progenitor spermatogonia into reproductive and nonreproductive tissues of all germ layers. Stem Cells 27(7):1666–1675

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Kossack N, Meneses J, Shefi S, Nguyen HN, Chavez S, Nicholas C, Gromoll J, Turek PJ, Reijo-Pera RA (2009) Isolation and characterization of pluripotent human spermatogonial stem cell-derived cells. Stem Cells 27(1):138–149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Golestaneh N, Kokkinaki M, Pant D, Jiang J, DeStefano D, Fernandez-Bueno C, Rone JD, Haddad BR, Gallicano GI, Dym M (2009) Pluripotent stem cells derived from adult human testes. Stem Cells Dev 18(8):1115–1126

    Article  PubMed Central  PubMed  Google Scholar 

  30. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  31. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317

    Article  CAS  PubMed  Google Scholar 

  32. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448(7151):318–324

    Article  CAS  PubMed  Google Scholar 

  33. Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26(1):101–106

    Article  CAS  PubMed  Google Scholar 

  34. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920

    Article  CAS  PubMed  Google Scholar 

  35. Jiang J, Papoutsakis ET (2013) Stem-cell niche based comparative analysis of chemical and nano-mechanical material properties impacting ex vivo expansion and differentiation of hematopoietic and mesenchymal stem cells. Adv Healthc Mater 2(1):25–42

    Article  CAS  PubMed  Google Scholar 

  36. Bressan E, Carraro A, Ferroni L, Gardin C, Sbricoli L, Guazzo R, Stellini E, Roman M, Pinton P, Sivolella S, Zavan B (2013) Nanotechnology to drive stem cell commitment. Nanomedicine (Lond) 8(3):469–486

    Article  CAS  Google Scholar 

  37. Schachinger V, Assmus B, Britten MB, Honold J, Lehmann R, Teupe C, Abolmaali ND, Vogl TJ, Hofmann WK, Martin H, Dimmeler S, Zeiher AM (2004) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial. J Am Coll Cardiol 44(8):1690–1699

    Article  PubMed  Google Scholar 

  38. Sanganalmath SK, Bolli R (2013) Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ Res 113(6):810–834

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Tsukamoto A, Uchida N, Capela A, Gorba T, Huhn S (2013) Clinical translation of human neural stem cells. Stem Cell Res Ther 4(4):102

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Mothe AJ, Tator CH (2013) Review of transplantation of neural stem/progenitor cells for spinal cord injury. Int J Dev Neurosci 31(7):701–713

    Article  CAS  PubMed  Google Scholar 

  41. Ramsden CM, Powner MB, Carr AJ, Smart MJ, da Cruz L, Coffey PJ (2013) Stem cells in retinal regeneration: past, present and future. Development 140(12):2576–2585

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Ordovas L, Park Y, Verfaillie CM (2013) Stem cells and liver engineering. Biotechnol Adv 31(7):1094–1107

    Article  CAS  PubMed  Google Scholar 

  43. Yokote S, Yokoo T (2012) Stem cells in kidney regeneration. Curr Med Chem 19(35):6009–6017

    Article  CAS  PubMed  Google Scholar 

  44. Hart CA, Tsui J, Khanna A, Abraham DJ, Baker DM (2013) Stem cells of the lower limb: their role and potential in management of critical limb ischemia. Exp Biol Med 238(10):1118–1126

    Article  CAS  Google Scholar 

  45. Moraes L, Vasconcelos-dos-Santos A, Santana FC, Godoy MA, Rosado-de-Castro PH, Jasmin, Azevedo-Pereira RL, Cintra WM, Gasparetto EL, Santiago MF, Mendez-Otero R (2012) Neuroprotective effects and magnetic resonance imaging of mesenchymal stem cells labeled with SPION in a rat model of Huntington’s disease. Stem Cell Res 9(2):143–155

    Article  CAS  PubMed  Google Scholar 

  46. Frank JA, Zywicke H, Jordan EK, Mitchell J, Lewis BK, Miller B, Bryant LH Jr, Bulte JW (2002) Magnetic intracellular labeling of mammalian cells by combining (FDA-approved) superparamagnetic iron oxide MR contrast agents and commonly used transfection agents. Acad Radiol 9(Suppl 2):S484–S487

    Article  PubMed  Google Scholar 

  47. Kraitchman DL, Heldman AW, Atalar E, Amado LC, Martin BJ, Pittenger MF, Hare JM, Bulte JW (2003) In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107(18):2290–2293

    Article  PubMed  Google Scholar 

  48. Bulte JW, Douglas T, Witwer B, Zhang SC, Strable E, Lewis BK, Zywicke H, Miller B, van Gelderen P, Moskowitz BM, Duncan ID, Frank JA (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19(12):1141–1147

    Article  CAS  PubMed  Google Scholar 

  49. Wang YX, Xuan S, Port M, Idee JM (2013) Recent advances in superparamagnetic iron oxide nanoparticles for cellular imaging and targeted therapy research. Curr Pharm Des 19(37):6575–6593

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Molday RS, MacKenzie D (1982) Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells. J Immunol Methods 52(3):353–367

    Article  CAS  PubMed  Google Scholar 

  51. Babic M, Horak D, Trchova M, Jendelova P, Glogarova K, Lesny P, Herynek V, Hajek M, Sykova E (2008) Poly(L-lysine)-modified iron oxide nanoparticles for stem cell labeling. Bioconjug Chem 19(3):740–750

    Article  CAS  PubMed  Google Scholar 

  52. Arbab AS, Bashaw LA, Miller BR, Jordan EK, Bulte JW, Frank JA (2003) Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation: methods and techniques. Transplantation 76(7):1123–1130

    Article  CAS  PubMed  Google Scholar 

  53. Jasmin, Torres AL, Jelicks L, de Carvalho AC, Spray DC, Mendez-Otero R (2012) Labeling stem cells with superparamagnetic iron oxide nanoparticles: analysis of the labeling efficacy by microscopy and magnetic resonance imaging. Methods Mol Biol 906:239–252

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Frank JA, Miller BR, Arbab AS, Zywicke HA, Jordan EK, Lewis BK, Bryant LH Jr, Bulte JW (2003) Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 228(2):480–487

    Article  PubMed  Google Scholar 

  55. Wang HH, Lin CA, Lee CH, Lin YC, Tseng YM, Hsieh CL, Chen CH, Tsai CH, Hsieh CT, Shen JL, Chan WH, Chang WH, Yeh HI (2011) Fluorescent gold nanoclusters as a biocompatible marker for in vitro and in vivo tracking of endothelial cells. ACS Nano 5(6):4337–4344

    Article  CAS  PubMed  Google Scholar 

  56. Rehor I, Vilimova V, Jendelova P, Kubicek V, Jirak D, Herynek V, Kapcalova M, Kotek J, Cerny J, Hermann P, Lukes I (2011) Phosphonate-titanium dioxide assemblies: platform for multimodal diagnostic-therapeutic nanoprobes. J Med Chem 54(14):5185–5194

    Article  CAS  PubMed  Google Scholar 

  57. Fang CY, Vaijayanthimala V, Cheng CA, Yeh SH, Chang CF, Li CL, Chang HC (2011) The exocytosis of fluorescent nanodiamond and its use as a long-term cell tracker. Small 7(23):3363–3370

    Article  CAS  PubMed  Google Scholar 

  58. Lee JK, Chun SY, Im JY, Jin HK, Kwon TG, Bae JS (2012) Specific labeling of neurogenic, endothelial, and myogenic differentiated cells derived from human amniotic fluid stem cells with silica-coated magnetic nanoparticles. J Vet Med Sci 74(8):969–975

    Article  CAS  PubMed  Google Scholar 

  59. Chen Y (2012) Quantum dots for labeling live cells. Methods Mol Biol 906:193–198

    CAS  PubMed  Google Scholar 

  60. Vuu K, Xie J, McDonald MA, Bernardo M, Hunter F, Zhang Y, Li K, Bednarski M, Guccione S (2005) Gadolinium-rhodamine nanoparticles for cell labeling and tracking via magnetic resonance and optical imaging. Bioconjug Chem 16(4):995–999

    Article  CAS  PubMed  Google Scholar 

  61. Cova L, Bigini P, Diana V, Sitia L, Ferrari R, Pesce RM, Khalaf R, Bossolasco P, Ubezio P, Lupi M, Tortarolo M, Colombo L, Giardino D, Silani V, Morbidelli M, Salmona M, Moscatelli D (2013) Biocompatible fluorescent nanoparticles for in vivo stem cell tracking. Nanotechnology 24(24):245603

    Article  PubMed  CAS  Google Scholar 

  62. Cananzi M, Atala A, De Coppi P (2009) Stem cells derived from amniotic fluid: new potentials in regenerative medicine. Reprod Biomed Online 18(Suppl 1):17–27

    Article  PubMed  Google Scholar 

  63. Visvader JE, Lindeman GJ (2012) Cancer stem cells: current status and evolving complexities. Cell Stem Cell 10(6):717–728

    Article  CAS  PubMed  Google Scholar 

  64. Soster M, Juris R, Bonacchi S, Genovese D, Montalti M, Rampazzo E, Zaccheroni N, Garagnani P, Bussolino F, Prodi L, Marchio S (2012) Targeted dual-color silica nanoparticles provide univocal identification of micrometastases in preclinical models of colorectal cancer. Int J Nanomedicine 7:4797–4807

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Di Corato R, Gazeau F, Le Visage C, Fayol D, Levitz P, Lux F, Letourneur D, Luciani N, Tillement O, Wilhelm C (2013) High-resolution cellular MRI: gadolinium and iron oxide nanoparticles for in-depth dual-cell imaging of engineered tissue constructs. ACS Nano 7(9):7500–7512

    Article  PubMed  CAS  Google Scholar 

  66. Fakhry M, Hamade E, Badran B, Buchet R, Magne D (2013) Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts. World J Stem Cells 5(4):136–148

    Article  PubMed Central  PubMed  Google Scholar 

  67. Blank U, Karlsson G, Karlsson S (2008) Signaling pathways governing stem-cell fate. Blood 111(2):492–503

    Article  CAS  PubMed  Google Scholar 

  68. Hofmann MC (2008) Gdnf signaling pathways within the mammalian spermatogonial stem cell niche. Mol Cell Endocrinol 288(1–2):95–103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Garcia TX, Hofmann MC (2013) NOTCH signaling in Sertoli cells regulates gonocyte fate. Cell Cycle 12(16):2538–2545

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Nagano MC, Yeh JR (2013) The identity and fate decision control of spermatogonial stem cells: where is the point of no return? Curr Top Dev Biol 102:61–95

    Article  CAS  PubMed  Google Scholar 

  71. Fuchs E (2009) Finding one’s niche in the skin. Cell Stem Cell 4(6):499–502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Watt FM, Huck WT (2013) Role of the extracellular matrix in regulating stem cell fate. Nat Rev Mol Cell Biol 14(8):467–473

    Article  CAS  PubMed  Google Scholar 

  73. Das H, Abdulhameed N, Joseph M, Sakthivel R, Mao HQ, Pompili VJ (2009) Ex vivo nanofiber expansion and genetic modification of human cord blood-derived progenitor/stem cells enhances vasculogenesis. Cell Transplant 18(3):305–318

    Article  PubMed Central  PubMed  Google Scholar 

  74. Yang Y, Xia T, Zhi W, Wei L, Weng J, Zhang C, Li X (2011) Promotion of skin regeneration in diabetic rats by electrospun core-sheath fibers loaded with basic fibroblast growth factor. Biomaterials 32(18):4243–4254

    Article  CAS  PubMed  Google Scholar 

  75. Janmey PA, Winer JP, Weisel JW (2009) Fibrin gels and their clinical and bioengineering applications. J R Soc Interface 6(30):1–10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Ahmed TA, Dare EV, Hincke M (2008) Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng Part B Rev 14(2):199–215

    Article  CAS  PubMed  Google Scholar 

  77. Ehrbar M, Metters A, Zammaretti P, Hubbell JA, Zisch AH (2005) Endothelial cell proliferation and progenitor maturation by fibrin-bound VEGF variants with differential susceptibilities to local cellular activity. J Control Release 101(1–3):93–109

    Article  CAS  PubMed  Google Scholar 

  78. Bhang SH, Jeon O, Choi CY, Kwon YH, Kim BS (2007) Controlled release of nerve growth factor from fibrin gel. J Biomed Mater Res A 80(4):998–1002

    Article  PubMed  CAS  Google Scholar 

  79. Lee TC, Ho JT, Hung KS, Chen WF, Chung YH, Yang YL (2006) Bone morphogenetic protein gene therapy using a fibrin scaffold for a rabbit spinal-fusion experiment. Neurosurgery 58(2):373–380; discussion 373–380

    Article  PubMed  Google Scholar 

  80. Sun Y, Chen CS, Fu J (2012) Forcing stem cells to behave: a biophysical perspective of the cellular microenvironment. Annu Rev Biophys 41:519–542

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  81. Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS (2009) Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5(1):17–26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Huebsch N, Arany PR, Mao AS, Shvartsman D, Ali OA, Bencherif SA, Rivera-Feliciano J, Mooney DJ (2010) Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat Mater 9(6):518–526

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Trappmann B, Gautrot JE, Connelly JT, Strange DG, Li Y, Oyen ML, Cohen Stuart MA, Boehm H, Li B, Vogel V, Spatz JP, Watt FM, Huck WT (2012) Extracellular-matrix tethering regulates stem-cell fate. Nat Mater 11(7):642–649

    Article  CAS  PubMed  Google Scholar 

  84. Kong HJ, Boontheekul T, Mooney DJ (2006) Quantifying the relation between adhesion ligand-receptor bond formation and cell phenotype. Proc Natl Acad Sci U S A 103(49):18534–18539

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Chu C, Schmidt JJ, Carnes K, Zhang Z, Kong HJ, Hofmann MC (2009) Three-dimensional synthetic niche components to control germ cell proliferation. Tissue Eng Part A 15(2):255–262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Simmons CA, Matlis S, Thornton AJ, Chen S, Wang CY, Mooney DJ (2003) Cyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signal-regulated kinase (ERK1/2) signaling pathway. J Biomech 36(8):1087–1096

    Article  PubMed  Google Scholar 

  87. Gwak SJ, Bhang SH, Kim IK, Kim SS, Cho SW, Jeon O, Yoo KJ, Putnam AJ, Kim BS (2008) The effect of cyclic strain on embryonic stem cell-derived cardiomyocytes. Biomaterials 29(7):844–856

    Article  CAS  PubMed  Google Scholar 

  88. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    Article  CAS  PubMed  Google Scholar 

  89. Kong HJ, Polte TR, Alsberg E, Mooney DJ (2005) FRET measurements of cell-traction forces and nano-scale clustering of adhesion ligands varied by substrate stiffness. Proc Natl Acad Sci U S A 102(12):4300–4305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Yim EK, Pang SW, Leong KW (2007) Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp Cell Res 313(9):1820–1829

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. McMurray RJ, Gadegaard N, Tsimbouri PM, Burgess KV, McNamara LE, Tare R, Murawski K, Kingham E, Oreffo RO, Dalby MJ (2011) Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nat Mater 10(8):637–644

    Article  CAS  PubMed  Google Scholar 

  92. Lee MR, Kwon KW, Jung H, Kim HN, Suh KY, Kim K, Kim KS (2010) Direct differentiation of human embryonic stem cells into selective neurons on nanoscale ridge/groove pattern arrays. Biomaterials 31(15):4360–4366

    Article  CAS  PubMed  Google Scholar 

  93. Chen W, Villa-Diaz LG, Sun Y, Weng S, Kim JK, Lam RH, Han L, Fan R, Krebsbach PH, Fu J (2012) Nanotopography influences adhesion, spreading, and self-renewal of human embryonic stem cells. ACS Nano 6(5):4094–4103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Pan F, Zhang M, Wu G, Lai Y, Greber B, Scholer HR, Chi L (2013) Topographic effect on human induced pluripotent stem cells differentiation towards neuronal lineage. Biomaterials 34(33):8131–8139

    Article  CAS  PubMed  Google Scholar 

  95. Oh S, Brammer KS, Li YS, Teng D, Engler AJ, Chien S, Jin S (2009) Stem cell fate dictated solely by altered nanotube dimension. Proc Natl Acad Sci U S A 106(7):2130–2135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Park J, Bauer S, von der Mark K, Schmuki P (2007) Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett 7(6):1686–1691

    Article  CAS  PubMed  Google Scholar 

  97. Park J, Bauer S, Schlegel KA, Neukam FW, von der Mark K, Schmuki P (2009) TiO2 nanotube surfaces: 15 nm–an optimal length scale of surface topography for cell adhesion and differentiation. Small 5(6):666–671

    Article  CAS  PubMed  Google Scholar 

  98. Biggs MJ, Richards RG, Gadegaard N, Wilkinson CD, Oreffo RO, Dalby MJ (2009) The use of nanoscale topography to modulate the dynamics of adhesion formation in primary osteoblasts and ERK/MAPK signalling in STRO-1+ enriched skeletal stem cells. Biomaterials 30(28):5094–5103

    Article  CAS  PubMed  Google Scholar 

  99. Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, Wilkinson CD, Oreffo RO (2007) The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 6(12):997–1003

    Article  CAS  PubMed  Google Scholar 

  100. Dalby MJ, Andar A, Nag A, Affrossman S, Tare R, McFarlane S, Oreffo RO (2008) Genomic expression of mesenchymal stem cells to altered nanoscale topographies. J R Soc Interface 5(26):1055–1065

    Article  PubMed Central  PubMed  Google Scholar 

  101. Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, Stupp SI (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303(5662):1352–1355

    Article  CAS  PubMed  Google Scholar 

  102. Hosseinkhani H, Hosseinkhani M, Tian F, Kobayashi H, Tabata Y (2006) Osteogenic differentiation of mesenchymal stem cells in self-assembled peptide-amphiphile nanofibers. Biomaterials 27(22):4079–4086

    Article  CAS  PubMed  Google Scholar 

  103. Jayarama Reddy V, Radhakrishnan S, Ravichandran R, Mukherjee S, Balamurugan R, Sundarrajan S, Ramakrishna S (2013) Nanofibrous structured biomimetic strategies for skin tissue regeneration. Wound Repair Regen 21(1):1–16

    Article  PubMed  Google Scholar 

  104. Lu T, Li Y, Chen T (2013) Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. Int J Nanomedicine 8:337–350

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  105. Zhang S, Holmes T, Lockshin C, Rich A (1993) Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci U S A 90(8):3334–3338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Holmes TC, de Lacalle S, Su X, Liu G, Rich A, Zhang S (2000) Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc Natl Acad Sci U S A 97(12):6728–6733

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Leung GK, Wang YC, Wu W (2012) Peptide nanofiber scaffold for brain tissue reconstruction. Methods Enzymol 508:177–190

    Article  CAS  PubMed  Google Scholar 

  108. Ellis-Behnke RG, Liang YX, You SW, Tay DK, Zhang S, So KF, Schneider GE (2006) Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc Natl Acad Sci U S A 103(13):5054–5059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Garreta E, Genove E, Borros S, Semino CE (2006) Osteogenic differentiation of mouse embryonic stem cells and mouse embryonic fibroblasts in a three-dimensional self-assembling peptide scaffold. Tissue Eng 12(8):2215–2227

    Article  CAS  PubMed  Google Scholar 

  110. Gelain F, Bottai D, Vescovi A, Zhang S (2006) Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures. PLoS One 1:e119

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  111. Guo J, Su H, Zeng Y, Liang YX, Wong WM, Ellis-Behnke RG, So KF, Wu W (2007) Reknitting the injured spinal cord by self-assembling peptide nanofiber scaffold. Nanomedicine 3(4):311–321

    Article  CAS  PubMed  Google Scholar 

  112. Zhang S, Holmes TC, DiPersio CM, Hynes RO, Su X, Rich A (1995) Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials 16(18):1385–1393

    Article  PubMed  Google Scholar 

  113. Beniash E, Hartgerink JD, Storrie H, Stendahl JC, Stupp SI (2005) Self-assembling peptide amphiphile nanofiber matrices for cell entrapment. Acta Biomater 1(4):387–397

    Article  PubMed  Google Scholar 

  114. Lao L, Wang Y, Zhu Y, Zhang Y, Gao C (2011) Poly(lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering. J Mater Sci Mater Med 22(8):1873–1884

    Article  CAS  PubMed  Google Scholar 

  115. Leung V, Hartwell R, Elizei SS, Yang H, Ghahary A, Ko F (2013) Postelectrospinning modifications for alginate nanofiber-based wound dressings. J Biomed Mater Res Part B (in press)

    Google Scholar 

  116. Xin X, Hussain M, Mao JJ (2007) Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials 28(2):316–325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  117. Wang W, Itoh S, Matsuda A, Aizawa T, Demura M, Ichinose S, Shinomiya K, Tanaka J (2008) Enhanced nerve regeneration through a bilayered chitosan tube: the effect of introduction of glycine spacer into the CYIGSR sequence. J Biomed Mater Res A 85(4):919–928

    Article  PubMed  CAS  Google Scholar 

  118. Sarkar SD, Farrugia BL, Dargaville TR, Dhara S (2013) Chitosan-collagen scaffolds with nano/microfibrous architecture for skin tissue engineering. J Biomed Mater Res A 101(12):3482–3492

    Article  PubMed  CAS  Google Scholar 

  119. Sun F, Zhou H, Lee J (2011) Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater 7(11):3813–3828

    Article  CAS  PubMed  Google Scholar 

  120. Li C, Vepari C, Jin HJ, Kim HJ, Kaplan DL (2006) Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 27(16):3115–3124

    Article  CAS  PubMed  Google Scholar 

  121. Shih YR, Chen CN, Tsai SW, Wang YJ, Lee OK (2006) Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Stem Cells 24(11):2391–2397

    Article  CAS  PubMed  Google Scholar 

  122. Li WJ, Tuli R, Huang X, Laquerriere P, Tuan RS (2005) Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials 26(25):5158–5166

    Article  CAS  PubMed  Google Scholar 

  123. McCullen SD, Stevens DR, Roberts WA, Clarke LI, Bernacki SH, Gorga RE, Loboa EG (2007) Characterization of electrospun nanocomposite scaffolds and biocompatibility with adipose-derived human mesenchymal stem cells. Int J Nanomedicine 2(2):253–263

    PubMed Central  CAS  PubMed  Google Scholar 

  124. Shafiee A, Soleimani M, Chamheidari GA, Seyedjafari E, Dodel M, Atashi A, Gheisari Y (2011) Electrospun nanofiber-based regeneration of cartilage enhanced by mesenchymal stem cells. J Biomed Mater Res A 99(3):467–478

    Article  PubMed  CAS  Google Scholar 

  125. Ravichandran R, Venugopal JR, Sundarrajan S, Mukherjee S, Ramakrishna S (2012) Precipitation of nanohydroxyapatite on PLLA/PBLG/Collagen nanofibrous structures for the differentiation of adipose derived stem cells to osteogenic lineage. Biomaterials 33(3):846–855

    Article  CAS  PubMed  Google Scholar 

  126. Brizzi MF, Tarone G, Defilippi P (2012) Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Curr Opin Cell Biol 24(5):645–651

    Article  CAS  PubMed  Google Scholar 

  127. Binan L, Tendey C, De Crescenzo G, El Ayoubi R, Ajji A, Jolicoeur M (2014) Differentiation of neuronal stem cells into motor neurons using electrospun poly-L-lactic acid/gelatin scaffold. Biomaterials 35(2):664–674

    Article  CAS  PubMed  Google Scholar 

  128. Jia L, Prabhakaran MP, Qin X, Ramakrishna S (2013) Stem cell differentiation on electrospun nanofibrous substrates for vascular tissue engineering. Mater Sci Eng C Mater Biol Appl 33(8):4640–4650

    Article  CAS  PubMed  Google Scholar 

  129. Holmes B, Castro NJ, Li J, Keidar M, Zhang LG (2013) Enhanced human bone marrow mesenchymal stem cell functions in novel 3D cartilage scaffolds with hydrogen treated multi-walled carbon nanotubes. Nanotechnology 24(36):365102

    Article  PubMed  CAS  Google Scholar 

  130. Fonseca-Garcia A, Mota-Morales JD, Quintero-Ortega IA, Garcia-Carvajal ZY, Martínez-López V, Ruvalcaba E, Solis L, Ibarra C, Gutiérrez MC, Terrones M, Sanchez IC, del Monte F, Velasquillo MC, Luna-Bárcenas G (2013) Effect of doping in carbon nanotubes on the viability of biomimetic chitosan-carbon nanotubes-hydroxyapatite scaffolds. J Biomed Mater Res Part A (in press)

    Google Scholar 

  131. Gupta A, Woods MD, Illingworth KD, Niemeier R, Schafer I, Cady C, Filip P, El-Amin SF III (2013) Single walled carbon nanotube composites for bone tissue engineering. J Orthop Res 31(9):1374–1381

    Article  CAS  PubMed  Google Scholar 

  132. Jan E, Kotov NA (2007) Successful differentiation of mouse neural stem cells on layer-by-layer assembled single-walled carbon nanotube composite. Nano Lett 7(5):1123–1128

    Article  CAS  PubMed  Google Scholar 

  133. Kam NW, Jan E, Kotov NA (2009) Electrical stimulation of neural stem cells mediated by humanized carbon nanotube composite made with extracellular matrix protein. Nano Lett 9(1):273–278

    Article  CAS  PubMed  Google Scholar 

  134. Moon SU, Kim J, Bokara KK, Kim JY, Khang D, Webster TJ, Lee JE (2012) Carbon nanotubes impregnated with subventricular zone neural progenitor cells promotes recovery from stroke. Int J Nanomedicine 7:2751–2765

    PubMed Central  CAS  PubMed  Google Scholar 

  135. Sirivisoot S, Harrison BS (2011) Skeletal myotube formation enhanced by electrospun polyurethane carbon nanotube scaffolds. Int J Nanomedicine 6:2483–2497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  136. Mooney E, Mackle JN, Blond DJ, O’Cearbhaill E, Shaw G, Blau WJ, Barry FP, Barron V, Murphy JM (2012) The electrical stimulation of carbon nanotubes to provide a cardiomimetic cue to MSCs. Biomaterials 33(26):6132–6139

    Article  CAS  PubMed  Google Scholar 

  137. Parrag IC, Zandstra PW, Woodhouse KA (2012) Fiber alignment and coculture with fibroblasts improves the differentiated phenotype of murine embryonic stem cell-derived cardiomyocytes for cardiac tissue engineering. Biotechnol Bioeng 109(3):813–822

    Article  CAS  PubMed  Google Scholar 

  138. Gupta MK, Walthall JM, Venkataraman R, Crowder SW, Jung DK, Yu SS, Feaster TK, Wang X, Giorgio TD, Hong CC, Baudenbacher FJ, Hatzopoulos AK, Sung HJ (2011) Combinatorial polymer electrospun matrices promote physiologically-relevant cardiomyogenic stem cell differentiation. PLoS One 6(12):e28935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  139. Prabhakaran MP, Mobarakeh LG, Kai D, Karbalaie K, Nasr-Esfahani MH, Ramakrishna S (2013) Differentiation of embryonic stem cells to cardiomyocytes on electrospun nanofibrous substrates. J Biomed Mater Res Part B (in press)

    Google Scholar 

  140. Xie J, Willerth SM, Li X, Macewan MR, Rader A, Sakiyama-Elbert SE, Xia Y (2009) The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials 30(3):354–362

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  141. Carlberg B, Axell MZ, Nannmark U, Liu J, Kuhn HG (2009) Electrospun polyurethane scaffolds for proliferation and neuronal differentiation of human embryonic stem cells. Biomed Mater 4(4):045004

    Article  PubMed  CAS  Google Scholar 

  142. Kang X, Xie Y, Powell HM, James Lee L, Belury MA, Lannutti JJ, Kniss DA (2007) Adipogenesis of murine embryonic stem cells in a three-dimensional culture system using electrospun polymer scaffolds. Biomaterials 28(3):450–458

    Article  CAS  PubMed  Google Scholar 

  143. Schrand AM, Dai L, Schlager JJ, Hussain SM (2012) Toxicity testing of nanomaterials. Adv Exp Med Biol 745:58–75

    Article  CAS  PubMed  Google Scholar 

  144. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  CAS  PubMed  Google Scholar 

  145. Foley S, Crowley C, Smaihi M, Bonfils C, Erlanger BF, Seta P, Larroque C (2002) Cellular localisation of a water-soluble fullerene derivative. Biochem Biophys Res Commun 294(1):116–119

    Article  CAS  PubMed  Google Scholar 

  146. Christen V, Fent K (2012) Silica nanoparticles and silver-doped silica nanoparticles induce endoplasmatic reticulum stress response and alter cytochrome P4501A activity. Chemosphere 87(4):423–434

    Article  CAS  PubMed  Google Scholar 

  147. Zhang R, Piao MJ, Kim KC, Kim AD, Choi JY, Choi J, Hyun JW (2012) Endoplasmic reticulum stress signaling is involved in silver nanoparticles-induced apoptosis. Int J Biochem Cell Biol 44(1):224–232

    Article  CAS  PubMed  Google Scholar 

  148. Zhu L, Chang DW, Dai L, Hong Y (2007) DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells. Nano Lett 7(12):3592–3597

    Article  CAS  PubMed  Google Scholar 

  149. Ferin J, Oberdorster G, Penney DP (1992) Pulmonary retention of ultrafine and fine particles in rats. Am J Respir Cell Mol Biol 6(5):535–542

    Article  CAS  PubMed  Google Scholar 

  150. Service RF (2003) Nanomaterials show signs of toxicity. Nanomaterials show signs of toxicity. Science 300(5617):243

    Article  PubMed  Google Scholar 

  151. Shvedova AA, Castranova V, Kisin ER, Schwegler-Berry D, Murray AR, Gandelsman VZ, Maynard A, Baron P (2003) Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A 66(20):1909–1926

    Article  CAS  PubMed  Google Scholar 

  152. Lam CW, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77(1):126–134

    Article  CAS  PubMed  Google Scholar 

  153. Cheng C, Muller KH, Koziol KK, Skepper JN, Midgley PA, Welland ME, Porter AE (2009) Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells. Biomaterials 30(25):4152–4160

    Article  CAS  PubMed  Google Scholar 

  154. Moller P, Jacobsen NR, Folkmann JK, Danielsen PH, Mikkelsen L, Hemmingsen JG, Vesterdal LK, Forchhammer L, Wallin H, Loft S (2010) Role of oxidative damage in toxicity of particulates. Free Radic Res 44(1):1–46

    Article  CAS  PubMed  Google Scholar 

  155. Cancino J, Paino IM, Micocci KC, Selistre-de-Araujo HS, Zucolotto V (2013) In vitro nanotoxicity of single-walled carbon nanotube-dendrimer nanocomplexes against murine myoblast cells. Toxicol Lett 219(1):18–25

    Article  CAS  PubMed  Google Scholar 

  156. Pacurari M, Castranova V, Vallyathan V (2010) Single- and multi-wall carbon nanotubes versus asbestos: are the carbon nanotubes a new health risk to humans? J Toxicol Environ Health A 73(5):378–395

    Article  CAS  PubMed  Google Scholar 

  157. Snyder-Talkington BN, Dymacek J, Porter DW, Wolfarth MG, Mercer RR, Pacurari M, Denvir J, Castranova V, Qian Y, Guo NL (2013) System-based identification of toxicity pathways associated with multi-walled carbon nanotube-induced pathological responses. Toxicol Appl Pharmacol 272(2):476–489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  158. Tourinho PS, van Gestel CA, Lofts S, Svendsen C, Soares AM, Loureiro S (2012) Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ Toxicol Chem 31(8):1679–1692

    Article  CAS  PubMed  Google Scholar 

  159. Sharma HS, Sharma A (2012) Neurotoxicity of engineered nanoparticles from metals. CNS Neurol Disord Drug Targets 11(1):65–80

    Article  CAS  PubMed  Google Scholar 

  160. Lan Z, Yang WX (2012) Nanoparticles and spermatogenesis: how do nanoparticles affect spermatogenesis and penetrate the blood-testis barrier. Nanomedicine (Lond) 7(4):579–596

    Article  CAS  Google Scholar 

  161. Oberdorster G, Elder A, Rinderknecht A (2009) Nanoparticles and the brain: cause for concern? J Nanosci Nanotechnol 9(8):4996–5007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  162. Moller P, Folkmann JK, Danielsen PH, Jantzen K, Loft S (2012) Oxidative stress generated damage to DNA by gastrointestinal exposure to insoluble particles. Curr Mol Med 12(6):732–745

    Article  CAS  PubMed  Google Scholar 

  163. Shaw BJ, Handy RD (2011) Physiological effects of nanoparticles on fish: a comparison of nanometals versus metal ions. Environ Int 37(6):1083–1097

    Article  CAS  PubMed  Google Scholar 

  164. Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88(2):412–419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  165. Deng X, Luan Q, Chen W, Wang Y, Wu M, Zhang H, Jiao Z (2009) Nanosized zinc oxide particles induce neural stem cell apoptosis. Nanotechnology 20(11):115101

    Article  PubMed  CAS  Google Scholar 

  166. Heng BC, Zhao X, Xiong S, Ng KW, Boey FY, Loo JS (2011) Cytotoxicity of zinc oxide (ZnO) nanoparticles is influenced by cell density and culture format. Arch Toxicol 85(6):695–704

    Article  CAS  PubMed  Google Scholar 

  167. Taccola L, Raffa V, Riggio C, Vittorio O, Iorio MC, Vanacore R, Pietrabissa A, Cuschieri A (2011) Zinc oxide nanoparticles as selective killers of proliferating cells. Int J Nanomedicine 6:1129–1140

    PubMed Central  CAS  PubMed  Google Scholar 

  168. Rasmussen JW, Martinez E, Louka P, Wingett DG (2010) Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv 7(9):1063–1077

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  169. Choi SJ, Oh JM, Choy JH (2009) Toxicological effects of inorganic nanoparticles on human lung cancer A549 cells. J Inorg Biochem 103(3):463–471

    Article  CAS  PubMed  Google Scholar 

  170. Kim IS, Baek M, Choi SJ (2010) Comparative cytotoxicity of Al2O3, CeO2, TiO2 and ZnO nanoparticles to human lung cells. J Nanosci Nanotechnol 10(5):3453–3458

    Article  CAS  PubMed  Google Scholar 

  171. Zhang QL, Li MQ, Ji JW, Gao FP, Bai R, Chen CY, Wang ZW, Zhang C, Niu Q (2011) In vivo toxicity of nano-alumina on mice neurobehavioral profiles and the potential mechanisms. Int J Immunopathol Pharmacol 24(1 Suppl):23S–29S

    CAS  PubMed  Google Scholar 

  172. Alshatwi AA, Vaiyapuri Subbarayan P, Ramesh E, Al-Hazzani AA, Alsaif MA, Alwarthan AA (2012) Al(2)O(3) nanoparticles induce mitochondria-mediated cell death and upregulate the expression of signaling genes in human mesenchymal stem cells. J Biochem Mol Toxicol 26(11):469–476

    Article  CAS  PubMed  Google Scholar 

  173. Atiyeh BS, Costagliola M, Hayek SN, Dibo SA (2007) Effect of silver on burn wound infection control and healing: review of the literature. Burns 33(2):139–148

    Article  PubMed  Google Scholar 

  174. Lansdown AB (2006) Silver in health care: antimicrobial effects and safety in use. Curr Probl Dermatol 33:17–34

    Article  CAS  PubMed  Google Scholar 

  175. Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112(43):13608–13619

    Article  CAS  PubMed  Google Scholar 

  176. Braydich-Stolle LK, Lucas B, Schrand A, Murdock RC, Lee T, Schlager JJ, Hussain SM, Hofmann MC (2010) Silver nanoparticles disrupt GDNF/Fyn kinase signaling in spermatogonial stem cells. Toxicol Sci 116(2):577–589

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  177. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19(7):975–983

    Article  CAS  PubMed  Google Scholar 

  178. Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, Hong Y (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 233(3):404–410

    Article  CAS  PubMed  Google Scholar 

  179. Hackenberg S, Scherzed A, Kessler M, Hummel S, Technau A, Froelich K, Ginzkey C, Koehler C, Hagen R, Kleinsasser N (2011) Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett 201(1):27–33

    Article  CAS  PubMed  Google Scholar 

  180. Samberg ME, Loboa EG, Oldenburg SJ, Monteiro-Riviere NA (2012) Silver nanoparticles do not influence stem cell differentiation but cause minimal toxicity. Nanomedicine (Lond) 7(8):1197–1209

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Claude Hofmann PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hofmann, MC. (2014). Stem Cells and Nanomaterials. In: Capco, D., Chen, Y. (eds) Nanomaterial. Advances in Experimental Medicine and Biology, vol 811. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8739-0_13

Download citation

Publish with us

Policies and ethics