Skip to main content

Preparation of Nanoscale Pulmonary Drug Delivery Formulations by Spray Drying

  • Chapter
  • First Online:
Nanomaterial

Abstract

Advances in preparation technologies for nanomedicines have provided novel formulations for pulmonary drug delivery. Application of drugs via the lungs can be considered as one of the most attractive implementations of nanoparticles for therapeutic use due to the unique anatomy and physiology of the lungs. The colloidal nature of nanoparticles provides important advantages to the formulation of drugs, which are normally difficult to administer due to poor stability or uptake, partly because nanoparticles protect the drug from the physiological milieu, facilitate transport across biological barriers and can offer controlled drug release. There are numerous methods for producing therapeutic nanoparticles, each with their own advantages and suitable application. Liquid atomization techniques such as spray drying can produce nanoparticle formulations in a dry powder form suitable for pulmonary administration in a direct one-step process. This chapter describes the different state-of-the-art techniques used to prepare drug nanoparticles (with special emphasize on spray drying techniques) and the strategies for administering such unique formulations to the pulmonary environment.

Adam Bohr and Christian A. Ruge are contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Patton JS, Byron PR (2007) Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov 6:67–74

    Article  CAS  PubMed  Google Scholar 

  2. Ruge CA, Kirch J, Lehr CM (2013) Pulmonary drug delivery: from generating aerosols to overcoming biological barriers – therapeutic possibilities and technological challenges. Lancet Respir Med 1:402–413

    Article  CAS  PubMed  Google Scholar 

  3. Sanders N, Rudolph C, Braeckmans K et al (2009) Extracellular barriers in respiratory gene therapy. Adv Drug Deliv Rev 61:115–127

    Article  CAS  PubMed  Google Scholar 

  4. Sung JC, Pulliam BL, Edwards DA (2007) Nanoparticles for drug delivery to the lungs. Trends Biotechnol 25:563–570

    Article  CAS  PubMed  Google Scholar 

  5. Patton JS, Brain JD, Davies LA et al (2010) The particle has landed – characterizing the fate of inhaled pharmaceuticals. J Aerosol Med 23:S71–S87

    CAS  Google Scholar 

  6. Yang W, Peters JI, Williams RO 3rd (2008) Inhaled nanoparticles – a current review. Int J Pharm 356:239–247

    Article  CAS  PubMed  Google Scholar 

  7. Peltonen L, Valo H, Kolakovic R et al (2010) Electrospraying, spray drying and related techniques for production and formulation of drug nanoparticles. Expert Opin Drug Deliv 7:705–719

    Article  CAS  PubMed  Google Scholar 

  8. Gehr P, Bachofen M, Weibel ER (1978) The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respir Physiol 32:121–140

    Article  CAS  PubMed  Google Scholar 

  9. Weibel ER (1973) Morphological basis of alveolar-capillary gas exchange. Physiol Rev 53:419–495

    CAS  PubMed  Google Scholar 

  10. Reynolds SD, Malkinson AM (2010) Clara cell: progenitor for the bronchiolar epithelium. Int J Biochem Cell Biol 42:1–4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Steimer A, Haltner E, Lehr CM (2005) Cell culture models of the respiratory tract relevant to pulmonary drug delivery. J Aerosol Med 18:137–182

    Article  CAS  PubMed  Google Scholar 

  12. Wong AP, Keating A, Waddell TK (2009) Airway regeneration: the role of the Clara cell secretory protein and the cells that express it. Cytotherapy 11:676–687

    Article  CAS  PubMed  Google Scholar 

  13. Crapo JD, Barry BE, Gehr P et al (1982) Cell number and cell characteristics of the normal human lung. Am Rev Respir Dis 126:332–337

    CAS  PubMed  Google Scholar 

  14. Goerke J (1998) Pulmonary surfactant: functions and molecular composition. Biochim Biophys Acta 1408:79–89

    Article  CAS  PubMed  Google Scholar 

  15. Geiser M (2010) Update on macrophage clearance of inhaled micro- and nanoparticles. J Aerosol Med 23:207–217

    Article  CAS  Google Scholar 

  16. Stone KC, Mercer RR, Gehr P et al (1992) Allometric relationships of cell numbers and size in the mammalian lung. Am J Respir Cell Mol Biol 6:235–243

    Article  CAS  PubMed  Google Scholar 

  17. Geiser M, Schuerch S, Gehr P (2003) Influence of surface chemistry and topography of particles on their immersion into the lung’s surface-lining layer. J Appl Physiol 94:1793–1801

    Article  PubMed  Google Scholar 

  18. Schuerch S, Gehr P, Im Hof V et al (1990) Surfactant displaces particles toward the epithelium in airways and alveoli. Respir Physiol 80:17–32

    Article  Google Scholar 

  19. Cone RA (2009) Barrier properties of mucus. Adv Drug Deliv Rev 61:75–85

    Article  CAS  PubMed  Google Scholar 

  20. Ryser M, Burn A, Wessel T et al (2007) Functional imaging of mucociliary phenomena: high-speed digital reflection contrast microscopy. Eur Biophys J 37:35–54

    Article  CAS  PubMed  Google Scholar 

  21. Olsson B, Bondesson E, Borgstroem L (2011) Pulmonary drug metabolism, clearance, and absorption. In: Smyth HDC, Hickey AJ (eds) Controlled pulmonary drug delivery, 1st edn. Springer, New York, pp 21–50

    Chapter  Google Scholar 

  22. Patton JS (1996) Mechanisms of macromolecule absorption by the lungs. Adv Drug Deliv Rev 19:3–36

    Article  CAS  Google Scholar 

  23. Ensign LM, Henning A, Schneider CS et al (2013) Ex vivo characterization of particle transport in mucus secretions coating freshly excised mucosal tissues. Mol Pharm 10:2176–2182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Kirch J, Schneider A, Abou B et al (2012) Optical tweezers reveal relationship between microstructure and nanoparticle penetration of pulmonary mucus. Proc Natl Acad Sci U S A 109:18355–18360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Wang YY, Lai SK, Suk JS et al (2008) Addressing the PEG mucoadhesivity paradox to engineer nanoparticles that “slip” through the human mucus barrier. Angew Chem Int Ed Engl 47:9726–9729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Bastacky J, Lee CY, Goerke J et al (1995) Alveolar lining layer is thin and continuous: low-temperature scanning electron microscopy of rat lung. J Appl Physiol 79:1615–1628

    CAS  PubMed  Google Scholar 

  27. Blanco O, Perez-Gil J (2007) Biochemical and pharmacological differences between preparations of exogenous natural surfactant used to treat Respiratory Distress Syndrome: role of the different components in an efficient pulmonary surfactant. Eur J Pharmacol 568:1–15

    Article  CAS  PubMed  Google Scholar 

  28. Phelps DS (2001) Surfactant regulation of host defense function in the lung: a question of balance. Pediatr Pathol Mol Med 20:269–292

    Article  CAS  PubMed  Google Scholar 

  29. Ruge CA, Kirch J, Canadas O et al (2011) Uptake of nanoparticles by alveolar macrophages is triggered by surfactant protein A. Nanomedicine 7:690–693

    Article  CAS  PubMed  Google Scholar 

  30. Ruge CA, Schaefer UF, Herrmann J et al (2012) The interplay of lung surfactant proteins and lipids assimilates the macrophage clearance of nanoparticles. PLoS One 7:e40775

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Rabinow BE (2004) Nanosuspensions in drug delivery. Nat Rev Drug Discov 3:785–796

    Article  CAS  PubMed  Google Scholar 

  32. Biskos G, Vons V, Yurteri CU et al (2008) Generation and sizing of particles for aerosol-based nanotechnology. KONA Powder Part J 26:13–35

    Article  Google Scholar 

  33. Cal K, Sollohub K (2010) Spray drying technique. I. Hardware and process parameters. J Pharm Sci 99:575–586

    CAS  PubMed  Google Scholar 

  34. Sollohub K, Cal K (2010) Spray drying technique: II. Current applications in pharmaceutical technology. J Pharm Sci 99:587–597

    CAS  PubMed  Google Scholar 

  35. Vehring R, Foss WR, Lechuga-Ballesteros D (2007) Particle formation in spray drying. J Aerosol Sci 38:728–746

    Article  CAS  Google Scholar 

  36. Vehring R (2008) Pharmaceutical particle engineering via spray drying. Pharm Res 25:999–1022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Okuyama K, Lenggoro IW (2003) Preparation of nanoparticles via spray route. Chem Eng Sci 58:537–547

    Article  CAS  Google Scholar 

  38. Nandiyanto ABD, Okuyama K (2011) Progress in developing spray-drying methods for the production of controlled morphology particles: from the nanometer to submicrometer size ranges. Adv Powder Technol 22:1–19

    Article  CAS  Google Scholar 

  39. Heng D, Lee SH, Ng WK et al (2011) The nano spray dryer B-90. Expert Opin Drug Deliv 8:965–972

    Article  CAS  PubMed  Google Scholar 

  40. Lee SH, Heng D, Ng WK et al (2011) Nano spray drying: a novel method for preparing protein nanoparticles for protein therapy. Int J Pharm 403:192–200

    Article  CAS  PubMed  Google Scholar 

  41. Wang Z, Finlay WH, Peppler M et al (2006) Powder formation by atmospheric spray-freeze-drying. Powder Technol 170:45–52

    Article  CAS  Google Scholar 

  42. Topp MN (1973) Ultrasonic atomization-a photographic study of the mechanism of disintegration. J Aerosol Sci 4:17–25

    Article  Google Scholar 

  43. Yurteri CU, Hartman RPA, Marijnissen JCM (2010) Producing pharmaceutical particles via electrospraying with an emphasis on nano and nano structured particles – a review. KONA Powder Part J 28:91–115

    Article  CAS  Google Scholar 

  44. Leuenberger H (2002) Spray freeze-drying – the process of choice for low water soluble drugs? J Nanopart Res 4:111–119

    Article  CAS  Google Scholar 

  45. Cheow WS, Ng ML, Kho K et al (2011) Spray-freeze-drying production of thermally sensitive polymeric nanoparticle aggregates for inhaled drug delivery: effect of freeze-drying adjuvants. Int J Pharm 404:289–300

    Article  CAS  PubMed  Google Scholar 

  46. Forde G, Friend J, Williamson T (2006) Straightforward biodegradable nanoparticle generation through megahertz-order ultrasonic atomization. Appl Phys Lett 89:064105–064105–3

    Google Scholar 

  47. Bittner B, Kissel T (1999) Ultrasonic atomization for spray drying: a versatile technique for the preparation of protein loaded biodegradable microspheres. J Microencapsul 16:325–341

    Article  CAS  PubMed  Google Scholar 

  48. York P (1999) Strategies for particle design using supercritical fluid technologies. Pharm Sci Technol Today 2:430–440

    Article  CAS  PubMed  Google Scholar 

  49. Sethia S, Squillante E (2004) Solid dispersion of carbamazepine in PVP K30 by conventional solvent evaporation and supercritical methods. Int J Pharm 272:1–10

    Article  CAS  PubMed  Google Scholar 

  50. Byrappa K, Ohara S, Adschiri T (2008) Nanoparticles synthesis using supercritical fluid technology – towards biomedical applications. Adv Drug Deliv Rev 60:299–327

    Article  CAS  PubMed  Google Scholar 

  51. Jaworek A (2007) Micro- and nanoparticle production by electrospraying. Powder Technol 176:18–35

    Article  CAS  Google Scholar 

  52. Ganan-Calvo AM (1999) The surface charge in electrospraying: its nature and its universal scaling laws. J Aerosol Sci 30:863–872

    Article  CAS  Google Scholar 

  53. Jaworek A, Sobczyk AT (2008) Electrospraying route to nanotechnology: an overview. J Electrostat 66:197–219

    Article  CAS  Google Scholar 

  54. Marijnissen JCM, Gradon L (2010) Nanoparticles in medicine and environment: inhalation and health effects. J Aerosol Med 23:339–341

    Article  Google Scholar 

  55. Enayati M, Ahmad Z, Stride E et al (2010) One-step electrohydrodynamic production of drug-loaded micro- and nanoparticles. J R Soc Interface 7:667–675

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Valo H, Peltonen L, Vehvilaeinen S et al (2009) Electrospray encapsulation of hydrophilic and hydrophobic drugs in poly(L-lactic acid) nanoparticles. Small 5:1791–1798

    Article  CAS  PubMed  Google Scholar 

  57. Heyder J, Gebhardt J, Rudolf G et al (1986) Deposition of particles in the human respiratory tract in the size range 0.005–15 μm. J Aerosol Sci 17:811–825

    Article  Google Scholar 

  58. Cook RO, Pannu RK, Kellaway IW (2005) Novel sustained release microspheres for pulmonary drug delivery. J Control Release 104:79–90

    Article  CAS  PubMed  Google Scholar 

  59. Mizoe T, Ozeki T, Okada H (2007) Preparation of drug nanoparticle-containing microparticles using a 4-fluid nozzle spray drier for oral, pulmonary, and injection dosage forms. J Control Release 122:10–15

    Article  CAS  PubMed  Google Scholar 

  60. Ely L, Roa W, Finlay WH et al (2007) Effervescent dry powder for respiratory drug delivery. Eur J Pharm Biopharm 65:346–353

    Article  CAS  PubMed  Google Scholar 

  61. Yamamoto H, Hoshina W, Kurashima H et al (2007) Engineering of poly(DL-lactic-co-glycolic acid) nanocomposite particles for dry powder inhalation dosage forms of insulin with the spray-fluidized bed granulating system. Adv Powder Technol 18:215–228

    Article  CAS  Google Scholar 

  62. Azarmi S, Tao X, Chen H et al (2006) Formulation and cytotoxicity of doxorubicin nanoparticles carried by dry powder aerosol particles. Int J Pharm 319:155–161

    Article  CAS  PubMed  Google Scholar 

  63. Grenha A, Seijo B, Remunan-Lopez C (2005) Microencapsulated chitosan nanoparticles for lung protein delivery. Eur J Pharm Sci 25:427–437

    Article  CAS  PubMed  Google Scholar 

  64. Sham JOH, Zhang Y, Finlay WH et al (2004) Formulation and characterization of spray-dried powders containing nanoparticles for aerosol delivery to the lung. Int J Pharm 269:457–467

    Article  CAS  PubMed  Google Scholar 

  65. Hadinoto K, Zhu K, Tan RBH (2007) Drug release study of large hollow nanoparticulate aggregates carrier particles for pulmonary delivery. Int J Pharm 341:195–206

    Article  CAS  PubMed  Google Scholar 

  66. Jensen DMK, Cun D, Maltesen MJ et al (2010) Spray drying of siRNA-containing PLGA nanoparticles intended for inhalation. J Control Release 142:138–145

    Article  PubMed  Google Scholar 

  67. Tsapis N, Bennett D, Jackson B et al (2002) Trojan particles: large porous carriers of nanoparticles for drug delivery. Proc Natl Acad Sci U S A 99:12001–12005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Heyder J (2004) Deposition of inhaled particles in the human respiratory tract and consequences for regional targeting in respiratory drug delivery. Proc Am Thorac Soc 1:315–320

    Article  CAS  PubMed  Google Scholar 

  69. Beck-Broichsitter M, Merkel OM, Kissel T (2012) Controlled pulmonary drug and gene delivery using polymeric nano-carriers. J Control Release 161:214–224

    Article  CAS  PubMed  Google Scholar 

  70. Beck-Broichsitter M, Schweiger C, Schmehl T et al (2012) Characterization of novel spray-dried polymeric particles for controlled pulmonary drug delivery. J Control Release 158:329–335

    Article  CAS  PubMed  Google Scholar 

  71. Beck-Broichsitter M, Knuedeler MC, Schmehl T et al (2013) Following the concentration of polymeric nanoparticles during nebulization. Pharm Res 30:16–24

    Article  CAS  PubMed  Google Scholar 

  72. Watts AB, McConville JT, Williams RO III (2008) Current therapies and technological advances in aqueous aerosol drug delivery. Drug Dev Ind Pharm 34:913–922

    Article  CAS  PubMed  Google Scholar 

  73. Anton N, Jakhmola A, Vandamme TF (2012) Trojan microparticles for drug delivery. Pharmaceutics 4:1–25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Forbes B, Ehrhardt C (2005) Human respiratory epithelial cell culture for drug delivery applications. Eur J Pharm Biopharm 60:193–205

    Article  CAS  PubMed  Google Scholar 

  75. Lehmann A, Daum N, Bur M et al (2011) An in vitro triple cell co-culture model with primary cells mimicking the human alveolar epithelial barrier. Eur J Pharm Biopharm 77:398–406

    Article  CAS  PubMed  Google Scholar 

  76. Rothen-Rutishauser B, Mueller L, Blank F et al (2008) A newly developed in vitro model of the human epithelial airway barrier to study the toxic potential of nanoparticles. ALTEX 25:191–196

    PubMed  Google Scholar 

  77. Paur HR, Cassee FR, Teeguarden JG et al (2011) In-vitro cell exposure studies for the assessment of nanoparticle toxicity in the lung – a dialog between aerosol science and biology. J Aerosol Sci 42:668–692

    Article  CAS  Google Scholar 

  78. Lenz A, Karg E, Lentner B et al (2009) A dose-controlled system for air-liquid interface cell exposure and application to zinc oxide nanoparticles. Part Fibre Toxicol 6:32

    Article  PubMed Central  PubMed  Google Scholar 

  79. Hein S, Bur M, Schaefer UF et al (2011) A new Pharmaceutical Aerosol Deposition Device on Cell Cultures (PADDOCC) to evaluate pulmonary drug absorption for metered dose dry powder formulations. Eur J Pharm Biopharm 77:132–138

    Article  CAS  PubMed  Google Scholar 

  80. Beck-Broichsitter M, Schmehl T, Seeger W et al (2011) Evaluating the controlled release properties of inhaled nanoparticles using isolated, perfused, and ventilated lung models. J Nanomaterials 2011:1–16, article ID 163791

    Article  Google Scholar 

  81. Sakagami M (2006) In vivo, in vitro and ex vivo models to assess pulmonary absorption and disposition of inhaled therapeutics for systemic delivery. Adv Drug Deliv Rev 58:1030–1060

    Article  CAS  PubMed  Google Scholar 

  82. Beck-Broichsitter M, Gauss J, Packhaeuser CB et al (2009) Pulmonary drug delivery with aerosolizable nanoparticles in an ex vivo lung model. Int J Pharm 367:169–178

    Article  CAS  PubMed  Google Scholar 

  83. Beck-Broichsitter M, Gauss J, Gessler T et al (2010) Pulmonary targeting with biodegradable salbutamol-loaded nanoparticles. J Aerosol Med 23:47–57

    Article  CAS  Google Scholar 

  84. Rytting E, Bur M, Cartier R et al (2010) In vitro and in vivo performance of biocompatible negatively-charged salbutamol-loaded nanoparticles. J Control Release 141:101–107

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Beck-Broichsitter PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bohr, A., Ruge, C.A., Beck-Broichsitter, M. (2014). Preparation of Nanoscale Pulmonary Drug Delivery Formulations by Spray Drying. In: Capco, D., Chen, Y. (eds) Nanomaterial. Advances in Experimental Medicine and Biology, vol 811. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8739-0_10

Download citation

Publish with us

Policies and ethics