Skip to main content

The Ecology of Nematophagous Fungi in Natural Environments

  • Chapter
  • First Online:
Nematode-Trapping Fungi

Part of the book series: Fungal Diversity Research Series ((FDRS,volume 23))

Abstract

Nematode-trapping fungi have extensively been studied both because of their unique predatory life history and because they are potential biocontrol agents of economically important plant- and animal- parasitic nematodes. Fundamental knowledge of the ecology of these fungi is therefore essential before the value of such biocontrol methods can be assessed. The ecology of nematode-trapping fungi is reviewed in this chapter. Topics dealt with include occurrence and habitats, geographical and seasonal distribution, quantification of abundance, and effects of soil conditions and nematode density on their distribution. Competition between nematodes and nematophagous fungi, the effect of fungistasis and extreme ecological factors such as heavy metals and salinity on these fungi, and their genetic diversity and speciation are included in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahrén, D., Ursing, B. M., & Tunlid, A. (1998). Phylogeny of nematode-trapping fungi based on 18S rDNA sequences. FEMS Microbiology Letters, 158, 179–184.

    PubMed  Google Scholar 

  • Ahrén, D., Faedo, M., Rajastiekar, B., & Tunlid, A. (2004). Low genetic diversity among isolates of the nematode-trapping fungus Duddingtonia flagrans: Evidence for recent worldwide dispersion from a single common ancestor. Mycological Research, 108, 1205–1214.

    PubMed  Google Scholar 

  • Alabouvette, C. (1999). Fusarium wilt suppressive soils: An example of disease suppressive soil. Australasia Plant Pathology, 28, 57–64.

    Google Scholar 

  • Alexander, M. (1981). Why microbial predators and parasites do not eliminate their prey and hosts. Annual Review Microbiology, 35, 113–133.

    CAS  Google Scholar 

  • Ananko, G., & Teplyakova, T. (2011). Factors responsible for transition of the Duddingtonia flagrans carnivorous fungus from the saprotrophic to the zootrophic nutrition type. Microbiology (Reading, England), 80, 188–193.

    CAS  Google Scholar 

  • Bailey, F., & Gray, N. F. (1989). The comparison of isolation techniques for nematophagous fungi from soil. Annals of Applied Biology, 114, 125–132.

    Google Scholar 

  • Barron, G. L. (Ed). (1977). The nematode-destroying fungi. [Topics in Mycology No. 1.]. Guelph: Canadian Biological Publications.

    Google Scholar 

  • Boag, B., & Lopez-Llorca, L. V. (1989). Nematodes and nematophagous fungi associated with cereal fields and permanent pasture in Eastern Scotland. Crop Research, 29, 1–10.

    Google Scholar 

  • Bouwman, L. A., Hoenderboom, G. H., van der Maas K. J., & de Ruiter P. C. (1996). Effects of nematophagous fungi on numbers and death rates of bacterivorous nematodes in arable soil. Journal of Nematology, 28, 26–35.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Braga, F. R., Araújo, J. V., Araujo, J. M., Tavela, A. O., Ferreira, S. R., Freitas Soares, F. E., Benjamin, L. D. A., & Frassy, L. N. (2011). Influence of the preservation period in silica-gel on the predatory activity of the isolates of Duddingtonia flagrans on infective larvae of cyathostomins (Nematoda: Cyathostominae). Experimental Parasitology, 128, 460–463.

    PubMed  Google Scholar 

  • Braga, F. R., Araújo, J. V., Soares, F. E. F., Araujo, J. M., Tavela, A. O., de Carvalho L. M., de Mello I. N. K., de Paula A. T., Lelis, R., & Queiroz, J. H. (2013). Interaction of the nematophagous fungus Duddingtonia flagrans on Amblyomma cajannense engorged females and enzymatic characterisation of its chitinase. Biocontrol Science and Technology, 23(5), 584–594.

    Google Scholar 

  • Carneiro, R., Gomes, M., Hidalgo-Diaz, L., Martins, I., Ayres, deS. SilvaK. F., Guimaraes, deS. M., & Tigano, M. S. (2011). Effect of nematophagous fungi on reproduction of Meloidogyne enterolobii on guava (Psidium guajava) plants. Nematology, 13, 721–728.

    Google Scholar 

  • Cho, C. H., Kang, D. S., Kim, Y. J., & Whang, K. S. (2008). Morphological and Phylogenetic Characteristics of a Nematophagous Fungus, Drechslerella brochopaga Kan-23. The Korean. Journal of Microbiology, 44, 63–68.

    Google Scholar 

  • Cooke, R. C. (1962). The ecology of nematode-trapping fungi in the soil. Annals of Applied Biology, 50, 507–513.

    Google Scholar 

  • Cooke, R. C. (1963). Ecological characteristics of nematode-trapping Hyphomycetes I. Preliminary studies. Annals of Applied Biology, 52, 431–437.

    Google Scholar 

  • Dackman, C., Olsson, S., Jansson, H. B., Lundgren, B., & Nordbring-Hertz, B. (1987). Quantification of predatory and endoparasitic nematophagous fungi in soil. Microbial Ecology, 13, 89–93.

    PubMed  CAS  Google Scholar 

  • Dackman, C., Jansson, H. B., & Nordbring-Hertz, B. (1992). Nematophagous fungi and their activities in soil. In G. Stotzky & B. J.M. (Eds.), Soil biochemistry (pp. 95–103). New York: Marcel Dekker.

    Google Scholar 

  • De Boer, W., Verheggen, P., Klein Gunnewiek, P. J. A., George, A. K., & Johannes, A. V. (2003). Microbial community composition affects soil fungistasis. Applied and Environmental Microbiology, 69, 835–844.

    PubMed Central  PubMed  CAS  Google Scholar 

  • De Almeida, G. L., Santurio, J. M., Filho, J. O., Zanette, R. A., Camillo, G., Flores, A. G., da Silva, J. H., & de, laR. M. L. (2012). Predatory activity of the fungus Duddingtonia flagrans in equine strongyle infective larvae on natural pasture in the southern region of Brazil. Parasitological Research, 110, 657–662.

    Google Scholar 

  • Dijksterhuis, J., Sjollema, K. A., Veenhuis, M., & Harder, W. (1994). Competitive interactions between two nematophagous fungi during infection and digestion of the nematode Panagrellus redivivus. Mycological Research, 98, 1458–1462.

    Google Scholar 

  • Dobbs, C. G., & Hinson, W. H. (1953). A widespread fungistasis in soil. Nature, 172, 197–199.

    PubMed  CAS  Google Scholar 

  • Dobbs, C. G., & Gash, M. J. (1965). Microbial and residual mycostasis in soils. Nature, 207, 1354–1356.

    Google Scholar 

  • Drechsler, C. (1937). Some hyphomycetes that prey on free-living terricolous nematodes. Mycologia, 29, 447–552.

    Google Scholar 

  • Duddington, C. L. (1951). The ecology of predaceous fungi I preliminary survey. Transactions of the British Mycological Society, 34, 322–331.

    Google Scholar 

  • Duddington, C. L. (1954). Nematode-destroying fungi in agricultural soils. Nature, 173, 500–501.

    PubMed  CAS  Google Scholar 

  • Durand, D. T., Boshoff, H. M., Michael, L. M., & Krecek, R. C. (2005). Survey of nematophagous fungi in South Africa: The Onderstepoort. Journal of Veterinary Research, 72, 185–187.

    CAS  Google Scholar 

  • El-Borai, F. E., Campos-Herrera, R., Stuart, R. J., & Duncan, L. W. (2011). Substrate modulation, group effects and the behavioral responses of entomopathogenic nematodes to nematophagous fungi. Journal of Invertebrate Pathology, 106, 347–356.

    PubMed  Google Scholar 

  • Ellis, R. J., Timms-Wilson, T. M., & Bailey, M. J. (2000). Identification of conserved traits in fluorescent pseudomonads with antifungal activity. Environmental Microbiology, 2, 274–284.

    PubMed  CAS  Google Scholar 

  • Falbo, M. K., Soccol, V. T., Sandini, I. E., Vicente, V. A., Robl, D., & Soccol, C. R. (2013). Isolation and characterization of the nematophagous fungus Arthrobotrys conoides. Parasitology Research, 112, 177–185.

    PubMed  Google Scholar 

  • Fernandez, A. S., Larsen, M., Wolstrup, J., Gronvold, J., Nansen, P., & Bjorn, H. (1999). Growth rate and trapping efficacy of nematode-trapping fungi under constant and fluctuating temperatures. Parasitology Research, 85, 661–668.

    PubMed  CAS  Google Scholar 

  • Gray, N. F. (1983a). Ecology of nematophagous fungi: Panagrellus redivivus as the target organism. Plant and Soil, 73, 293–297.

    Google Scholar 

  • Gray, N. F. (1983b). Ecology of nematophagous fungi: Distribution and habitat. Annals of Applied Biology, 102, 501–509.

    Google Scholar 

  • Gray, N. F. (1987). Nematophagous fungi with particular reference to their ecology. Biological Review, 62, 254–304.

    Google Scholar 

  • Gray, N. F., & Bailey, F. (1985). Ecology of nematophagous fungi: Vertical distribution in a deciduous woodland. Plant and Soil, 86, 217–223.

    Google Scholar 

  • Gronvold, J., Wolstrup, J., Nansen, P., Henriksen, S. A., Larsen, M., & Bresciani, J. (1993). Biological control of nematode parasites in cattle with nematode-trapping fungi: A survey of Danish studies. Veterinary Parasitology, 48, 311–325.

    PubMed  CAS  Google Scholar 

  • Hao, Y., Mo, M., Su, H., & Zhang, K. Q. (2005). Ecology of aquatic nematode-trapping hyphomycetes in southwestern China. Aquatic Microbial Ecology, 40, 175–181.

    Google Scholar 

  • Hennebert, G. L. (Ed.). (1987). Pleoanamorphy and its nomenclatural problem. Pleomorphic fungi: The diversity and its taxonomic implications. Tokyo: Kodansha Ltd

    Google Scholar 

  • Hidalgo-Diaz, L., Bourne, J. M., Kerry, B. R., & Rodriguez, M. G. (2000). Nematophagous Verticillium spp. in soils infested with Meloidogyne spp. in Cuba: Isolation and screening. International Journal of Pest Management, 46, 277–284.

    Google Scholar 

  • Jaffee, B. A. (2000). Augmentation of soil with the nematophagous fungi Hirsutella rhossiliensis and Arthrobotrys haptotyla. Phytopathology, 90, 498–504.

    PubMed  CAS  Google Scholar 

  • Jaffee, B. A. (2003). Correlations between most probable number and activity of nematode-trapping fungi. Phytopathology, 93, 1599–1605.

    PubMed  CAS  Google Scholar 

  • Jaffee, B. A. (2004a). Do organic amendments enhance the nNematode-trapping fungi Dactylellina haptotyla and Arthrobotrys oligospora? Journal of Nematology, 36, 267–275.

    CAS  Google Scholar 

  • Jaffee, B. A. (2004b). Wood, nematodes, and the nematode-trapping fungus Arthrobotrys oligospora. Soil Biology & Biochemistry, 36, 1171–1178.

    CAS  Google Scholar 

  • Jaffee, B. A., Gaspard, J. T., & Ferris, H. (1989). Density-dependent parasitism of the soil-borne nematode Criconemella xenoplax by the nematophagous fungus Hirsutella rhossiliensis. Microbial Ecology, 17, 193–200.

    PubMed  CAS  Google Scholar 

  • Jaffee, B., Muldoon, A., Anderson, C., & Westerdahl, B. (1991). Detection of the nematophagous fungus Hirsutella rhossiliensis in California sugarbeet fields. Biological Control, 1, 63–67.

    Google Scholar 

  • Jaffee, B., Phillips, R., Muldoon, A., & Mangel, M. (1992). Density-Dependent Host-Pathogen Dynamics in Soil Microcosms. Ecology, 73, 495–506.

    Google Scholar 

  • Jaffee, B. A., Tedford, E. C., & Muldoon, A. E. (1993). Tests for density-dependent parasitism of nematodes by nematode-trapping and endo-parasitic fungi. Biological Control, 3, 329–336.

    Google Scholar 

  • Jaffee, B. A., Strong, D. R., & Muldoon, A. E. (1996). Nematode-trapping fungi of a natural shrubland: Tests for food chain involvement. Mycologia, 88, 554–564.

    Google Scholar 

  • Jaffee, B. A., Ferris, H., & Scow, K. M. (1998). Nematode-trapping fungi in organic and conventional cropping systems. Phytopathology, 88, 344–350.

    PubMed  CAS  Google Scholar 

  • Kelly, P., Good, B., Fitzpatrick, R., Hanrahan, J. P., & de Waal T. D. (2008). Development and application of a PCR diagnostic assay for the accurate and rapid identification of the nematophagous fungus Duddingtonia flagrans. Mycological Research, 112, 1026–1030.

    PubMed  CAS  Google Scholar 

  • Kelly, P., Good, B., Hanrahan, J. P., Fitzpatrick, R., & de Waal T. (2009). Screening for the presence of nematophagous fungi collected from Irish sheep pastures. Veterinary Parasitology, 165, 345–349.

    PubMed  Google Scholar 

  • Koppenhofer, A. M., Jaffee, B. A., Muldoon, A. E., Strong, D. R., & Kaya, H. K. (1996). Effect of nematode-trapping fungi on an entomopathogenic nematode originating from the same field site in California. Journal of Invertebrate Pathology, 68, 246–252.

    PubMed  CAS  Google Scholar 

  • Kumar, N., Singh, R. K., & Singh, K. P. (2011). Occurrence and colonization of nematophagous fungi in different substrates, agricultural soils and root galls. Archives Of Phytopathology And Plant Protection, 44, 1182–1195.

    Google Scholar 

  • Li, T. F., Zhang, K. Q., & Liu, X. Z. (Eds.). (2000). Taxonomy of nematophagous fungi. Beijing: Chinese Scientific & Technological Publication.

    Google Scholar 

  • Li, Y., Hyde, K. D., Jeewon, R., Cai, L., Vijaykrishna, D., & Zhang, K. Q. (2005). Phylogenetics and evolution of nematode-trapping fungi (Orbiliales) estimated from nuclear and protein coding genes. Mycologia, 97, 1034–1046.

    PubMed  CAS  Google Scholar 

  • Li, Z., Zou, C., He, Y., Mo, M., & Zhang, K. Q. (2008). Phylogenetic analysis on the bacteria producing non-volatile fungistatic substances. The Journal of Microbiology, 46, 250–256.

    PubMed  Google Scholar 

  • Li, L., Ma, M., Liu, Y., Zhou, J., Qu, Q., Lu, K., Fu, D., & Zhang, K. Q. (2011a). Induction of trap formation in nematode-trapping fungi by a bacterium. FEMS Microbiology Letters, 322, 157–165.

    CAS  Google Scholar 

  • Li, Z. F., Xu, C. K., Zou, C. S., Qin, X. J., Qiu, H. Y., Qun, D. C., & Mo, M. H. (2011b). Fungistatic intensity of agricultural soil against fungal agents and phylogenetic analysis on the actinobacteria involved. Current Microbiology, 62(4), 1152–1159.

    Google Scholar 

  • Linford, M. B., Yap, F., & Oliveira, J. M. (1938). Reduction of soil populations of the rootknot nematode during decomposition of organic matter. Soil Science, 45, 127–140.

    Google Scholar 

  • Liu, X., & Zhang, K. Q. (1994). Nematode-trapping species of Monacrosporium with special reference to two new species. Mycological Research, 98, 862–868.

    Google Scholar 

  • Liu, X., & Zhang, K. Q. (2003). Dactylella shizishanna sp. nov., from Shizi Mountain, China. Fungal Diversity, 14, 103–107.

    Google Scholar 

  • Liu, X., Xiang, M., & Che, Y. (2009). The living strategy of nematophagous fungi. Mycoscience, 50, 20–25.

    Google Scholar 

  • Lockwood, J. L. (1964). Soil fungistasis. Annual Review of Phytopathology, 2, 351–362.

    Google Scholar 

  • Lockwood, J. L. (1977). Fungistasis in soils. Biological Reviews, 52, 1–43.

    CAS  Google Scholar 

  • Mahoney, C. J., & Strongman, D. B. (1994). Nematophagous fungi from cattle manure in four states of decomposition at three sites in Nova Scotia, Canada. Mycologia, 86, 371–375.

    Google Scholar 

  • Mankau, R. (1980). Biocontrol: Fungi as nematode control agents. Journal of Nematology, 12, 244–252.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Meyer, S. L. F., Carta, L. K., & Rehner, S. A. (2005). Morphological variability and molecular phylogeny of the nematophagous fungus Monacrosporium drechsleri. Mycologia, 97, 405–415.

    PubMed  CAS  Google Scholar 

  • Miao, Z., & Liu, X. (2003). Note on the seasonal fluctuation of the nematodetrapping fungi population in orchards at the vicinity of Beijing. Mycosystema, 22, 77–81.

    Google Scholar 

  • Mo, M., Huang, X., Zhou, W., Huang, Y., Hao, Y., & Zhang, K. Q. (2005). Arthrobotrys yunnanensis sp. nov., the fourth anamorph of Orbilia auricolor. Fungal Diversity, 18, 107–115.

    Google Scholar 

  • Mo, M. H., Chen, W. M., Su, H. Y., Zhang, K. Q., Duan, C. Q., & He, D. M. (2006). Heavy metal tolerance of nematode-trapping fungi in lead-polluted soils. Applied Soil Ecology, 31, 11–19.

    Google Scholar 

  • Mo, M. H., Chen, W. M., Yang, H. R., & Zhang, K. Q. (2008). Diversity and metal tolerance of nematode-trapping fungi in Pb-polluted soils. Journal of Microbiology, 46, 16–22.

    Google Scholar 

  • Mondal, S. N., & Hyakumachi, M. (1998). Carbon loss and germinability, viability, and virulence of chlamydospores of Fusarium solani f. sp. phaseoli after exposure to soil at different pH levels temperatures, and matric potentials. Phytopathology, 88, 148–155.

    PubMed  CAS  Google Scholar 

  • Morton, C. O., Mauchline, T. H., Kerry, B. R., & Hirsch, P. R. (2003). PCR-based DNA fingerprinting indicates host-related genetic variation in the nematophagous fungus Pochonia chlamydosporia. Mycological Research, 107, 198–205.

    PubMed  CAS  Google Scholar 

  • Nguyen, V. L., Bastow, J. L., Jaffee, B. A., & Strong, D. R. (2007). Response of nematode-trapping fungi to organic substrates in a coastal grassland soil. Mycological Research, 111, 856–862.

    PubMed  Google Scholar 

  • Niu, Q., Huang, X., Zhang, L., Xu, J., Yang, D., Wei, K., Niu, X., An, Z., Bennett, J. W., Zou, C., Yang, J., & Zhang, K. Q. (2010). A Trojan horse mechanism of bacterial pathogenesis against nematodes. Proceedings of the National Academy of Sciences of the United States of America, 107, 16631–16636.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Palma-Guerrero, J., Jansson, H. B., Salinas, J., & Lopez-Llorca, L. V. (2008). Effect of chitosan on hyphal growth and spore germination of plant pathogenic and biocontrol fungi. Journal of Applied Microbiology, 104, 541–553.

    PubMed  CAS  Google Scholar 

  • Paraud, C., Lorrain, R., Pors, I., & Chartier, C. (2012). Administration of the nematophagous fungus Duddingtonia flagrans to goats: An evaluation of the impact of this fungus on the degradation of faeces and on free-living soil nematodes. Journal of Helminthology, 86, 95–103.

    PubMed  CAS  Google Scholar 

  • Pathak, E., El-Borai, F. E., Campos-Herrera, R., Johnson, E. G., Stuart, R. J., Graham, J. H., & Duncan, L. W. (2012). Use of real-time PCR to discriminate parasitic and saprophagous behaviour by nematophagous fungi. Fungal Biology, 116, 563–573.

    PubMed  CAS  Google Scholar 

  • Persmark, L., & Jansson, H. B. (1997). Nematophagous fungi in the rhizosphere of agricultural crops. FEMS Microbiology Ecology, 22, 303–312.

    CAS  Google Scholar 

  • Persmark, L., & Nordbring-Hertz, B. (1997). Conidial trap formation of nematode-trapping fungi in soil and soil extracts. FEMS Microbiology Ecology, 22, 313–323.

    CAS  Google Scholar 

  • Persson, Y., Erland, S., & Jansson, H. B. (1996). Identification of the nematode-trapping fungi using RFLP analysis of the PCR-amplified ITS region of ribosomal DNA. Mycological Research, 100, 531–534.

    CAS  Google Scholar 

  • Pfister, D. (1995). Two Arthrobotrys anamorphs from Orbilia auricolor. Mycologia, 87, 684–688.

    Google Scholar 

  • Quinn, M. A. (1987). The influence of saprophytic competition on nematode predation by nematode-trapping fungi. Journal of Invertebrate Pathology, 49, 170–174.

    Google Scholar 

  • Romine, M., & Baker, R. (1973). Soil fungistasis: Evidence for an inhibitory factor. Phytopathology, 63, 756–759.

    CAS  Google Scholar 

  • Rosenzweig, W. D., & Pramer, D. (1980). Influence of cadmium, zinc, and lead on growth, trap formation, and collagenase activity of nematode-trapping fungi. Applied and Environmental Microbiology, 40, 694–696.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rubner, A. (1994). Predaceous fungi from Ecuador. Mycotaxon, 51, 143–151.

    Google Scholar 

  • Rubner, A. (1996). Revision of predacious hyphomycetes in the Dactylella-Monacrosporium complex. Studies in Mycology, 39, 1–134.

    Google Scholar 

  • Sünder, A., & Lysek, G. (1988). Quantitative investigations on nematode-trapping hyphomycetes from woodland soils. FEMS Microbiology Letters, 53, 285–290.

    Google Scholar 

  • Satchuthananthavale, V., & Cooke, R. C. (1967a). Carbohydrate nutrition of some nematode-trapping fungi. Nature, 214, 321–322.

    CAS  Google Scholar 

  • Satchuthananthavale, V., & Cooke, R. C. (1967b). Vitamin requirements of some nematode-trapping fungi. Transactions of the British Mycological Society, 50, 221–228.

    CAS  Google Scholar 

  • Saumell, C. A., & Padilha, T. (2000). Influence of weather and time of deposition on sheep faeces colonization by nematophagous fungi in the Mata region of Minas Gerais State, Brazil. Applied Soil Ecology, 14, 63–70.

    Google Scholar 

  • Saxena, G., & Lysek, G. (1993). Observation of nematophagous fungi in natural soils by fluorescence microscopy and their correlation with isolation. Mycological Research, 97, 1005–1011.

    Google Scholar 

  • Saxena, G., & Mukerji, K. G. (1991). Distribution of nematophagous fungi in Varanasi, India. Nova Hedwigia, 52, 487–495.

    Google Scholar 

  • Saxena, G. (2008). Observations on the occurrence of nematophagous fungi in Scotland. Applied soil ecology: A section of. Agriculture, Ecosystems & Environment, 39, 352–357.

    Google Scholar 

  • Scholler, M., Hagedorn, G., & Rubner, A. (1999). A reevaluation of predatory orbiliaceous fungi. II. A new generic concept. Sydowia, 51, 89–113.

    Google Scholar 

  • Shenoy, B. D., Jeewon, R., & Hyde, K. D. (2007). Impact of DNA sequence-data on the taxonomy of anamorphic fungi. Fungal Diversity, 26, 1–54.

    Google Scholar 

  • Shams Ghahfarokhi, M., Razzaghi Abyaneh, M., Ranjbar Bahadori, S., Eslami, A., Zare, R., & Ebrahimi, M. (2004). Screening of soil and sheep faecal samples for predacious fungi: Isolation and characterization of the nematode-trapping fungus Arthrobotrys oligospora. Iranian Biomedical Journal, 8, 135–142.

    Google Scholar 

  • Singh, U. B., Sahu, A., Sahu, N., Singh, R., Prabha, R., Singh, D. P., Sarma, B., & Manna, M. (2012). Co-inoculation of Dactylaria brochopaga and Monacrosporium eudermatum affects disease dynamics and biochemical responses in tomato (Lycopersicon esculentum Mill.) to enhance bio-protection against Meloidogyne incognita. Crop Protection, 35, 102–109.

    CAS  Google Scholar 

  • Singh, U. B., Sahu, A., Sahu, N., Singh, B. P., Singh, R., Singh, D. P., Jaiswal, R., Sarma, B., Singh, H., & Manna, M. (2013). Can endophytic Arthrobotrys oligospora modulate accumulation of defence related biomolecules and induced systemic resistance in tomato (Lycopersicon esculentum Mill.) against root knot disease caused by Meloidogyne incognita. Applied Soil Ecology, 63, 45–56.

    Google Scholar 

  • Smith, M. E., & Jaffee, B. A. (2009). PCR primers with enhanced specificity for nematode-trapping fungi (Orbiliales). Microbial Ecology, 58, 117–128.

    PubMed  CAS  Google Scholar 

  • Soares, P. L. M., Nozaki, MdH., Barbosa, B. F. F., Santos, J. Md, & Barbosa, J. C. (2009). Growth and sporulation of two species of Arthrobotrys Corda in different culture media and two environments. Bioscience Journal, 25, 63–74.

    Google Scholar 

  • Su, H., Hao, Y., Mo, M., & Zhang, K. Q. (2007). The ecology of nematode-trapping hyphomycetes in cattle dung from three plateau pastures. Veterinary Parasitology, 144, 293–298.

    PubMed  Google Scholar 

  • Su, H., Liu, S., Li, Y., Cao, Y., Chen, M., & Yang, X. (2011). Arthrobotrys latispora, a new nematode-trapping fungus from southwest China. Mycotaxon, 117, 29–36.

    Google Scholar 

  • Swe, A. (2009). Biodiversity, systematics and ecology of nematode-trapping fungi from Hong Kong. PhD Thesis. University of Hong Kong, Hong Kong.

    Google Scholar 

  • Swe, A., Jeewon, R., Pointing, S. B., & Hyde, K. D. (2008). Taxonomy and molecular phylogeny of Arthrobotrys mangrovispora, a new marine nematode-trapping fungal species. Botanica Marina, 51, 331–338.

    Google Scholar 

  • Swe, A., Jeewon, R., Pointing, S. B., & Hyde, K. D. (2009). Diversity and abundance of nematode-trapping fungi from decaying litter in terrestrial, freshwater and mangrove habitats. Biodiversity and Conservation, 18, 1695–1714.

    Google Scholar 

  • Vilela, V. L., Feitosa, T. F., Braga, F. R., de Araujo J. V., Souto, D. V., Santos, H. E., Silva, G. L., & Athayde, A. C. (2012). Biological control of goat gastrointestinal helminthiasis by Duddingtonia flagrans in a semi-arid region of the northeastern Brazil. Veterinary Parasitology, 188, 127–133.

    PubMed  Google Scholar 

  • Vilela, V. L. R., Feitosa, T. F., Braga, F. R., de Araújo J. V., de Lucena S. C., Dantas, E. S., Athayde, A. C. R., & Silva, W. W. (2013). Efficacy of Monacrosporium thaumasium in the control of goat gastrointestinal helminthiasis in a semi-arid region of Brazil. Parasitology Research, 112(2), 871–877.

    PubMed  Google Scholar 

  • Wolstrup, J., Nansen, P., Gronvold, J., Henriksen, A. S., & Larsen, M. (1996). Toward practical biological control of parasitic nematodes in domestic animals. Journal of Nematodology, 28, 129–132.

    CAS  Google Scholar 

  • Xu, C., Mo, M., Zhang, L., & Zhang, K. Q. (2004). Soil volatile fungistasis and volatile fungistatic compounds. Soil Biology and Biochemistry, 36, 1997–2004.

    CAS  Google Scholar 

  • Xu, L. L., Lai, Y. L., Wang, L., & Liu, X. Z. (2011). Effects of abscisic acid and nitric oxide on trap formation and trapping of nematodes by the fungus Drechslerella stenobrocha AS6.1. Fungal Biology, 115, 97–101.

    PubMed  CAS  Google Scholar 

  • Yang, Y., Yang, E., An, Z., & Liu, X. (2007). Evolution of nematode-trapping cells of predatory fungi of the Orbiliaceae based on evidence from rRNA-encoding DNA and multiprotein sequences. Proceedings of the National Academy of Sciences of the United States of America, 104, 8379–8384.

    Google Scholar 

  • Yang, E., Xu, L., Yang, Y., Zhang, X., Xiang, M., Wang, C., An, Z., & Liu, X. (2012). Origin and evolution of carnivorism in the Ascomycota (fungi). Proceedings of the National Academy of Sciences of the United States of America, 109, 10960–10965.

    Google Scholar 

  • Yeates, G. W., Skipp, R. A., Chen, L. Y., Waghorn, T. S., & Potter, J. F. (2007). Temporal and spatial aspects of the influence on soil nematodes of depositing artificial pats of sheep faeces containing a range of parasite management agents. Applied Soil Ecology, 37, 106–117.

    Google Scholar 

  • Zhang, Y., Yu, Z. F., Xu, J., & Zhang, K. Q. (2011). Divergence and dispersal of the nematode-trapping fungus Arthrobotrys oligospora from China. Environmental Microbiology Reports, 3, 763–773.

    PubMed  Google Scholar 

  • Zhang, Y., Qiao, M., Xu, J., Cao, Y., Zhang, K. Q., & Yu, Z. F. (2013). Genetic diversity and recombination in natural populations of the nematode‐trapping fungus Arthrobotrys oligospora from China. Ecology and Evolution, 3, 312–325.

    PubMed Central  PubMed  Google Scholar 

  • Zhou, W., & Mo, M. H. (2002). Soil fungistasis on the spore germination of fungi. Journal of Yunnan University (Natural Sciences), 24, 312–315.

    Google Scholar 

  • Zou, C. S., Mo, M. H., Gu, Y. Q., Zhou, J. P., & Zhang, K. Q. (2007). Possible contributions of volatile-producing bacteria to soil fungistasis. Soil Biology and Biochemistry, 39, 2371–2379.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Qin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Mushroom Research Foundation

About this chapter

Cite this chapter

Zhang, Y., Zhang, KQ., Hyde, K. (2014). The Ecology of Nematophagous Fungi in Natural Environments. In: Zhang, KQ., Hyde, K. (eds) Nematode-Trapping Fungi. Fungal Diversity Research Series, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8730-7_4

Download citation

Publish with us

Policies and ethics