Skip to main content

The Neoichnology of Two Terrestrial Ambystomatid Salamanders: Quantifying Amphibian Burrows Using Modern Analogs

  • Chapter
  • First Online:
Experimental Approaches to Understanding Fossil Organisms

Part of the book series: Topics in Geobiology ((TGBI,volume 41))

Abstract

This experiment involved the study of two species of ambystomatid salamanders, Ambystoma tigrinum and Ambystoma opacum (Amphibia: Caudata). Individual salamanders were placed in sediment-filled terrariums and allowed to burrow for 7 to 14 days under natural environmental conditions. Salamanders were then removed and their burrows cast, excavated, and described both qualitatively and quantitatively. Quantitative measurements included the number of surface openings, width, height, width-to-height ratio, total length, maximum depth, slope, branching angle, complexity, and tortuosity. Additional experiments involved variations in soil composition and soil moisture. A. tigrinum burrowed through excavation and compaction techniques whereas A. opacum only used compaction. Burrows produced by A. tigrinum consisted of ramps, branched ramps, U-, W-, Y-, and J-shaped burrows. Small-scale surface mounds were also created by Ambystoma tigrinum. Burrows produced by A. opacum consisted of ramps and branched ramps. Sinuous to straight surface trails were also produced by A. opacum. There was no recognized change in behavior or burrow properties in response to changes in the environmental parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson JD, Graham RE (1967) Vertical migration and stratification of larval Ambystoma. Copeia 1967:371–374

    Article  Google Scholar 

  • Anderson JS, Henrici AC, Sumida SS, Martens T, Berman DS (2008) Georgenthalia clavinasica, a new genus and species of dissorophoid temnospondyl from the Early Permian of Germany, and the relationships of the family Amphibamidae. J Vertebr Paleontol 28:61–75

    Article  Google Scholar 

  • Brand LR (1996) Variations in salamander trackways resulting from substrate differences. J Paleontol 70:1004–1010

    Google Scholar 

  • Brand LR, Tang T (1991) Fossil vertebrate footprints in the Coconino Sandstone (Permian) of northern Arizona: evidence for underwater origin. Geology 19:1201–1204

    Article  Google Scholar 

  • Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Mon 27:326–349

    Article  Google Scholar 

  • Bromley RG (1996) Trace fossils: biology, taphonomy, and applications. Chapman and Hall, New York

    Book  Google Scholar 

  • Burton TM, Likens GE (1975) Salamander populations and biomass in the Hubbard Brook experimental forest, New Hampshire. Copeia 1975:541–546

    Article  Google Scholar 

  • Church SA, Kraus JM, Mitchell JC, Church DR, Taylor DR (2003) Evidence for multiple Pleistocene refugia in the postglacial expansion of the eastern tiger salamander, Ambystoma tigrinum tigrinum. Evolution Int J org Evolution 57:372–383

    Article  Google Scholar 

  • Counts JW, Hasiotis ST (2009) Neoichnological experiments with masked chafer beetles (Coleoptera: Scarabaeidae): implications for backfilled continental trace fossils. Palaios 24:74–91

    Article  Google Scholar 

  • Davic RD, Welsh HH Jr (2004) On the ecological role of salamanders. Annu Rev Ecol Syst 35:405–434

    Article  Google Scholar 

  • Davis RB, Minter NJ, Braddy SJ (2007) The neoichnology of terrestrial arthropods. Palaeogeogr Palaeocl 255:284–307

    Article  Google Scholar 

  • Deocampo DM (2002) Sedimentary structures generated by Hippopotamus amphibius in a lake-margin wetland, Ngorongoro Crater, Tanzania. Palaios 17:212–217

    Article  Google Scholar 

  • Evans SE, Milner AR, Mussett F (1988) The earliest known salamanders (Amphibia, Caudata): a record from the Middle Jurassic of England. Geobios 21:539–552

    Article  Google Scholar 

  • Frey RW (1970) Environmental significance of recent marine Lebensspuren near Beaufort, North Carolina. J Paleontol 44:507–519

    Google Scholar 

  • Frey RW (1968) The lebensspuren of some common marine invertebrates near Beaufort, North Carolina. I. Pelecypod burrows. J Paleontol 42:570–574

    Google Scholar 

  • Frey RW, Curran HA, Pemberton SG (1984) Tracemaking activities of crabs and their environmental significance: the ichnogenus Psilonichnus. J Paleontol 58:333–350

    Google Scholar 

  • Gaillard C (1991) Recent organism traces and ichnofacies on the deep-sea floor off New Caledonia, southwestern Pacific. Palaios 6:302–315

    Article  Google Scholar 

  • Gardner JD (2001) Monophyly and affinities of albanerpetontid amphibians (Temnospondyli; Lissamphibia). Zool J Linnean Soc 131:309–352

    Article  Google Scholar 

  • Gehlbach FR, Kimmel JR, Weems WA (1969) Aggregations and body water relations in tiger salamanders (Ambystoma tigrinum) from the Grand Canyon Rims, Arizona. Physiol Zool 42:173–182

    Google Scholar 

  • Genise JF, Ricardo N, Melchor RN, Archangelsky M, Bala LO, Straneck R, Valais S (2009) Application of neoichnological studies to behavioural and taphonomic interpretation of fossil bird-like tracks from lacustrine settings: the Late Triassic-Early Jurassic? Santo Domingo Formation, Argentina. Palaeogeogr Palaeocl 272:143–161

    Article  Google Scholar 

  • Gingras MK, Maceachern JA, Pickerill RK (2004) Modern perspectives on the Teredolites ichnofacies. Observations from Willapa Bay, Washington. Palaios 19:79–88

    Article  Google Scholar 

  • Gingras MK, Pickerill R, Pemberton SG (2002) Resin cast of modern burrows provides analogs for composite trace fossils. Palaios 17:206–211

    Article  Google Scholar 

  • Groenewald GH, Welman J, MaCeachern JA (2001) Vertebrate burrow complexes from the Early Triassic Cynognathus Zone (Driekoppen Formation, Beaufort Group) of the Karoo Basin, South Africa. Palaios 16:148–160

    Article  Google Scholar 

  • Gruberg ER, Stirling RV (1972) Observations on the burrowing habits of the tiger salamander (Ambystoma tigrinum). Herpetol Rev 4:85–89

    Google Scholar 

  • Hairston NGS (1987) Community ecology and salamander guilds. Cambridge University Press, Cambridge

    Google Scholar 

  • Halfen AF, Hasiotis ST (2010) Neoichnological study of the traces and burrowing behaviors of the western harvester ant Pogonomyrmex occidentalis (Insecta: Hymenoptera: Formicidae): paleopedogenic and paleoecological implications. Palaios 25:703–720

    Article  Google Scholar 

  • Hasiotis ST (2002) Continental trace fossils. Society for Sedimentary Geology, Tulsa

    Google Scholar 

  • Hasiotis ST (2007) Continental ichnology: fundamental processes and controls on trace fossil distribution. In: Miller IIIW (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam, pp 268–284

    Google Scholar 

  • Hasiotis ST, Mitchell CE (1993) A comparison of crayfish burrow morphologies: Triassic and Holocene fossil, paleo‐ and neo‐ichnological evidence, and the identification of their burrowing signatures. Ichnos 2:291–314

    Article  Google Scholar 

  • Hasiotis ST, Wellner RW, Martin AJ, Demko TM (2004) Vertebrate burrows from Triassic and Jurassic continental deposits of North America and Antarctica: their paleoenvironmental and paleoecological significance. Ichnos 11:103–124

    Article  Google Scholar 

  • Hasiotis ST, Platt B, Hembree DI, Everhart M, Miller W (2007) The trace-fossil record of vertebrates. In: Miller IIIW (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam, pp 196–218

    Google Scholar 

  • Hembree DI (2009) Neoichnology of burrowing millipedes: understanding the relationships between ichnofossil morphology, behavior, and sediment properties. Palaios 24:425–439

    Article  Google Scholar 

  • Hembree DI (2013) Neoichnology of the whip scorpion Mastigoproctus giganteus: complex burrows of predatory terrestrial arthropods. Palaios 28:141–162

    Article  Google Scholar 

  • Hembree DI, Hasiotis ST (2006) The identification and interpretation of reptile ichnofossils in paleosols through modern studies. J Sediment Res 76:575–588

    Article  Google Scholar 

  • Hembree DI, Hasiotis ST (2007) Biogenic structures produced by sand-swimming snakes: a modern analog for interpreting continental ichnofossils. J Sediment Res 77:389–397

    Article  Google Scholar 

  • Hembree DI, Hasiotis ST (2008) Miocene vertebrate and invertebrate burrows defining compound paleosols in the Pawnee Creek Formation, Colorado, U.S.A. Palaeogeogr Palaeocl 270:349–365

    Article  Google Scholar 

  • Hembree DI, Johnson LM, Tenwalde RW (2012) Neoichnology of the desert scorpion Hadrurus arizonensis: burrows to biogenic cross lamination. Palaeontol Electron 15:1–34

    Google Scholar 

  • Hertweck G, Wehrmann A, Liebezeit G (2007) Bioturbation structures of polychaetes in modern shallow marine environments and their analogues to Chondrites group traces. Palaeogeogr Palaeocl 245:382–389

    Article  Google Scholar 

  • Holman JA (2006) Fossil salamanders of North America. Indiana University Press, Bloomington

    Google Scholar 

  • Kley N, Kearney M (2007) Adaptation to digging and burrowing. In: Hall BK (ed) Fins into limbs. University of Chicago Press, Chicago, pp 284–309

    Google Scholar 

  • Lockley MG, Hunt AP, Meyer C (1994) Vertebrate tracks and the ichnofacies concept: implications for paleoecology and palichnostratigraphy. In: Donovan SK (ed) The paleobiology of trace fossils. Wiley, New York, pp 241–268

    Google Scholar 

  • Maddin HC, Olori JC, Anderson JS (2011) A redescription of Carrolla craddocki (Lepospondyli: Brachystelechidae) based on high-resolution CT, and the impacts of miniaturization and fossoriality on morphology. J Morphol 272:722–743

    Article  Google Scholar 

  • Marangio MS, Anderson JD (1977) Soil moisture preference and water relations of the marbled salamander, Ambystoma opacum (Amphibia, Urodela, Ambystomatidae). J Herpetol 22:169–176

    Article  Google Scholar 

  • Martin AJ (2006) Resting traces of Ocypode quadrata associated with hydration and respiration. Sapelo Island, Georgia, USA. Ichnos 13:57–67

    Article  Google Scholar 

  • Meadows PS (1991) The environmental impact of burrows and burrowing animals—conclusions and a model. In: Meadows PS, Meadows A (eds) The environmental impact of burrowing animals and animal burrows. Clarendon Press, Oxford, pp 327–338

    Google Scholar 

  • Melchor RN, Genise JF, Umazano AM, Superina M (2012) Pink fairy armadillo meniscate burrows and ichnofabrics from Miocene and Holocene interdune deposits of Argentina: palaeoenvironmental and palaeoecological significance. Palaeogeogr Palaeocl 350–352:149–170

    Article  Google Scholar 

  • Miller MF, Hasiotis ST, Babcock LE, Isbell JL, Collinson JW (2001) Tetrapod and large Burrows of uncertain origin in Triassic high paleolatitude floodplain deposits, Antarctica. Palaios 16:218–232

    Article  Google Scholar 

  • Pearson NJ, Gingras MK, Armitage IA, Pemberton SG (2007) Significance of Atlantic sturgeon feeding excavations, Mary’s Point, Bay of Fundy, New Brunswick, Canada. Palaios 22:457–464

    Article  Google Scholar 

  • Petranka JW, Eldridge ME, Haley KE (1993) Effects of timber harvesting on southern Appalachian salamanders. Conserv Biol 7:363–370

    Article  Google Scholar 

  • Romer AS, Olson EC (1954) Aestivation in a Permian lungfish. Brevoria 30:1–8

    Google Scholar 

  • Schaetzl R, Anderson S (2009) Soils: genesis and geomorphology. Cambridge University Press, Cambridge

    Google Scholar 

  • Seike K, Nara M (2007) Occurrence of bioglyphs on Ocypode crab burrows in a modern sandy beach and its palaeoenvironmental implications. Palaeogeogr Palaeocl 252:458–463

    Article  Google Scholar 

  • Semlitsch RD (1983) Burrowing ability and behavior of salamanders of the genus Ambystoma. Can J Zool 61:616–620

    Article  Google Scholar 

  • Smith JJ, Hasiotis ST (2008) Traces and burrowing behaviors of the cicada nymph Cicadetta calliope: neoichnology and paleoecological significance of extant soil-dwelling insects. Palaios 23:503–513

    Article  Google Scholar 

  • Stebbins RC, Cohen N (1995) A natural history of amphibians. Princeton University Press, Princeton

    Google Scholar 

  • Vitt LJ, Caldwell JP (2008) Herpetology: an introductory biology of amphibians and reptiles. Academic Press, San Diego

    Google Scholar 

  • Voorhies M (1975) Vertebrate burrows. In: Frey RW (ed) The study of trace fossils. Springer-Verlag, New York, pp 325–350

    Google Scholar 

  • Wake MH (1993) The skull as a locomotor organ. In: Hanken J, Hall BK (eds) The skull. Volume 3: functional and evolutionary mechanisms. The University of Chicago Press, Chicago, pp 197–240

    Google Scholar 

  • Welsh HHJ, Lind AJ (1992) Population ecology of two relictual salamanders from the Klamath Mountains of northwestern California. In: McCulloch DR, Barrett RH (eds) Wildlife 2001: populations. Elsevier, London, pp 419–429

    Google Scholar 

  • White CR (2005) The allometry of burrow geometry. J Zool 265:395–403

    Article  Google Scholar 

Download references

Acknowledgments

We thank Ricardo Melchor and Tami Ransom for their suggestions and comments that improved this chapter. We thank Doug Green and Gregory Nadon for their assistance, comments, and suggestions during the completion of this project. Funding for this research was provided in part by the National Science Foundation (EAR-0844256), the American Chemical Society Petroleum Research Fund (49387-UNI8), and an Ohio University Geological Sciences Alumni Research Grant.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix

Appendix

Table A.1 Detailed measurements of burrows produced by A. tigrinum
Table A.2 Detailed measurements of burrows produced by A. opacum
Table A.3 Bray–Curtis similarity index tables showing relative levels of similarity of burrows of A. tigrinum
Table A.4 Bray–Curtis similarity index tables showing relative levels of similarity of burrows of A. opacum
Table A.5 Bray–Curtis similarity index tables showing relative levels of similarity between burrows of A. tigrinum and A. opacum

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dzenowski, N.D., Hembree, D. (2014). The Neoichnology of Two Terrestrial Ambystomatid Salamanders: Quantifying Amphibian Burrows Using Modern Analogs. In: Hembree, D., Platt, B., Smith, J. (eds) Experimental Approaches to Understanding Fossil Organisms. Topics in Geobiology, vol 41. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8721-5_13

Download citation

Publish with us

Policies and ethics