Skip to main content

Large Complex Burrows of Terrestrial Invertebrates: Neoichnology of Pandinus imperator (Scorpiones: Scorpionidae)

  • Chapter
  • First Online:

Part of the book series: Topics in Geobiology ((TGBI,volume 41))

Abstract

Scorpions have comprised a significant portion of the diversity of predatory arthropods since the Late Paleozoic. Many of these animals are active burrowers today and likely have a substantial, if yet unrecognized, trace fossil record. This project involved the study of the burrowing behavior and biogenic structures of the scorpion Pandinus imperator (Scorpiones: Scorpionidae). Individuals and groups of five animals were placed into sediment-filled terrariums for 30–50 days after which the open burrows were cast and described. Additional experiments were conducted in sediments with two different moisture contents to evaluate the response to this altered environmental condition. Specimens of Pandinus imperator excavated their burrows using the first three pairs of walking legs. The burrow morphologies produced consisted of subvertical ramps, helical burrows, and branching burrows. The burrow elements were elliptical in cross section (12 cm wide × 4 cm high) with concave floors and ceilings. Decreased sediment moisture reduced the complexity of the subsurface structures and reduced the likelihood of their preservation due to gravitational collapse. Burrows of Pandinus imperator were compared to those of the desert scorpion, Hadrurus arizonensis, using nonparametric statistics and found to be distinct. Data collected from these and similar neoichnological studies can be applied directly to interpret trace fossil assemblages found in continental paleoenvironments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahlbrandt TS, Andrews S, Gwynne DT (1978) Bioturbation in eolian deposits. J Sed Petrol 48:839–848

    Google Scholar 

  • Bardgett R (2005) The biology of soil: a community and ecosystem approach. Oxford University Press, Oxford

    Google Scholar 

  • Bertling M, Braddy SJ, Bromley RG, Demathieu GR, Genise J, Mikulas R, Nielsen JK, Nielsen KS, Rindsberg AK, Schlirf M, Uchman A (2006) Names for trace fossils: a uniform approach. Lethaia 39:265–286

    Article  Google Scholar 

  • Bradley R (1982) Digestion time and reemergence in the desert grassland scorpion Paruroctonus utahensis (Williams) (Scorpionida, Vaejovidae). Oecologica 55:316–318

    Article  Google Scholar 

  • Brady LF (1947) Invertebrate tracks from the Coconino Sandstone of northern Arizona. J Paleontol 21:466–472

    Google Scholar 

  • Bromley RG (1996) Trace fossils: biology, taphonomy, and applications. Chapman and Hall, London

    Book  Google Scholar 

  • Casper GS (1985) Prey capture and stinging behavior in the emperor scorpion, Pandinus imperator (Koch) (Scorpiones, Scorpionidae). J Arachnol 13:277–283

    Google Scholar 

  • Cloudsley-Thompson JL (1991) Ecophysiology of desert arthropods and reptiles. Springer, Berlin

    Book  Google Scholar 

  • Counts RR, Hasiotis ST (2009) Neoichnological experiments with masked chafer beetles (Coleoptera: Scarabaeidae): implications for backfilled continental trace fossils. Palaios 24:74–91

    Article  Google Scholar 

  • Davis RB, Minter NJ, Braddy SJ (2007) The neoichnology of terrestrial arthropods. Palaeogeogr Palaeocl 255:284–307

    Article  Google Scholar 

  • Deocampo DM (2002) Sedimentary structures generated by Hippopotamus amphibious in a lake- margin wetland, Ngorongoro Crater, Tanzania. Palaios 17:212–217

    Article  Google Scholar 

  • DiMichele WA, Hook RW (1992) Paleozoic terrestrial ecosystems. In: Behrensmeyer AK, Damuth JD, DiMichele WA, Potts R, Sues HD, Wing SL (eds) Terrestrial ecosystems through time. The University of Chicago Press, Chicago

    Google Scholar 

  • Dindal DL (1990) Soil biology guide. Wiley, New York

    Google Scholar 

  • Dunlop JA, Penney D, Jekel D (2013) A summary list of fossil spiders and their relatives. In: Platnick NI (ed) The world spider catalog, version 13.5. American Museum of Natural History, New York

    Google Scholar 

  • Eastwood EB (1978) Notes on the scorpion fauna of the Cape. IV, the burrowing activities of some scorpionids and buthids (Arachnida, Scorpionida). Ann S Afr Mus 74:249–255

    Google Scholar 

  • Gingras MK, Lalond SV, Amskold L, Konhauser KO (2007) Wintering chironomids mine oxygen. Palaios 22:433–438

    Article  Google Scholar 

  • Gobetz KE (2005) Claw impressions in the walls of modern mole (Scalopus aquaticus) tunnels as a means to identify fossil burrows and interpret digging movements. Ichnos 12:227–231

    Article  Google Scholar 

  • Hadley NF, Williams SC (1968) Surface activities of some North American scorpions in relation to feeding. Ecology 49:726–734

    Article  Google Scholar 

  • Halfen AF, Hasiotis ST (2010) Neoichnological study of the traces and burrowing behaviors of the western harvester ant Pognomyrmex occidentalis (Insecta: Hymenoptera: Formicidea): paleopedogenic and paleoecologic implications. Palaios 25:703–720

    Article  Google Scholar 

  • Hammer Ø, Harper D (2006) Paleontolgical data analysis. Blackwell Publishing, Malden

    Google Scholar 

  • Häntzschel W (1975) Trace fossils and problematica. In: Teichert C (ed) Treatise on invertebrate paleontology, part W. Miscellanea, supplement I. Geological Society of America and University of Kansas Press, Lawrence

    Google Scholar 

  • Harrington A (1978) Burrowing biology of the scorpion Cheloctonus jonesii (Arachnida: Scorpionida: Scorpionidae). J Arachnol 5:243–249

    Google Scholar 

  • Hasiotis ST (2003) Complex ichnofossils of solitary and social soil organisms: understanding their evolution and roles in terrestrial paleoecosystems. Palaeogeogr Palaeocl 192:259–320

    Article  Google Scholar 

  • Hasiotis ST, Wellner RW, Martin AJ, Demko TM (2004) Vertebrate burrows from Triassic and Jurassic continental deposits of North America and Antarctica: their paleoenvironmental and paleoecological significance. Ichnos 11:103–124

    Article  Google Scholar 

  • Hasiotis ST (2007) Continental ichnology: fundamental processes and controls on trace fossil distribution. In: Miller IIIW (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam

    Google Scholar 

  • Hasiotis ST, Mitchell CE (1993) A comparison of crayfish burrow morphologies: Triassic and Holocene fossil, paleo- and neo-ichnological evidence, and the identification of their burrowing signatures. Ichnos 2:291–314

    Article  Google Scholar 

  • Hembree DI (2009) Neoichnology of burrowing millipedes: linking modern burrow morphology, organism behavior, and sediment properties to interpret continental ichnofossils. Palaios 24:425–439

    Article  Google Scholar 

  • Hembree DI, Hasiotis ST (2006) The identification and interpretation of reptile ichnofossils in paleosols through modern studies. J Sed Res 76:575–588

    Article  Google Scholar 

  • Hembree DI, Hasiotis ST (2007) Biogenic structures produced by sand-swimming snakes: a modern analog for interpreting continental ichnofossils. J Sed Res 77:389–397

    Article  Google Scholar 

  • Hembree DI, Johnson LM, Tenwalde RW (2012) Neoichnology of the desert scorpion Hadrurus arizonensis: burrows to biogenic cross lamination. Palaeontol Electron 15:1–34

    Google Scholar 

  • Hjelle JT (1990) Anatomy and morphology. In: Polis GA (ed) The biology of scorpions. Stanford University Press, Stanford

    Google Scholar 

  • Jeram AJ (2001) Paleontology. In: Brownell P, Polis G (eds) Scorpion biology and research. Oxford University Press, Oxford

    Google Scholar 

  • Kjellesvig-Waering EN (1986) A restudy of the fossil Scorpionida of the world. Palaeont Amer 55:1–287

    Google Scholar 

  • Koch LE (1978) A comparative study of the structure, function, and adaptation to different habitats of burrows in the scorpion genus Urodacus (Scorpionida, Scorpionidae). Rec W Austral Mus 6:119–146

    Google Scholar 

  • Kühl G, Bergmann A, Dunlop J, Garwood RJ, Rust J (2012) Redescription and paleobiology of Palaeoscorpius devonicus Lehmann, 1944 from the Lower Devonian Hünsruck Slate of Germany. Palaeontology 55:775–787

    Article  Google Scholar 

  • Lavelle P, Spain AV (2005) Soil ecology. Springer, Dordrecht

    Google Scholar 

  • Lawfield AMW, Pickerill RK (2006) A novel contemporary fluvial ichnocoenose: unionid bivalves and the Scoyenia-Mermia ichnofacies transition. Palaios 21:391–396

    Article  Google Scholar 

  • Loope DB (2008) Life beneath the surfaces of active Jurassic dunes: burrows from the Entrada Sandstone of south-central Utah. Palaios 23:411–419

    Article  Google Scholar 

  • Mahsberg D (1990) Brood care and family cohesion in the tropical scorpion Pandinus imperator (Koch) (Scorpiones: Scorpionidae). Acta Zool Fennica 190:267–272

    Google Scholar 

  • Mahsberg D (2001) Brood care and social behavior. In: Brownell P, Polis G (eds) Scorpio biology and research. Oxford University Press, Oxford

    Google Scholar 

  • Marples TG, Shorthouse DJ (1982) An energy and water budget for a population of arid zone scorpion Urodacus yaschenkoi (Birula, 1903). Aust J Ecol 7:119–127

    Article  Google Scholar 

  • McCormick SJ, Polis GA (1990) Prey, predators, and parasites. In: Polis GA (ed) The biology of scorpions. Stanford University Press, Stanford

    Google Scholar 

  • Meadows PS (1991) The environmental impact of burrows and burrowing animals—conclusions and a model. In: Meadows PS, Meadows A (eds) The environmental impact of burrowing animals and animal burrows. Clarendon Press, Oxford

    Google Scholar 

  • Miller MF, Hasiotis ST, Babcock LE, Isbell JL, Collinson JW (2001) Tetrapod and large burrows of uncertain origin in Triassic high paleolatitude floodplain deposits, Antarctica. Palaios 16:218–232

    Article  Google Scholar 

  • Newlands G (1969) Scorpion defensive behavior. Afr Wildl 23:147–153

    Google Scholar 

  • O’Geen AT, Busacca AJ (2001) Faunal burrows as indicators of paleo-vegetation in eastern Washington, USA. Palaeogeogr Palaeocl 169:23–37

    Article  Google Scholar 

  • Osgood Jr RG (1975) The paleontological significance of trace fossils. In: Frey RW (ed) The study of trace fossils: a synthesis of principles, problems, and procedures in ichnology. Springer-Verlag, New York

    Google Scholar 

  • Pemberton SG, Spila M, Pulham AJ, Saunders T, MacEachern JA, Robbins D, Sinclair IK (2001) Ichnology and sedimentology of shallow to marginal marine systems: Ben Nevis and Avalon Reservoirs, Jeanne d’Arc Basin. Geological Association of Canada, Newfoundland

    Google Scholar 

  • Petrunkevitch A (1955) Arachnida. In: Moore RC (ed) Treatise on invertebrate paleontology, part P, Arthropoda 2. Geological Society of America and University of Kansas Press, Lawrence

    Google Scholar 

  • Picard MD (1977) Stratigraphic analysis of the Navajo Sandstone: a discussion. J Sed Petrol 47:475–483

    Article  Google Scholar 

  • Polis GA (1980) Seasonal patterns and age specific variation in the surface activity of a population of desert scorpions in relation to environmental factors. J Anim Ecol 49:1–18

    Article  Google Scholar 

  • Polis GA (1990) Ecology. In: Polis GA (ed) The biology of scorpions. Stanford University Press, Stanford

    Google Scholar 

  • Polis GA, Sissom WD (1990) Life history. In: Polis GA (ed) The biology of scorpions. Stanford University Press, Stanford

    Google Scholar 

  • Polis GA, Myers C, Quinlan M (1986) Burrowing biology and spatial distribution of desert scorpions. J Arid Environ 10:137–146

    Google Scholar 

  • Prendini L (2011) Order Scorpiones C.L. Koch 1850. In: Zhang ZQ (ed) Animal biodiversity: an outline of higher level classification and survey of taxonomic richness. Magnolia Press, Aukland

    Google Scholar 

  • Punzo F (2000a) Desert arthropods: life history variations. Springer, Berlin

    Book  Google Scholar 

  • Punzo F (2000b) Diel activity patterns and diet of the giant whipscorpion Mastigoproctus giganteus (Lucas) (Arachnida, Uropygi) in Big Bend National Park (Chihuahuan Desert). B Brit Arachnol Soc 11:385–387

    Google Scholar 

  • Punzo F (2007) Microhabitat utilization, diet composition, intraguild predation, and diel periodicity in five sympatric species of desert arachnids: a wolf spider (Hogna carolinensis), tarantula spider (Aphonopelma steindachneri), giant whipscorpion (Mastigoproctus giganteus), and scorpion (Diplocentrus bigbendensis). B Brit Arachnol Soc 14:66–73

    Article  Google Scholar 

  • Ratcliffe BC, Fagerstrom JA (1980) Invertebrate Lebensspuren of Holocene floodplains: their morphology, origin, and paleoecological significance. J Paleontol 54:614–630

    Google Scholar 

  • Rodríguez-Tovar FJ (2007) Substrate firmness controlling nesting behavior of Bembix oculata (Hymenoptera, Bembicinae). In: Bromley RG, Buatois LA, Mángano G, Genise JF, Melchor RN (eds) Sediment-organism interactions: a multifaceted ichnology. SEPM, Tulsa

    Google Scholar 

  • Rutin J (1996) The burrowing activity of scorpions (Scorpio maurus palmatus) and their potential contribution to the erosion of Hamra soils in Karkur, central Israel. Geomorphology 15:159–168

    Article  Google Scholar 

  • Schaetzl R, Anderson S (2009) Soils: genesis and geomorphology. Cambridge University Press, Cambridge

    Google Scholar 

  • Scott JJ, Renault RW, Owen RB (2007) Biogenic activity, trace formation, and trace taphonomy in the marginal sediments of saline, alkaline Lake Bogoria, Kenya Rift Valley. In: Bromley RG, Buatois LA, Mángano G, Genise JF, Melchor RN (eds) Sediment-organism interactions: a multifaceted ichnology. SEPM, Tulsa

    Google Scholar 

  • Shachak M, Brand S (1983) The relationship between sit and wait foraging strategy and dispersal in the desert scorpion, Scorpio maurus palmatus. Oecologica 60:371–377

    Article  Google Scholar 

  • Shorthouse DJ, Marples TG (1980) Observations on the burrow and associated behavior of the arid-zone scorpion Urodacus yaschenkoi (Birula). Aust J Zool 28:581–590

    Article  Google Scholar 

  • Sissom WD (1990) Systematics, biogeography, and paleontology. In: Polis GA (ed) The biology of scorpions. Stanford University Press, Stanford

    Google Scholar 

  • Smith JJ, Hasiotis ST (2008) Traces and burrowing behaviors of the cicada nymph Cicadetta calliope: neoichnology and paleoecological significance of extant soil-dwelling insects. Palaios 23:503–513

    Article  Google Scholar 

  • Storm L, Mattathias DN, Smith CJ, Fillmore DL, Szajna M, Simpson EL, Lucas SG (2010) Large vertebrate burrow from the Upper Mississippian Mauch Chunk Formation, eastern Pennsylvania, USA. Palaeogeogr Palaeocl 298:341–347

    Article  Google Scholar 

  • Tałanda M, Dzięcioł S, Sulej T, Niedźwiedzki G (2011) Vertebrate burrow system from the Upper Triassic of Poland. Palaios 26:99–105

    Article  Google Scholar 

  • Tourtlotte G (1974) Studies on the biology and ecology of the northern scorpion Paruroctorus boreus (Girard). Great Basin Nat 34:167–179

    Google Scholar 

  • Tschinkel WR (2003) Subterranean ant nests: trace fossil past and future. Palaeogeogr. Palaeocl 192:321–333

    Article  Google Scholar 

  • Warburg MR, Polis GA (1990) Behavioral responses, rhythms, and activity patterns. In: Polis GA (ed) The biology of scorpions. Stanford University Press, Stanford

    Google Scholar 

  • White CR (2001) The energetics of burrow excavation by the inland robust scorpion, Urodacusyaschenkoi (Birula, 1903). Aust J Zool 49:663–674

    Article  Google Scholar 

  • Williams SC (1966) Burrowing activities of the scorpion Anuroctonus phaeodactylus (Wood) (Scorpionida: Vaejovidae). Proc Calif Acad Sci 34:419–428

    Google Scholar 

  • Wing SL, Sues HD (1992) Mesozoic and Early Cenozoic terrestrial ecosystems. In: Behrensmeyer AK, Damuth JD, DiMichele WA, Potts R, Sues HD, Wing SL (eds) Terrestrial ecosystems through time. The University of Chicago Press, Chicago

    Google Scholar 

Download references

Acknowledgments

I thank Jason Dunlop and Adiël Klompmaker for their thorough reviews and comments that improved this manuscript. I would like to thank my laboratory assistants Jared Bowen, Angeline Catena, Allison Durkee, and Nicole Dzenowski for their work in the Continental Ichnology Research Laboratory and help in caring for the scorpions used in this study. Finally, I thank the National Science Foundation (EAR-0844256) and the American Chemical Society Petroleum Research Fund (49387-UNI8) for their generous support provided to Dr. Hembree to conduct this and similar research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel I. Hembree .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hembree, D. (2014). Large Complex Burrows of Terrestrial Invertebrates: Neoichnology of Pandinus imperator (Scorpiones: Scorpionidae). In: Hembree, D., Platt, B., Smith, J. (eds) Experimental Approaches to Understanding Fossil Organisms. Topics in Geobiology, vol 41. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8721-5_11

Download citation

Publish with us

Policies and ethics