Skip to main content

Immune-Neuroendocrine Integration and Its Evolution

  • Chapter
  • First Online:
Eco-immunology
  • 925 Accesses

Abstract

In the present chapter, the immune-neuroendocrine integration and its evolution will be analyzed. The attention will be especially focused on the evolution of immunological memory in vertebrates and how this have modified the relationships between neuroendocrine and immune systems. We will analyze whether indications provided by eco-immunologists can be of help in describing the evolution of the immune-neuroendocrine system, and verify whether such indications can be applied to all metazoans despite the diversity between vertebrate and invertebrate immune functions and mediators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ader R, Felten D, Cohen N (1990) Interactions between the brain and the immune system. Annu Rev Pharmacol Toxicol 30:561–602

    Article  PubMed  CAS  Google Scholar 

  • Bay-Richter C, Janelidze S, Hallberg L, Brundin L (2011) Changes in behaviour and cytokine expression upon a peripheral immune challenge. Behav Brain Res 222:193–199

    Article  PubMed  CAS  Google Scholar 

  • Berczi I, Quintanar-Stephano A, Kovacs K (2009) Neuroimmune regulation in immunocompetence, acute illness, and healing. Ann N Y Acad Sci 1153:220–239

    Article  PubMed  CAS  Google Scholar 

  • Berkenbosch F, van Oers J, del Rey A, Tilders F, Besedovsky H (1987) Corticotropin-releasing factor-producing neurons in the rat activated by interleukin-1. Science 238:524–526

    Article  PubMed  CAS  Google Scholar 

  • Beutler B (2004) Innate immunity: an overview. Mol Immunol 40:845–859

    Article  PubMed  CAS  Google Scholar 

  • Blalock JE (1984) The immune system as a sensory organ. J Immunol 132:1067–1070

    PubMed  CAS  Google Scholar 

  • Blalock JE (1989) A molecular basis for bidirectional communication between the immune and neuroendocrine systems. Physiol Rev 69:1–32

    PubMed  CAS  Google Scholar 

  • Blalock JE, Smith EM (1980) Human leukocyte interferon: structural and biological relatedness to adrenocorticotropic hormone and endorphins. Proc Natl Acad Sci U S A 77:5972–5974

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Conti B, Tabarean I, Andrei C, Bartfai T (2004) Cytokines and fever. Front Biosci 9:1433–1449

    Article  PubMed  CAS  Google Scholar 

  • Cooper MD, Alder MN (2006) The evolution of adaptive immune systems. Cell 124:815–822

    Article  PubMed  CAS  Google Scholar 

  • Cooper MD, Herrin BR (2010) How did our complex immune system evolve? Nat Rev Immunol 10:2–3

    Article  PubMed  CAS  Google Scholar 

  • Copf T, Goguel V, Lampin-Saint-Amaux A, Scaplehorn N, Preat T (2011) Cytokine signaling through the JAK/STAT pathway is required for long-term memory in Drosophila. Proc Natl Acad Sci U S A 108:8059–8064

    Article  PubMed Central  PubMed  Google Scholar 

  • Coscia MR, Giacomelli S, Oreste U (2011) Toll-like receptors: an overview from invertebrates to vertebrates. Inv Surv J 8:210–226

    Google Scholar 

  • Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46–56

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Demas GE, Zysling DA, Beechler BR, Muehlenbein MP, French SS (2011) Beyond phytohaemagglutinin: assessing vertebrate immune function across ecological contexts. J Anim Ecol 80:710–730

    Article  PubMed  Google Scholar 

  • Dheilly NM, Birch D, Nair SV, Raftos DA (2011) Ultrastructural localization of highly variable 185/333 immune response proteins in the coelomocytes of the sea urchin, Heliocidaris erythrogramma. Immunol Cell Biol 89:861–869

    Article  PubMed  CAS  Google Scholar 

  • Frenois F, Moreau M, O’Connor J, Lawson M, Micon C, Lestage J, Kelley KW, Dantzer R, Castanon N (2007) Lipopolysaccharide induces delayed FosB/DeltaFosB immunostaining within the mouse extended amygdala, hippocampus and hypothalamus, that parallel the expression of depressive-like behavior. Psychoneuroendocrinology 32:516–531

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hauton C, Smith VJ (2007) Adaptive immunity in invertebrates: a straw house without a mechanistic foundation. Bioessays 29:1138–1146

    Article  PubMed  CAS  Google Scholar 

  • Jacob F (1977) Evolution and tinkering. Science 196:1161–1166

    Article  PubMed  CAS  Google Scholar 

  • John LB, Yoong S, Ward AC (2009) Evolution of the Ikaros gene family: implications for the origins of adaptive immunity. J Immunol 182:4792–4799

    Article  PubMed  CAS  Google Scholar 

  • Karanth S, McCann SM (1991) Anterior pituitary hormone control by interleukin 2. Proc Natl Acad Sci U S A 88:2961–2965

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kluger MJ, Ringler DH, Anver MR (1975) Fever and survival. Science 188:166–168

    Article  PubMed  CAS  Google Scholar 

  • Kraaijeveld AR, Godfray HC (1997) Trade-off between parasitoid resistance and larval competitive ability in Drosophila melanogaster. Nature 389:278–280

    Article  PubMed  CAS  Google Scholar 

  • Lochmiller RL, Deerenberg C (2000) Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos 88:87–98

    Article  Google Scholar 

  • Majeske AJ, Oleksyk TK, Smith LC (2013).The Sp185/333 immune response genes and proteins are expressed in cells dispersed within all major organs of the adult purple sea urchin. Innate Immun.19: 569-587

    Google Scholar 

  • Malagoli D, Mandrioli M, Ottaviani E (2004) ProCRH in the teleost Ameiurus nebulosus: gene cloning and role in LPS-induced stress response. Brain Behav Immun 18:451–457

    Article  PubMed  CAS  Google Scholar 

  • Martin LB, Weil ZM, Nelson RJ (2008) Seasonal changes in vertebrate immune activity: mediation by physiological trade-offs. Philos Trans R Soc Lond B Biol Sci 363:321–339

    Article  PubMed Central  PubMed  Google Scholar 

  • Merchant M, Williams S, Trosclair P III, Elsey RM, Mills K (2007) Febrile response to infection in the American alligator (Alligator mississippiensis). Comp Biochem Physiol A 148:921–925

    Article  CAS  Google Scholar 

  • Mulero I, Sepulcre MP, Meseguer J, García-Ayala A, Mulero V (2007) Histamine is stored in mast cells of most evolutionarily advanced fish and regulates the fish inflammatory response. Proc Natl Acad Sci U S A 104:19434–19439

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Murao K, Sato M, Imachi H, Ohe H, Nagai M, Niimi M et al (1998) Expression of truncated pro-opiomelanocortin gene transcript in human leukemia cell lines. Endocr J 45:399–405

    Article  PubMed  CAS  Google Scholar 

  • Naitoh Y, Fukata J, Tominaga T, Nakai Y, Tamai S, Mori K, Imura H (1988) Interleukin-6 stimulates the secretion of adrenocorticotropic hormone in conscious, freely-moving rats. Biochem Biophys Res Commun 155:1459–1463

    Article  PubMed  CAS  Google Scholar 

  • Nelson RJ (2004) Seasonal immune function and sickness responses. Trends Immunol 25:187–192

    Article  PubMed  CAS  Google Scholar 

  • Ottaviani E (2011) Immunocyte: the invertebrate counterpart of the vertebrate macrophage. Inv Surv J 8:1–4

    Google Scholar 

  • Ottaviani E, Franceschi C (1996) The neuroimmunology of stress from invertebrates to man. Prog Neurobiol 48:421–440. (Erratum in: Prog Neurobiol 49:285)

    Article  PubMed  CAS  Google Scholar 

  • Ottaviani E, Franchini A, Cossarizza A, Franceschi C (1992) ACTH-like molecules in lymphocytes. A study in different vertebrate classes. Neuropeptides 23:215–219

    Article  PubMed  CAS  Google Scholar 

  • Ottaviani E, Caselgrandi E, Franchini A, Franceschi C (1993) CRF provokes the release of norepinephrine by hemocytes of Viviparus ater (Gastropoda, Prosobranchia): further evidence in favour of the evolutionary hypothesis of the mobile immune-brain. Biochem Biophys Res Commun 193:446–452

    Article  PubMed  CAS  Google Scholar 

  • Ottaviani E, Franchini A, Caselgrandi E, Cossarizza A, Franceschi C (1994) Relationship between corticotropin-releasing factor and interleukin-2: evolutionary evidence. FEBS Lett 351:19–21

    Article  PubMed  CAS  Google Scholar 

  • Ottaviani E, Capriglione T, Franceschi C (1995a) Invertebrate and vertebrate immune cells express pro-opiomelanocortin (POMC) mRNA. Brain Behav Immun 9:1–8

    Article  CAS  Google Scholar 

  • Ottaviani E, Caselgrandi E, Franceschi C (1995b) Cytokines and evolution: in vitro effects of IL-1α, IL-1β, TNF-α and TNF-β on an ancestral type of stress response. Biochem Biophys Res Commun 207:288–292

    Article  CAS  Google Scholar 

  • Ottaviani E, Caselgrandi E, Kletsas D (1997a) Effect of PDGF and TGF-beta on the release of biogenic amines from invertebrate immunocytes and their possible role in the stress response. FEBS Lett 403:236–238

    Article  CAS  Google Scholar 

  • Ottaviani E, Franchini A, Franceschi C (1997b) Pro-opiomelanocortin-derived peptides, cytokines, and nitric oxide in immune responses and stress: an evolutionary approach. Int Rev Cytol 170:79–141

    Article  CAS  Google Scholar 

  • Ottaviani E, Caselgrandi E, Kletsas D (1998a) The CRH-ACTH-biogenic amine axis in invertebrate immunocytes activated by PDGF and TGF-beta. FEBS Lett 427:255–258

    Article  CAS  Google Scholar 

  • Ottaviani E, Franchini A, Franceschi C (1998b) Presence of immunoreactive corticotropin-releasing hormone and cortisol molecules in invertebrate haemocytes and lower and higher vertebrate thymus. Histochem J 30:61–67

    Article  CAS  Google Scholar 

  • Ottaviani E, Franchini A, Genedani S (1999) ACTH and its role in immune-neuroendocrine functions. A comparative study. Curr Pharm Des 5:673–681

    PubMed  CAS  Google Scholar 

  • Ottaviani E, Malagoli D, Capri M, Franceschi C (2008) Ecoimmunology: is there any room for the neuroendocrine system? Bioessays 30:868–874

    Article  PubMed  Google Scholar 

  • Pope EC, Powell A, Roberts EC, Shields RJ, Wardle R, Rowley AF (2011) Enhanced cellular immunity in shrimp (Litopenaeus vannamei) after ‘vaccination’. PLoS One 6:e20960

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Putti R, Buono S, Ottaviani E (1999) PP/PYY cells from endocrine pancreas of the scincid lizard Eumeces inexpectatus synthesize ACTH- and alpha-MSH-like molecules. Gen Comp Endocrinol 116:153–163

    Article  PubMed  CAS  Google Scholar 

  • RÃ¥berg L, Vestberg M, Hasselquist D, Holmdahl R, Svensson E (2002) Nilsson JA,. Basal metabolic rate and the evolution of the adaptive immune system. Proc Biol Sci 269:817–821

    Article  PubMed Central  PubMed  Google Scholar 

  • Robert J, Ohta Y (2009) Comparative and developmental study of the immune system in Xenopus. Dev Dyn 238:1249–1270

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Roth O, Sadd BM, Schmid-Hempel P, Kurtz J (2009) Strain-specific priming of resistance in the red flour beetle, Tribolium castaneum. Proc R Soc B 276:145–151

    Article  PubMed Central  PubMed  Google Scholar 

  • Schmid-Hempel P (2005) Evolutionary ecology of insect immune defenses. Annu Rev Entomol 50:529–551

    Article  PubMed  CAS  Google Scholar 

  • Schöbitz B, De Kloet ER, Holsboer F (1994) Gene expression and function of interleukin 1, interleukin 6 and tumor necrosis factor in the brain. Prog Neurobiol 44:397–432

    Article  PubMed  Google Scholar 

  • Selye H (1950) Stress and the general adaptation syndrome. Br Med J 1:1383–1392

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sharp B, Matta S, Peterson P, Newton R, Chao C, McAllen K (1989) Tumor necrosis factor is a potent ACTH secretagogue: comparison to interleukin-1β. Endocrinology 124:3131–3133

    Article  PubMed  CAS  Google Scholar 

  • Sheldon BC, Verhulst S (1996) Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol Evol 11:317–321

    Article  PubMed  CAS  Google Scholar 

  • Smith LC (2012) Innate immune complexity in the purple sea urchin: diversity of the sp185/333 system. Front Immunol 3:70

    PubMed Central  PubMed  Google Scholar 

  • Star B, Nederbragt AJ, Jentoft S, Grimholt U, Malmstrøm M, Gregers TF, Rounge TB, Paulsen J, Solbakken MH, Sharma A, Wetten OF, Lanzén A, Winer R, Knight J, Vogel JH, Aken B, Andersen O, Lagesen K, Tooming-Klunderud A, Edvardsen RB, Tina KG, Espelund M, Nepal C, Previti C, Karlsen BO, Moum T, Skage M, Berg PR, Gjøen T, Kuhl H, Thorsen J, Malde K, Reinhardt R, Du L, Johansen SD, Searle S, Lien S, Nilsen F, Jonassen I, Omholt SW, Stenseth NC, Jakobsen KS (2011) The genome sequence of Atlantic cod reveals a unique immune system. Nature 477:207–210

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Stefano GB, Cadet P, Zhu W, Rialas CM, Mantione K, Benz D et al (2002) The blueprint for stress can be found in invertebrates. Neuro Endocrinol Lett 23:85–93

    PubMed  CAS  Google Scholar 

  • Van Boven M, Weissing FJ (2004) The evolutionary economics of immunity. Am Nat 163:277–294

    Article  PubMed  Google Scholar 

  • Varsamos S, Wendelaar Bonga SE, Flik G, Queré R, Commes T (2003) Cloning of a proopiomelanocortin cDNA from the pituitary gland of the sea bass (Dicentrarchus labrax) and assessment of mRNA expression in different tissues by means of real-time PCR. J Endocrinol 176:405–414

    Article  PubMed  CAS  Google Scholar 

  • Watson FL, Püttmann-Holgado R, Thomas F, Lamar DL, Hughes M, Kondo M, Rebel VI, Schmucker D (2005) Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science 309:1874–1878

    Article  PubMed  CAS  Google Scholar 

  • Weigent DA, Blalock JE (1987) Interactions between the neuroendocrine and immune systems: common hormones and receptors. Immunol Rev 100:79–108

    Article  PubMed  CAS  Google Scholar 

  • Weigent DA, Blalock JE (1994) Role of neuropeptides in the bidirectional communication between the immune and neuroendocrine systems. In: Scharrer B, Smith EM, Stefano GB (eds) Neuropeptides and immunoregulation. Springer-Verlag, Berlin, pp 14–27

    Chapter  Google Scholar 

  • Work TM, Balazs GH, Rameyer RA, Chang S (2000) P. and Berestecky, J. Assessing humoral and cell-mediated immune response in Hawaiian green turtles, Chelonia mydas. Vet Immunol Immunopathol 74:179–194

    Article  PubMed  CAS  Google Scholar 

  • Workenhe ST, Rise ML, Kibenge MJ, Kibenge FS (2010) The fight between the teleost fish immune response and aquatic viruses. Mol Immunol 47:2525–2536

    Article  PubMed  CAS  Google Scholar 

  • Ye YH, Chenoweth SF, McGraw EA (2009) Effective but costly, evolved mechanisms of defense against a virulent opportunistic pathogen in Drosophila melanogaster. PLoS Pathog 5:e1000385

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang SM, Loker ES (2004) Representation of an immune responsive gene family encoding fibrinogen-related proteins in the freshwater mollusc Biomphalaria glabrata, an intermediate host for Schistosoma mansoni. Gene 341:255–266

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zimmerman LM, Paitz RT, Vogel LA, Bowden RM (2010a) Variation in the seasonal patterns of innate and adaptive immunity in the red-eared slider (Trachemys scripta). J Exp Biol 213:1477–1483

    Article  CAS  Google Scholar 

  • Zimmerman LM, Vogel LA, Bowden RM (2010b) Understanding the vertebrate immune system: insights from the reptilian perspective. J Exp Biol 213:661–671

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Malagoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Malagoli, D., Ottaviani, E. (2014). Immune-Neuroendocrine Integration and Its Evolution. In: Malagoli, D., Ottaviani, E. (eds) Eco-immunology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8712-3_5

Download citation

Publish with us

Policies and ethics