Skip to main content

From Immunology to Eco-Immunology: More than a New Name

  • Chapter
  • First Online:
Eco-immunology

Abstract

Eco-immunology recognises that immune systems and responses are an integrated part of an animal’s physiology, preventing harm that might be caused by pathogens. Laboratory-based immunology has given a tremendously strong understanding of the mechanisms by which this system functions, though this is focused on a few species. It is clear that immune responses are costly to make, such that animals have difficult decisions of resource allocation to make. For this reason alone, an eco-immunological approach is key to understanding the functional effect of immune responses. Animals live in antigenically complex environments. Because of the superb adaptiveness of the immune system (as well as its redundancy) the immune responses made by different individuals in a population may differ greatly, but the functional effect of this is unclear and ripe for investigation. The research challenges for eco-immunology are substantial, but achievable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An antigen is a molecule to which an immune response is induced. Antigens are typically from pathogens, although experimentally any molecule introduced to an animal acts as an antigen. Auto-antigens are host-derived molecules to which, therefore, an auto-immune response is generated.

References

  • Abolins SR, Pocock MJO, Hafalla JCR, Riley EM, Viney ME (2011) Measures of immune function of wild mice, Mus musculus. Mol Ecol 20:881–892

    Article  PubMed  CAS  Google Scholar 

  • Ardia DR, Schat KA, Winkler DW (2003) Reproductive effort reduces long-term immune function in breeding tree swallows (Tachycineta bicolor). Proc Roy Soc Lond B 270:1679–1683

    Article  Google Scholar 

  • Baracos VE, Whitmore WT, Gale R (1987) The metabolic cost of fever. Can J Physiol Pharmacol 65:1248–1254

    Article  PubMed  CAS  Google Scholar 

  • Bhattarai KK, Xie Q-G, Mantelin S, Bishnoi U, Girke T, Navarre DA et al (2008) Tomato susceptibility to root-knot nematodes requires an intact jasmonic acid signaling pathway. Mol Plant Microbe Interact 9:1205–1214

    Article  CAS  Google Scholar 

  • Bleay C, Wilkes CP, Paterson S, Viney ME (2007) Density-dependent immune responses against the gastrointestinal nematode Strongyloides ratti. Int J Parasitol 37:1501–1509

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bonneaud C, Mazuc J, Gonzalez G, Haussy C, Chastel O, Faivre B et al (2003) Assessing the cost of mounting an immune response. Am Nat 3:367–379

    Article  Google Scholar 

  • Boysen P, Eide DM, Storset AK (2011) Natural killer cells in free-living Mus musculus have a primed phenotype. Mol Ecol 20:5103–5110

    Article  PubMed  CAS  Google Scholar 

  • Brugman S, Nieuwenhuis EES (2010) Mucosal control of the intestinal microbial community. J Mol Med 88:881–888

    Article  PubMed  Google Scholar 

  • Candela M, Maccaferria S, Turronia S, Carnevalib P, Brigidia P (2010) Functional intestinal microbiome, new frontiers in prebiotic design. Int J Food Micro 40:93–101

    Article  CAS  Google Scholar 

  • Cerf-Benussan N, Gaboriau-Routhiau V (2010) The immune system and the gut microbiota: friends or foe? Nat Rev Imm 10:735–744

    Article  CAS  Google Scholar 

  • Chaussabel D, Pascual V, Banchereau J (2010) Assessing the human immune system through blood transcriptomics. BMC Biol 8:84

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chung H, Kasper DL (2010) Microbiota-stimulated immune mechanisms to maintain gut homeostasis. Curr Opin Immun 22:455–460

    Article  CAS  Google Scholar 

  • Crimmins EM, Finch CE (2006) Infection, inflammation, height, and longevity. Proc Natl Acad Sci USA 103:498–503

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cunnington AJ, De Souze JB, Walther M, Riley EM (2012) Malaria impairs resistance to Salmonella through heme- and heme-oxygenase-dependent dysfunctional granulocyte mobilization. Nat Med. doi:10.1038/nm.2601

    Google Scholar 

  • Davies SJ, Grogan JL, Blank RB, Lim KC, Locksley RM, McKerrow JH (2001) Modulation of blood fluke development in the liver by hepatic CD4+ lymphocytes. Science 294:1358–1361

    Article  PubMed  CAS  Google Scholar 

  • Deerenberg C, Apanius V, Daan S, Bos N (1997) Reproductive effort decreases antibody responsiveness. Proc Roy Soc Lond B 264:1021–1029

    Article  Google Scholar 

  • Demas GE, Chefer V, Talan MI, Nelson RJ. (1997) Metabolic costs of mounting an antigen-stimulated immune response in adult and aged C57BL/6J mice. Am J Physiol Regul Integr Comp Physiol 273:R1631–R1637

    CAS  Google Scholar 

  • Devalapalli AP, Lesher A, Shieh K, Solow JS, Everett ML, Edala AS et al (2006) Increased levels of IgE and autoreactive, polyreactive IgG in wild rodents: implications for the hygiene hypothesis. Scand J Immun 64:125–136

    Article  CAS  Google Scholar 

  • Diaz Heijtz R, Wangc S, Anuard F, Qiana Y, Björkholmd B, Samuelssond A et al (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 108:3047–3052

    Article  PubMed  Google Scholar 

  • Ding S, Chi MM, Scull BP, Rigby R, Schwerbrock NMJ, Magness S et al (2010) High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS One 5:e12191

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dobzhansky T (1973) Nothing in biology makes sense except in the light of evolution. Am Bio Teach 35:125–129

    Article  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M et al (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    Article  PubMed Central  PubMed  Google Scholar 

  • Eraud C, Duriez O, Chastel O, Faivre B (2005) The energetic cost of humoral immunity in the Collared Dove, Streptopelia decaocto: is the magnitude sufficient to force energy-based trade-offs? Func Ecol 19:110–118

    Article  Google Scholar 

  • Ewenson E, Zann R, Flannery G (2003) PHA Immune response assay in captive zebra finches is modulated by activity prior to testing. Anim Behav 66:797–800

    Article  Google Scholar 

  • Good RA, Jose D, Cooper WC, Fernandes G, Krammer T, Yunis E (1977) Influence of nutrition on antibody production and cellular immune responses in man, rats, mice, and guinea pigs. In: Suskind RM (ed) Malnutrition and the immune response. Raven Press, New York, pp 169–183

    Google Scholar 

  • Graham AL (2008) Ecological rules governing helminth-microparasite coinfection. Proc Natl Acad Sci USA 105:566–570

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Graham AL, Allen JE, Read AF (2005) Evolutionary causes and consequences of immunopathology. Annu Rev Ecol Syst 36:373–397

    Article  Google Scholar 

  • Hasselquist D, Wasson MF, Winkler DW (2001) Humoral immunocompetence correlates with date of egg-laying and reflects work load in female tree swallows. Behav Ecol 12:93–97

    Article  Google Scholar 

  • Hanssen SA, Hasselquist D, Folstad I, Erikstad KE (2004) Costs of immunity: immune responsiveness reduces survival in a vertebrate. Proc Roy Soc Lond B 271:925–930

    Article  Google Scholar 

  • Hawkins AE, Jewell PA (1962) Food consumption and energy requirements of captive British shrews and the mole. Proc Zoo Soc Lond 138:137–155

    Article  Google Scholar 

  • Ing R, Su Z, Scott ME, Koski KG (2000) Suppressed T helper 2 immunity and prolonged survival of a nematode parasite in protein-malnourished mice. Proc Natl Acad Sci USA 97:7078–7083

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jackson JA, Begon M, Birtles R, Paterson S, Friberg IM, Hall A et al (2011) The analysis of immunological profiles in wild animals: a case study on immunodynamics in the field vole, Microtus agrestis. Mol Ecol 20:893–909

    Article  PubMed  CAS  Google Scholar 

  • Jose DG, Good RA (1973) Quantitative effects of nutritional protein and calorie deficiency upon immune-responses to tumors in mice. Cancer Res 33:807–812

    PubMed  CAS  Google Scholar 

  • Kielmann XX (1977) Nutritional and immune responses of sub clinically malnourished Indian children. In: Suskind RM (ed) Malnutrition and the immune response. Raven Press, New York, pp 429–440

    Google Scholar 

  • Koski KG, Scott ME (2001) Gastrointestinal nematodes, nutrition and immunity: breaking the negative spiral. Annu Rev Nutr 21:297–321

    Article  PubMed  CAS  Google Scholar 

  • Koski KG, Su Z, Scott ME (1999) Energy deficits suppress both systemic and gut immunity during infection. Biochem Biophys Res Comm 264:796–801

    Article  PubMed  CAS  Google Scholar 

  • Lee YK, Mazmanian SK (2010) Has the microbiota played a critical role in the evolution of the adaptive immune system? Science 330:1768–1773

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lello J, Boag B, Fenton A, Stevenson IR, Hudson PJ (2004) Competition and mutualism among the gut helminths of a mammalian host. Nature 428:840–844

    Article  PubMed  CAS  Google Scholar 

  • Ley RE (2010) Obesity and the human microbiome. Curr Opin Gastro 26:5–11

    Article  Google Scholar 

  • Ley RE, Turnbaugh PJ, Klein S, Gfordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023

    Article  PubMed  CAS  Google Scholar 

  • Lochmiller RL, Deerenberg C (2000) Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos 88:87–98

    Article  Google Scholar 

  • Maizels RM (2005) Infections and allergy—helminths, hygiene and host immune regulation. Curr Opin Immunol 17:656–661

    Article  PubMed  CAS  Google Scholar 

  • Martin LB, Scheuerlein A, Wikelski M (2003) Immune activity elevates energy expenditure of house sparrows: a link between direct and indirect costs? Proc Roy Soc Lond B 270:153–158

    Article  Google Scholar 

  • Martinez I, Merino S, Rodriguez-Caabeiro F (2004) Physiological responses to Trichinella spiralis infection in Wistar rats: Is immune response costly? Helminthologia 41:67–71

    Google Scholar 

  • McDade TW (2003) Life history theory and the immune system: steps toward a human ecological immunology. Yearb Phys Anthropol 46:100–125

    Article  Google Scholar 

  • McDade TW, Reyes-Garcia V, Tanner S, Huanca T, Leonard WR (2008) Maintenance versus growth: investigating the costs of immune activation among children in lowland Bolivia. Am J Phys Athropol 136:478–484

    Article  CAS  Google Scholar 

  • Mclean JA, Speakman JR (1999) Energy budgets of lactating and non-reproductive brown long-eared bats (Plecotus auritus) suggest females use compensation in lactation. Funct Ecol 13:360–372

    Article  Google Scholar 

  • Neumann CG, Lawlor GJ, Stiehm ER, Swendseid ME, Newton C, Herbert J et al (1975) Immunologic responses in malnourished children. Am J Clin Nut 28:89–104

    CAS  Google Scholar 

  • Neumann CG, Stiehm ER, Swenseid M, Ferguson AC, Lawlor G (1977) Cell-mediated immune response in Ghanaian children with protein-calorie malnutrition. In: Suskind RM (ed) Malnutrition and the immune response. Raven Press, New York, pp 77–89

    Google Scholar 

  • Nunn CL, Gittleman JL, Antonovics J (2000) Promiscuity and the primate immune system. Science 290:1168–1170

    Article  PubMed  CAS  Google Scholar 

  • Nussey DH, Watt K, Pilkington JG, Zamoyska R, McNeilly TN (2011) Age-related variation in immunity in a wild mammal population. Aging Cell 11:178–180

    Article  PubMed  CAS  Google Scholar 

  • Palacios MG, Sparkman AM, Bronikowski AM (2010) Developmental plasticity of immune defence in two life-history ecotypes of the garter snake, Thamnophis elegans—a common-environment experiment. J Anim Ecol 80:431–437

    Article  PubMed  Google Scholar 

  • Paterson S, Viney ME (2002) Host immune responses are necessary for density-dependence in nematode infections. Parasito 125:283–292

    Article  CAS  Google Scholar 

  • Pennisi E (2010) Body’s hardworking microbes get some overdue respect. Science 330:1619

    Article  PubMed  CAS  Google Scholar 

  • Phelps RG, Turner AN, Rees AJ (1996) Direct identification of naturally processed autoantigen-derived peptides bound to HLA-DR15. J Biol Chem 271:18549–18553

    Article  PubMed  CAS  Google Scholar 

  • Pocino M, Baute L, Malave I (1987) Calorie restriction modifies the delayed-type hypersensitivity response to the hapten trinitrobenzenesulfonic acid and to hapten-modified syngeneic spleen-cells. Cell Immun 109:261–271

    Article  CAS  Google Scholar 

  • RÃ¥berg L, Stjernman M (2003) Natural selection on immune responsiveness in blue tits Parus caeruleus. Evolution 57:1670–1678

    Article  PubMed  Google Scholar 

  • RÃ¥berg L, Vestberg M, Hasselquist D, Holmdahl R, Svensson E, Nilsson J-A (2002) Basal metabolic rate and the evolution of the adaptive immune system. Proc Roy Soc Lond B 269:817–821

    Article  Google Scholar 

  • Rajilic-Stojanovic M, Smidt H, De Vos WM (2007) Diversity of the human gastrointestinal tract microbiota revisited. Env Micro 9:2125–2136

    Article  Google Scholar 

  • Read AF, Allen JE (2000) The economics of immunity. Science 290:1104–1105

    Article  PubMed  CAS  Google Scholar 

  • Round JL, Mazanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Imm 9:313–323

    Article  CAS  Google Scholar 

  • Schulkin J (2003) Rethinking homeostasis: allostatic regulation in physiolgy and pathophysiology. MIT Press, London

    Google Scholar 

  • Segura M, Mattea C, Thawania N, Su Z, Stevensona MM (2009) Modulation of malaria-induced immunopathology by concurrent gastrointestinal nematode infection in mice. Int J Parasitol 39:1525–1532

    Article  PubMed  CAS  Google Scholar 

  • Sparkman AM, Palacios MG (2009) A test of life-history theories of immune defence in two ecotypes of the garter snake, Thamnophis elegans. J Anim Ecol 78:1242–1248

    Article  PubMed  Google Scholar 

  • Speakman J (1997) Factors influencing the daily energy expenditure of small mammals. Proc Nutr Soc 56:1119–1136

    Article  PubMed  CAS  Google Scholar 

  • Suri A, Walters JJ, Kanagawa O, Gross ML, Unanue ER (2003) Specificity of peptide selection by antigen-processing cells homozygous or heterozygous for expression of class II MHC molecules: the lack of competition. Proc Natl Acad Sci USA 100:5330–5335

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Telfer S, Lambin X, Birtles R, Beldomenico P, Burthe S, Paterson S et al (2010) Species interactions in a parasite community drive infection risk in a wildlife population. Science 330:243–246

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031

    Article  PubMed  Google Scholar 

  • Turnbaugh PJ, Backhed F, Fulton L, Gordon JI (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Micro 3:213–223

    Article  CAS  Google Scholar 

  • Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Turner AK, Begon M, Jackson JA, Bradley JE, Paterson S (2011) Genetic diversity in cytokines associated with immune variation and resistance to multiple pathogens in a natural rodent population. PLos Genet 7:e1002343

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Viney ME, Cable J (2011) Macroparasite life-histories. Curr Biol 21:R767–R774

    Article  PubMed  CAS  Google Scholar 

  • Viney ME, Lok JB (2007) Strongyloides spp. In WormBook, The C. elegans Research Community, eds. WormBook. doi/10.1895/wormbook.1.141.1. http://www.wormbook.org

  • Viney ME, Riley EM, Buchanan KL (2005) Optimal immune responses: immunocompetence revisited. Trend Ecol Evoln 20:665–669

    Article  Google Scholar 

  • Wagland BM, Steel JW, Windon RG, Dineen JK (1984) The response of lambs to vaccination and challenge with Trichostrongylus colubriformis: effect of plane of nutrition on, and the inter-relationship between, immunological responsiveness and resistance. Int J Parasitol 14:39–44

    Article  PubMed  CAS  Google Scholar 

  • Westerterp K (1978) How rats economize—energy loss in starvation. Phsiol Zool 50:331–362

    Google Scholar 

  • Williams TD, Christians JK, Aiken JJ, Evanson M (1999) Enhanced immune function does not depress reproductive output. Proc Roy Soc Lond B 266:753–757

    Article  Google Scholar 

  • Xiao W, Mindrinos MN, Seok J, Cuschieri J, Cuenca AG, Hong G et al (2011) A genomic storm in critically injured humans. J Exp Med 208:2581–2590

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Viney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Viney, M., Riley, E. (2014). From Immunology to Eco-Immunology: More than a New Name. In: Malagoli, D., Ottaviani, E. (eds) Eco-immunology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8712-3_1

Download citation

Publish with us

Policies and ethics