Skip to main content

A Spectral Approach to Synchronizability of Interdependent Networks

  • Conference paper
  • First Online:
Nonlinear Phenomena in Complex Systems: From Nano to Macro Scale

Abstract

The quality of life in full developed countries depends on the cooperative functioning of different infrastructures. One of the most striking problems is to understand in simple terms to what extent this cooperation can be assured. The complexity science provides a powerful means to analyze the interaction of such critical infrastructures at pure topological level. The application of the paradigm of complexity to the global system resulting from the interdependent infrastructures leads to the concept of “Network of Networks”. The present work is devoted to understand emergent (that is collective) synchronization behaviors through the spectral analysis of the laplacian. We provide evidence that, upon increasing the number of links between the different infrastructures, the behavior of the total system experiences a drastic changes in its synchronization modes. When few links are introduced, the synchronization inside the component networks is very fast and the global synchronization takes place mainly at the boundaries; on the other side, when the number of links exceeds a threshold, the bottlenecks for the synchronization process localize mainly inside the component networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rinaldi SM, Peerenboom JP, Kelly TK (2001) Identifying, understanding and analyzing critical infrastructure interdependence. IEEE Control Syst Mag 21(6):11

    Article  Google Scholar 

  2. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440

    Article  ADS  Google Scholar 

  3. Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509

    Article  ADS  MathSciNet  Google Scholar 

  4. Newman D, Nkei B, Carreras B, Dobson I, Lynch V, Gradney P (2005). Risk assessment in complex interacting infrastructure systems. In: Proceedings of the 38th annual Hawaii international conference on system sciences, HICSS ’05, Big Island, 2005, p 63. doi:10.1109/HICSS.2005.524

  5. Carreras BA, Newman DE, Gradney P, Lynch VE, Dobson I (2007). Interdependent risk in interacting infrastructure systems. In: Proceedings of the 40th annual Hawaii international conference on system sciences, HICSS ’07, Waikoloa. IEEE Computer Society, Washington, DC, p 112. doi:10.1109/HICSS.2007.285

    Google Scholar 

  6. Brummitt CD, D’Souza RM, Leicht EA (2012) Suppressing cascades of load in interdependent networks. Proc Natl Acad Sci. doi:10.1073/pnas.1110586109

    MATH  Google Scholar 

  7. Lee KM, Kim J, Cho WK, Goh KI, Kim IM (2012) Correlated multiplexity and connectivity in multiplex random networks. New J Phys 14:033027

    Article  Google Scholar 

  8. Leicht EA, D’Souza RM (2009) Percolation on interacting networks. ArXiv e-prints. arXiv:0907.0894

    Google Scholar 

  9. Parshani R, Buldyrev SV, Havlin S (2010) Interdependent networks: reducing the coupling strength leads to a change from a first to second order percolation transition. Phys Rev Lett 105:048701. doi:10.1103/PhysRevLett.105.048701

    Article  ADS  Google Scholar 

  10. Dorogovtsev SN, Mendes JFF, Samukhin AN, Zyuzin AY (2008) Organization of modular networks. Phys Rev E 78:056106. doi:10.1103/PhysRevE.78.056106

    Article  ADS  MathSciNet  Google Scholar 

  11. Wang H, Li Q, D’Agostino G, Havlin S, Stanley HE, Van Mieghem P (2013) Effect of the interconnected network structure on the epidemic threshold. Phys Rev E 88:022801. doi:10.1103/PhysRevE.88.022801

    Article  ADS  Google Scholar 

  12. Gómez S, Díaz-Guilera A, Gómez-Gardeñes J, Pérez-Vicente CJ, Moreno Y, Arenas A (2013) Diffusion dynamics on multiplex networks. Phys Rev Lett 110:028701. doi:10.1103/PhysRevLett.110.028701

    Article  ADS  Google Scholar 

  13. Hernández JM, Wang H, Mieghem PV, D’Agostino G (2013) On synchronization of interdependent networks. Physica A. ArXiv e-prints abs/1304.4731

    Google Scholar 

  14. Buldyrev SV, Parshani R, Paul G, Stanley HE, Havlin S (2010) Catastrophic cascade of failures in interdependent networks. Nature 464(7291):1025. doi:10.1038/nature08932

    Article  ADS  Google Scholar 

  15. Chen J, Lu J, Zhan C, Chen G (2012) Laplacian spectra and synchronization processes on complex networks. In: Thai MyT, Pardalos PM (eds) Handbook of optimization in complex networks: theory and applications. Springer optimization and its applications, chap 4. Springer, New York, pp 81–113

    Google Scholar 

  16. Strogatz S (2000) From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143:1

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Pecora LM, Carroll TL (1998) Master stability functions for synchronized coupled systems. Phys Rev Lett 80:2109. doi:10.1103/PhysRevLett.80.2109

    Article  ADS  Google Scholar 

  18. Jadbabaie A, Motee N, Barahona M (2004). On the stability of the Kuramoto model of coupled nonlinear oscillators. In: Proceedings of the American control conference, Boston, pp 4296–4301

    Google Scholar 

  19. Acebrón JA, Bonilla LL, Pérez-Vicente CJ, Ritort F, Spigler R (2005) The Kuramoto model: a simple paradigm for synchronization phenomena. Rev Mod Phys 77:137

    Article  ADS  Google Scholar 

  20. Cardillo A, Gómez-Gardeñes J, Zanin M, Romance M, Papo D, Pozo Fd, Boccaletti S (2013) Emergence of network features from multiplexity. Sci Rep 3. doi:10.1038/srep01344

  21. Fiedler M (1975) Algebraic connectivity of graphs. Czechoslov Math J 25:619–633

    Article  MathSciNet  Google Scholar 

  22. Bollobas B (2001) Random graphs, 2nd edn. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  23. Watts DJ, Strogatz SH (1998) Collective dynamics of small-world networks. Nature 393:440

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Javier Martin Hernandez, Huijuan Wang and Piet Van Mieghem for their significant and useful suggestions. Interesting discussions with Antonio De Nicola, Antonio Scala and Gene Stanley are also acknowledged. This work was partly supported by the European project MOTIA (Grant JLS-2009-CIPS-AG-C1-016), Prevention, Preparedness and Consequence Management of Terrorism and other Security-related Risks Program European Commission – Directorate-General Home Affairs. This publication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregorio D’Agostino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

D’Agostino, G. (2014). A Spectral Approach to Synchronizability of Interdependent Networks. In: Matrasulov, D., Stanley, H. (eds) Nonlinear Phenomena in Complex Systems: From Nano to Macro Scale. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8704-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8704-8_9

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8703-1

  • Online ISBN: 978-94-017-8704-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics