Skip to main content

Nonequilibrium Quantum Dynamics of Biomolecular Excitons

  • Conference paper
  • First Online:
Nonlinear Phenomena in Complex Systems: From Nano to Macro Scale

Abstract

We investigate the effect of equilibrium and nonequilibrium localized vibrations on the excitation energy transfer efficiency of the Fenna-Matthews-Olson complex. By means of numerically exact real-time path-integral simulations of the transfer dynamics we find that equilibrium vibrations do not enhance coherence times. On the other hand, nonequilibrium vibrations induce prolonged coherence times and increased transfer efficiency. By quantifying the transfer dynamics in terms of a non-Markovianity measure based on the time evolution of the trace distance of two quantum states we find, in all cases, a monotonic decrease of the trace distance with increasing time which implies that the exciton transfer follows a Markovian dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blankenship RE et al (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332:805–809

    Article  ADS  Google Scholar 

  2. Ke B (2003) Photosynthesis: photobiochemistry and photobiophysics Kluwer Academic Publishers, New York

    Google Scholar 

  3. van Amerongen H, Valkunas L, van Grondelle R (2000) Photosynthetic excitons. World Scientific, Singapore

    Book  Google Scholar 

  4. Brixner T et al (2005) Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature (London) 434:625–628

    Article  ADS  Google Scholar 

  5. Engel GS et al (2007) Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature (London) 446:782–786

    Article  ADS  Google Scholar 

  6. Panitchayangkoon G et al (2010) Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc Natl Acad Sci USA 107:12766–12770

    Article  ADS  Google Scholar 

  7. Collini E et al (2010) Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature (London) 463:644–647

    Article  ADS  Google Scholar 

  8. Harel E, Engel GS (2012) Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2). Proc Natl Acad Sci USA 109:706–711

    Article  ADS  Google Scholar 

  9. Cundiff ST, Mukamel S (2013) Optical multidimensional coherent spectroscopy. Phys. Today 66:44–49

    Article  Google Scholar 

  10. Matthews B, Fenna R, Bolognesi M, Schmid M, Olson J (1979) Structure of a bacteriochlorophyll a-protein from the green photosynthetic bacterium Prosthecochloris aestuarii. J Mol Biol 131:259–285

    Article  Google Scholar 

  11. Tronrud DE, Wen J, Gay L, Blankenship RE (2009) The structural basis for the difference in absorbance spectra for the FMO antenna protein from various green sulfur bacteria. Photosynth Res 100:79–87; Protein Data Bank file 3ENI

    Google Scholar 

  12. Wendling M et al (2000) Electron–vibrational coupling in the Fenna-Matthews-Olson complex of Prosthecochloris aestuarii determined by temperature-dependent absorption and fluorescence line-narrowing measurements. J Phys Chem B 104:5825

    Article  Google Scholar 

  13. Nalbach P, Thorwart M (2010) Multiphonon transitions in the biomolecular energy transfer dynamics. J Chem Phys 132:194111

    Article  ADS  Google Scholar 

  14. Milder MTW, Brüggemann B, van Grondelle R, Herek JL (2010) Revisiting the optical properties of the FMO protein. Photosynth Res 104:257–274

    Article  Google Scholar 

  15. Adolphs J, Renger T (2006) How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria. Biophys J 91:2778–2797

    Article  Google Scholar 

  16. Weiss U (2008) Quantum dissipative systems, 3rd edn. World Scientific, Singapore

    Book  MATH  Google Scholar 

  17. May V, Kühn O (2011) Charge and energy transfer dynamics in molecular systems, 3rd edn. Wiley VCH, Weinheim

    Book  Google Scholar 

  18. Renger T, Marcus RA (2002) On the relation of protein dynamics and exciton relaxation in pigment–protein complexes: an estimation of the spectral density and a theory for the calculation of optical spectra. J Chem Phys 116:9997–10019

    Article  ADS  Google Scholar 

  19. Nalbach P, Braun D, Thorwart M (2011) Exciton transfer dynamics and quantumness of energy transfer in the Fenna-Matthews-Olson complex. Phys Rev E 84:041926

    Article  ADS  Google Scholar 

  20. Makri N, Makarov DE (1995) Tensor propagator for iterative quantum time evolution of reduced density matrices. I. Theory. J Chem Phys 102:4600–4610

    Article  ADS  Google Scholar 

  21. Makri N, Makarov DE (1995) Tensor propagator for iterative quantum time evolution of reduced density matrices. II. Numerical methodology. J Chem Phys 102:4611–4618

    Google Scholar 

  22. Thorwart M, Reimann P, Jung P, Fox R (1998) Quantum hysteresis and resonant tunneling in bistable systems. Chem Phys 235:61–80

    Article  ADS  Google Scholar 

  23. Thorwart M, Eckel J, Mucciolo ER (2005) Non-Markovian dynamics of double quantum dot charge qubits due to acoustic phonons. Phys Rev B 72:235320

    Article  ADS  Google Scholar 

  24. Eckel J, Reina JH, Thorwart M (2009) Coherent control of an effective two-level system in a non-Markovian biomolecular environment. New J Phys 11:085001

    Article  Google Scholar 

  25. Nalbach P, Thorwart M (2009) Landau-Zener transitions in a dissipative environment: numerically exact results. Phys Rev Lett 103:220401

    Article  ADS  Google Scholar 

  26. Mujica-Martinez CA, Nalbach P, Thorwart M (2013) Organic π-conjugated copolymers as molecular charge qubits. Phys Rev Lett 111:016802

    Article  ADS  Google Scholar 

  27. Mujica-Martinez CA, Nalbach P, Thorwart M (2013) Quantification of non-Markovian effects in the Fenna-Matthews-Olson complex. Phys Rev E 88:062719

    Article  ADS  Google Scholar 

  28. Christensson N, Kauffmann HF, Pullerits T, Mančal T (2012) Origin of long-lived coherences in light-harvesting complexes. J Phys Chem B 116:7449–7454

    Article  Google Scholar 

  29. Kreisbeck C, Kramer T (2012) Long-lived electronic coherence in dissipative exciton dynamics of light-harvesting complexes. J Phys Chem Lett 3:2828–2833

    Article  Google Scholar 

  30. Chin AW et al (2013) The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes. Nat Phys 9:113–118

    Article  Google Scholar 

  31. Breuer H-P, Laine E-M, Piilo J (2009) Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys Rev Lett 103:210401

    Article  MathSciNet  ADS  Google Scholar 

  32. Liu BH et al (2011) Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems. Nat Phys 7:931–934

    Article  Google Scholar 

  33. Tang JS et al (2012) Measuring non-Markovianity of processes with controllable system-environment interaction. Europhys Lett 97:10002

    Article  ADS  Google Scholar 

  34. Breuer H-P (2012) Foundations and measures of quantum non-Markovianity. J Phys B At Mol Opt Phys 45:154001

    Article  ADS  Google Scholar 

  35. Nielsen MA, Chuang IL (2010) Quantum computation and quantum information, 10th anniversary edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support by the DFG Sonderforschungsbereich 925 “Light-induced dynamics and control of correlated quantum systems” and by the German Academic Exchange Service (DAAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Thorwart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Mujica-Martinez, C.A., Nalbach, P., Thorwart, M. (2014). Nonequilibrium Quantum Dynamics of Biomolecular Excitons. In: Matrasulov, D., Stanley, H. (eds) Nonlinear Phenomena in Complex Systems: From Nano to Macro Scale. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8704-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8704-8_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8703-1

  • Online ISBN: 978-94-017-8704-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics