Skip to main content

From Continuous-Time Random Walks to Continuous-Time Quantum Walks: Disordered Networks

  • Conference paper
  • First Online:

Abstract

Recent years have seen a growing interest in dynamical quantum processes; thus it was found that the electronic energy transfer through photosynthetic antennae displays quantum features, aspects also known from the dynamics of charge carriers along polymer backbones. Hence, in modeling energy transfer one has to extend the classical, master-equation-type formalism and incorporate quantum-mechanical aspects, while still aiming to describe complex networks of molecules over which the transport takes place. The continuous time random walk (CTRW) scheme is widely employed in modeling transport in random environments (Sokolov et al, Phys Today 55:48, 2002) and is mathematically akin to quantum-mechanical Hamiltonians of tight-binding type (Mülken and Blumen, Phys Rep 502:37, 2011; Mülken and Blumen, Phys Rev E 73:066117, 2006); a simple way to see it is to focus on the time-evolution operators in statistical and in quantum mechanics: The transition to the quantal domain leads then to continuous-time quantum walks (CTQW). In this way the CTQW problem stays linear, and thus many results obtained in solving CTRW (such as eigenvalues and eigenfunctions) can be readily reutilized for CTQW. However, the physically relevant properties of the two models differ vastly: In the absence of traps CTQW are time-inversion symmetric and no energy equipartition takes place at long times. Also, the quantum system keeps memory of the initial conditions, a fact exemplified by the occurrence of quasi-revivals (Mülken and Blumen, Phys Rep 502:37, 2011). Here we will exemplify the vastly different behaviors of CTQW and CTRW on disordered networks , namely on small-world networks (Mülken et al, Phys Rev E 76:051125, 2007) and on star-graphs with randomly added bonds (Anishchenko et al, Quantum Inf Process 11:1273, 2012).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agliari E, Blumen A, Mülken O (2008) Dynamics of continuous-time quantum walks on restricted geometries. J Phys A 41:445301

    Article  ADS  MathSciNet  Google Scholar 

  2. Agliari E, Blumen A, Mülken O (2010) Quantum walk approach to search on fractal structures. Phys Rev A 82:012305

    Article  ADS  Google Scholar 

  3. Alexander S, Orbach R (1982) Density of states on fractals: fractons. J Phys (Paris) Lett 43:625

    Article  Google Scholar 

  4. Anishchenko A, Blumen A, Mülken O (2012) Enhancing the spreading of quantum walks on star graphs by additional bonds. Quantum Inf Process 11:1273

    Article  MATH  MathSciNet  Google Scholar 

  5. Bray A, Rodgers G (1988) Diffusion in a sparsely connected space: a model for glass relaxation. Phys Rev B 38:11461

    Article  ADS  MathSciNet  Google Scholar 

  6. Collini E, Wong CY, Wilk KE, Curmi PMG, Brumer P, Scholes GD (2010) Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463:644

    Article  ADS  Google Scholar 

  7. Darázs Z, Kiss T (2010) Pólya number of the continuous-time quantum walks. Phys Rev A 81:062319

    Article  ADS  Google Scholar 

  8. Engel GS, Calhoun TR, Read EL, Ahn T-K, Manal T, Cheng Y-C, Blankenship RE, Fleming GR (2007) Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446:782

    Article  ADS  Google Scholar 

  9. Farhi E, Gutmann S (1998) Quantum computation and decision trees. Phys Rev A 58:915

    Article  ADS  MathSciNet  Google Scholar 

  10. Jespersen S, Sokolov IM, Blumen A (2000) Relaxation properties of small-world networks. Phys Rev E 62:4405

    Article  ADS  Google Scholar 

  11. Kempe J (2003) Quantum random walks-an introductory overview. Contemp Phys 44:307

    Article  ADS  Google Scholar 

  12. Mülken O, Bierbaum V, Blumen A (2006) Coherent exciton transport in dendrimers and continuous-time quantum walks. J Chem Phys 124:124905

    Article  ADS  Google Scholar 

  13. Mülken O, Blumen A (2005) Spacetime structures of continuous-time quantum walks. Phys Rev E 71:036128

    Article  ADS  Google Scholar 

  14. Mülken O, Blumen A (2006) Efficiency of quantum and classical transport on graphs. Phys Rev E 73:066117

    Article  ADS  Google Scholar 

  15. Mülken O, Blumen A (2011) Continuous-time quantum walks: models for coherent transport on complex networks. Phys Rep 502:37

    Article  ADS  MathSciNet  Google Scholar 

  16. Mülken O, Pernice V, Blumen A (2007) Quantum transport on small-world networks: a continuous-time quantum walk approach. Phys Rev E 76:051125

    Article  ADS  Google Scholar 

  17. Mülken O, Volta A, Blumen A (2005) Asymmetries in symmetric quantum walks on two-dimensional networks. Phys Rev A 72:042334

    Article  ADS  Google Scholar 

  18. Nielsen MA, Chuang IL (2000) Quantum computation and quantum information. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  19. Reitzner D, Hillery M, Feldman E, Bužek V (2009) Quantum searches on highly symmetric graphs. Phys Rev A 79:012323

    Article  ADS  Google Scholar 

  20. Salimi S (2009) Continuous-time quantum walks on star graphs. Ann Phys 324:1185

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Sokolov IM, Klafter J, Blumen A (2002) Fractional kinetics. Phys Today 55:48

    Article  Google Scholar 

  22. van Kampen N (1992) Stochastic processes in physics and chemistry. North Holland, Amsterdam

    Google Scholar 

  23. Volta A, Mülken O, Blumen A (2006) Quantum transport on two-dimensional regular graphs. J Phys A 39:14997

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Westermann S, Amthor T, de Oliveira AL, Deiglmayr J, Reetz-Lamour M, Weidemüller M (2006) Dynamics of resonant energy transfer in a cold Rydberg gas. Eur Phys J D 40:37

    Article  ADS  Google Scholar 

  25. Xu X-P (2009) Exact analytical results for quantum walks on star graph. J Phys A 42:115205

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Anastasiia Anishchenko for stimulating discussions. Support from the Deutsche Forschungsgemeinschaft (DFG Grant No. MU2925/1-1), from the Fonds der Chemischen Industrie, from the Deutscher Akademischer Austauschdienst (DAAD Grant No. 56266206), and from the Marie Curie International Research Staff Exchange Science Fellowship within the 7th European Community Framework Program SPIDER (Grant No. PIRSES-GA-2011-295302) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Blumen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Mülken, O., Blumen, A. (2014). From Continuous-Time Random Walks to Continuous-Time Quantum Walks: Disordered Networks. In: Matrasulov, D., Stanley, H. (eds) Nonlinear Phenomena in Complex Systems: From Nano to Macro Scale. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8704-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8704-8_14

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8703-1

  • Online ISBN: 978-94-017-8704-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics