Skip to main content

Resonances in Quantum Networks and Their Generalizations

  • Conference paper
  • First Online:
Nonlinear Phenomena in Complex Systems: From Nano to Macro Scale

Abstract

We discuss resonances in quantum graphs and their more general analogs having ‘edges’ of different dimensions. Since the notion of resonance may mean different things, we show that the two most common definitions, scattering and resolvent resonances, are equivalent in this case. We analyze the high-energy behavior of resonances in quantum graphs and show that it may deviate from the standard Weyl law prediction; we derive a criterion which shows when such a thing happens. We also investigate influence of magnetic fields on graph resonances and show that they are field configurations which remove all ‘true’ resonances from such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adami R, Teta A (1998) On the Aharonov-Bohm Hamiltonian. Lett Math Phys 43:43–54

    Article  MATH  MathSciNet  Google Scholar 

  2. Aizenman M, Sims R, Warzel S (2006) Absolutely continuous spectra of quantum tree graphs with weak disorder. Commun Math Phys 264:371–389

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Berkolaiko G, Kuchment P (2013) Introduction to quantum graphs. American Mathematical Society, Providence

    MATH  Google Scholar 

  4. Bolte J, Endres S (2009) The trace formula for quantum graphs with general self-adjoint boundary conditions. Ann H Poincaré 10:189–223

    Article  MATH  MathSciNet  Google Scholar 

  5. Brüning J, Geyler V (2003) Scattering on compact manifolds with infinitely thin horns. J Math Phys 44:371–405

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Brüning J, Exner P, Geyler VA (2003) Large gaps in point-coupled periodic systems of manifolds. J Phys A Math Gen 36:4875–4890

    Article  MATH  ADS  Google Scholar 

  7. Cattaneo C (1997) The spectrum of the continuous Laplacian on a graph. Monatsh Math 124:215–235

    Article  MATH  MathSciNet  Google Scholar 

  8. Dabrowski L, Šťovíček P (1998) Aharonov-Bohm effect with δ-type interaction. J Math Phys 36:47–62

    Google Scholar 

  9. Davies EB, Pushnitski A (2011) Non-Weyl resonance asymptotics for quantum graphs. Anal PDE 4:729–756

    Article  MATH  MathSciNet  Google Scholar 

  10. Davies EB, Exner P, Lipovský J (2010) Non-Weyl asymptotics for quantum graphs with general coupling conditions. J Phys A Math Theor 43:474013

    Article  ADS  Google Scholar 

  11. Exner P (1996) Contact interactions on graph superlattices. J Phys A Math Gen 29:87–102

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Exner P (1997) A duality between Schrödinger operators on graphs and certain Jacobi matrices. Ann Inst H Poincaré Phys Théor 66:359–371

    MATH  MathSciNet  Google Scholar 

  13. Exner P, Lipovský J (2010) Resonances from perturbations of quantum graphs with rationally related edges. J Phys A Math Theor 43:105301

    Article  ADS  Google Scholar 

  14. Exner P, Lipovský J (2011) Non-Weyl resonance asymptotics for quantum graphs in a magnetic field. Phys Lett A 375:805–807

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Exner P, Lipovský J (2013, to appear) Resonances on hedgehog manifolds. Acta Polytech. arXiv:1302.5269

    Google Scholar 

  16. Exner P, Post O (2013, to appear) Approximation of quantum graph vertex couplings by scaled Schrödinger operators on thin branched manifolds. Commun Math Phys. arXiv:1205.5129

    Google Scholar 

  17. Exner P, Šeba P (1987) Quantum motion on a halfline connected to a plane. J Math Phys 28:386–391; erratum p 2254

    Google Scholar 

  18. Exner P, Tater M, Vaněk D (2001) A single-mode quantum transport in serial-structure geometric scatterers. J Math Phys 42:4050–4078

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Exner P, Helm M, Stollmann P (2007) Localization on a quantum graph with a random potential on the edges. Rev Math Phys 19:923–939

    Article  MATH  MathSciNet  Google Scholar 

  20. Grieser D (2008) Spectra of graph neighborhoods and scattering. Proc Lond Math Soc 97:718–752

    Article  MATH  MathSciNet  Google Scholar 

  21. Gutkin B, Smilansky U (2001) Can one hear the shape of a graph? J Phys A Math Gen 34:6061–6068

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Hislop P, Post O (2009) Anderson localization for radial tree-like random quantum graphs. Wave Random Media 19:216–261

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Kiselev A (1997) Some examples in one-dimensional ‘geometric’ scattering on manifolds. J Math Anal Appl 212:263–280

    Article  MATH  MathSciNet  Google Scholar 

  24. Kottos T, Smilansky U (1999) Periodic orbit theory and spectral statistics for quantum graphs. Ann Phys 274:76–124

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Kuchment P (2004) Quantum graphs: I. Some basic structures. Waves Random Media 14:S107–S128

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Langer RE (1931) On the zeros of exponential sums and integrals. Bull Am Math Soc 37:213–239

    Article  Google Scholar 

  27. Pankrashkin K (2012) Unitary dimension reduction for a class of self-adjoint extensions with applications to graph-like structures. J Math Anal Appl 396:640–655

    Article  MATH  MathSciNet  Google Scholar 

  28. Post O (2011) Spectral analysis on graph-like spaces. Lecture notes in mathematics, vol 2039. Springer, Berlin

    Google Scholar 

  29. Ruedenberg K, Scherr CW (1953) Free-electron network model for conjugated systems, I. Theory J Chem Phys 21:1565–1581

    Article  ADS  Google Scholar 

  30. Schenker JH, Aizenman M (2000) The creation of spectral gaps by graph decoration. Lett Math Phys 53:253–262

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research the results of which are reported here has been supported by the Czech Science Foundation within the project P203/11/0701.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Exner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Exner, P. (2014). Resonances in Quantum Networks and Their Generalizations. In: Matrasulov, D., Stanley, H. (eds) Nonlinear Phenomena in Complex Systems: From Nano to Macro Scale. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8704-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8704-8_12

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8703-1

  • Online ISBN: 978-94-017-8704-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics