Uncertainty and Fuzzy Decisions

  • İbrahim ÖzkanEmail author
  • I. Burhan Türkşen
Part of the Understanding Complex Systems book series (UCS)


Uncertainty is the main reason that makes human free to choose. Many actions, strategies are designed to handle or reduce the uncertainty to make decision makers life easier. But there is no common accepted theory in the academia. Researchers still struggling to create a common understanding. There are theories that we may follow to make decisions under uncertainty. Among them, probability theory, fuzzy theory and evidence theory can be given. Decision problem is constructed in with the help of these theories. Fuzzy Logic and Fuzzy theory may be considered as the recent advancement and has been applied in many fields for different type of decision problems.


Uncertainty Taxonomy Chaos and complexity Fuzzy sets and logic Computing with words Meta-Linguistic expressions 


  1. 1.
    Allais, M. (1953). Le comportement de l’homme rationnel devant le risque: critique des postulats et axiomes de l’école Américaine. Econometrica, 21(4), 503–546.CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Asai, K., Tanaka, H., & Okuda, T. (1975). Decision-making and its goal in a fuzzy environment. In L. A. Zadeh, K. S. Fu, K. Tanaka, & M. Shimura (Eds.), Fuzzy sets and their applications to cognitive and decision processes (pp. 257–277). New York: Academic.Google Scholar
  3. 3.
    Baird, B. F. (1989). Managerial decisions under uncertainty: An introduction to the analysis of decision making. New York: Wiley-Interscience.Google Scholar
  4. 4.
    Baron, J. (2008). Thinking and deciding (4th ed.). Cambridge: Cambridge University Press.Google Scholar
  5. 5.
    Becker, G. M., & McClintock, C. G. (1967). Value: Behavioral decision theory. Annual Review of Psychology, 18, 239–286.CrossRefGoogle Scholar
  6. 6.
    Belman, R. E., & Zadeh, L. A. (1970). Decision making in fuzzy environment. Management Science, 17, 151–169.Google Scholar
  7. 7.
    Bosc, P., & Prade, H. (1997). An introduction to the fuzzy set and possibility theory-based treatment of flexible queries and uncertain or imprecise databases. In A. Motro & P. Smets (Eds.), Uncertainty in information systems: From needs to solutions (pp. 285–324). Boston: Kluwer.CrossRefGoogle Scholar
  8. 8.
    Delgado, M., Herrera, F., Herrera-Viedma, E., & Martinez, L. (1998). Combining numerical and linguistic information in group decision making. Journal of Information Sciences, 107, 177–194.CrossRefMathSciNetGoogle Scholar
  9. 9.
    Dubois, D., & Prade, H. (1984). Criteria aggregation and ranking alternatives in the framework of fuzzy set theory. In H. J. Zimmerman et al. (Eds.), Fuzzy sets and decision analysis. New York: North Holland.Google Scholar
  10. 10.
    Dubois, D., & Prade, H. (1988). Modelling uncertainty and inductive inference: A survey of recent non-additive probability systems. Acta Psychologica, 68, 53–78.CrossRefGoogle Scholar
  11. 11.
    Edwards, W. (1954). The theory of decision making. Psychological Bulletin, 41, 380–417.CrossRefGoogle Scholar
  12. 12.
    Fishburn, P. C. (1982). The foundations of expected utility. Theory and decision library (Vol. 31). Dordrecht: Reidel.CrossRefGoogle Scholar
  13. 13.
    Friedman, M., & Savage, L. J. (1948). Utility analysis of choices involving risk. Journal of Political Economy, 56(4), 279–304. doi: 10.1086/256692.CrossRefGoogle Scholar
  14. 14.
    Henderson, J. C., & Nutt, P. C. (1980). The influence of decision style on decision making behavior. Management Science, 26(4), 371–386.CrossRefGoogle Scholar
  15. 15.
    Herrera, F., Herrera-Viedma, E., & Verdegay, J. L. (1996). A model of consensus in group decision making under linguistic assessments. Fuzzy Sets and Systems, 78, 73–87.CrossRefMathSciNetGoogle Scholar
  16. 16.
    Herrera, F., & Herrera-Viedma, E. (2000). Linguistic decision analysis: Steps for solving decision problems under linguistic information. Fuzzy Sets and Systems, 115, 67–82.CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Hey, J. D. (1993). Dynamic decision making under uncertainty: An experimental study of the dynamic competitive firm. Oxford Economic Papers, 45(1), 58–82. Oxford University Press.Google Scholar
  18. 18.
    Hoppner, F., Klawonn, F., Kruse, R., & Runkler, T. (1999). Fuzzy cluster analysis. Chichester: Wiley.Google Scholar
  19. 19.
    Jain, R. (1976). Decision making in the presence of fuzzy variables. IEEE Transactions on Systems, Man and Cybernetics, 6, 698–703.CrossRefzbMATHGoogle Scholar
  20. 20.
    Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263–292.CrossRefzbMATHGoogle Scholar
  21. 21.
    Kahneman, D., Slovic, P., & Tversky, A. (1982). Judgment under uncertainty: Heuristicsc and biases. New York: Cambridge University Press.CrossRefGoogle Scholar
  22. 22.
    Karnik, N. N., & Mendel, J. M. (1998, October 11–14). Type-2 fuzzy logic systems: Type-reduction. 1998 IEEE international conference on systems, man, and cybernetics (Vol. 2, pp. 2046, 2051). doi: 10.1109/ICSMC.1998.728199.
  23. 23.
    Keynes, J. M. (1936). The general theory of employment, interest and money. London: Macmillan.Google Scholar
  24. 24.
    Klir, G. J., & Yuan, B. (1995). Fuzzy sets and fuzzy logic, theory and applications. Upper Saddle River: Prentice Hall.zbMATHGoogle Scholar
  25. 25.
    Knight, F. H. (1921). Risk, uncertainty, and profit. Library of Economics and Liberty. Retrieved January 20, 2013, from the World Wide Web:
  26. 26.
    Koller, M., & Wicklund, R. A. (1993). Communication caused by uncertainty. Psychological Beitrage, 35(2/3), 261–273.Google Scholar
  27. 27.
    Koopman, B. O. (1940). The axioms and algebra of intuitive probability. Annals of Mathematics, 41, 269–292.CrossRefMathSciNetGoogle Scholar
  28. 28.
    Koopman, B. O. (1940). The bases of probability. Bulletin of the American Mathematical Society. 46, 763–774. (Reprinted in Kyburg and Smokler (1964)).Google Scholar
  29. 29.
    Lichtenstein, S., & Slovic, P. (1971). Reversals of preference between bids and choices in gambling decisions. Journal of Experimental Psychology, 89, 46–55.CrossRefGoogle Scholar
  30. 30.
    Liu, B. (2004). Uncertainty theory: An introduction to its axiomatic foundations. Berlin: Springer.CrossRefGoogle Scholar
  31. 31.
    Liu, B. (2010). Uncertainty theory: A branch of mathematics for modeling human uncertainty. Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  32. 32.
    Machina, M. J. (1982). Expected utility analysis without the independence axiom. Econometrica, 50(2), 277–323. Econometric Society.CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Machina, M. J. (1987). Choice under uncertainty: Problems solved and unsolved. Journal of Economic Perspectives, 1(1), 121–154. American Economic Association.CrossRefGoogle Scholar
  34. 34.
    McCalla, R. B. (1992). Uncertain perceptions: U.S. Cold War crisis decision making. Ann Arbor: University of Michigan Press.Google Scholar
  35. 35.
    Ozkan, I., & Turksen, I. B. (2007). Upper and lower values for the level of fuzziness in FCM. Information Sciences, 177(23), 5143–5152.CrossRefzbMATHGoogle Scholar
  36. 36.
    Parsons, S. (2001). Qualitative methods for reasoning under uncertainty. Cambridge, MA: MIT Press.zbMATHGoogle Scholar
  37. 37.
    Rommelfanger, H. (1984). Entscheidungsmodelle mit Fuzzy-Nutzen. In H. Steckhan, W. Bühler, K. Jäger, C. Schneeweiß, & J. Schwarze (Eds.), DGOR (Vol. 1983, pp. 559–567). Berlin/Heidelberg: Springer.Google Scholar
  38. 38.
    Simon, H. A. (1956). Rational choice and the structure of the environment. Psychological Review, 63(2), 129–138.CrossRefGoogle Scholar
  39. 39.
    Simon, H. A. (1997). Models of bounded rationality: Vol. 3: Empirically grounded economic reason. Cambridge, MA: MIT Press.Google Scholar
  40. 40.
    Smets, P. (1997). Imperfect information: Imprecision and uncertainty. In A. Motro & P. Smets (Eds.), Uncertainty in information systems: From needs to solutions (pp. 225–254). Boston: Kluwer.CrossRefGoogle Scholar
  41. 41.
    Smithson, M. (1989). Ignorance and uncertainty: Emerging paradigms. New York: Springer.CrossRefGoogle Scholar
  42. 42.
    Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man and Cybernetics, 15(1), 116–132.CrossRefzbMATHGoogle Scholar
  43. 43.
    Tanaka, H., Okuda, T., & Asai, K. (1976). A formulation of fuzzy decision problems and its application to an investment problem. Kybernetes, 5, 25–30.CrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    Tanaka, H., Okuda, T., & Asai, K. (1977). On decision making in fuzzy environment, fuzzy information and decision making. International Journal of Production Research, 15, 623.CrossRefGoogle Scholar
  45. 45.
    Tanaka, H., Okuda, T., & Asai, K. (1978). Formulation of fuzzy decision problems with fuzzy information using probability of fuzzy events. Information and Control, 38, 303.MathSciNetGoogle Scholar
  46. 46.
    Turksen, I. B. (1986). Interval valued fuzzy sets based on normal forms. Fuzzy Sets and Systems, 20(2), 191–218.CrossRefzbMATHMathSciNetGoogle Scholar
  47. 47.
    Turksen, I. B. (1996). Non-specificity and interval valued fuzzy sets. Fuzzy Sets and Systems, 80, 87–100.CrossRefMathSciNetGoogle Scholar
  48. 48.
    Turksen, I. B. (2002). Upper and lower set formulas: A restriction and modification of Dempster-Pawlak formalism. International Journal of Applied Mathematics and Computer Science on Computing with Words and Perceptions, 12(3), 359–370.MathSciNetGoogle Scholar
  49. 49.
    Turkşen, I. B. (2006). An ontological and epistemological perspective of fuzzy set theory. Elsevier B.V. Amsterdam, Netherland. ISBN-10: 0-444-51891-6, ISBN-13: 978-0-444-51891-0.Google Scholar
  50. 50.
    Turksen, I. B. (2012, August 6–8). A review of developments from fuzzy rule bases to fuzzy functions. 2012 annual meeting of the North American Fuzzy Information Processing Society (NAFIPS) (pp. 1, 5). doi: 10.1109/NAFIPS.2012.6291014
  51. 51.
    Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5, 297–323.CrossRefzbMATHGoogle Scholar
  52. 52.
    Vecera, S. P., & Farah, M. J. (1997). Is image segmentation a bottom-up or an interactive process? Perception & Psychophysics, 59, 1280–1296.CrossRefGoogle Scholar
  53. 53.
    von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior. Princeton: Princeton University Press.zbMATHGoogle Scholar
  54. 54.
    Walker, V. R. (2001). Theories of uncertainty: Explaining the possible sources of error in inferences. Cardozo Law Review, 22, 1523.Google Scholar
  55. 55.
    Weber, J. A. (1997). Certainty and uncertainty in decision making: A conceptualization. In R. T. Goembiewski & J. Rabin (Eds.), Public budgeting and finance (4th ed., pp. 449–473). New York: Marcel Dekker Inc.Google Scholar
  56. 56.
    Weber, J. A. (1999). A response to public administration’s lack of a general theory of uncertainty: A theoretical vision of uncertainty. Public Administration Quarterly, 23(1), 18–45.Google Scholar
  57. 57.
    Whalen, T. (1984). Decision-making under uncertainty with various assumptions about available information. IEEE Transactions on Systems, Man and Cybernetics, 14, 888–900.CrossRefMathSciNetGoogle Scholar
  58. 58.
    Yager, R. R. (1981). A new methodology for ordinal multiple aspect decisions based on fuzzy sets. Decision Sciences, 12, 589–600.CrossRefMathSciNetGoogle Scholar
  59. 59.
    Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.CrossRefzbMATHMathSciNetGoogle Scholar
  60. 60.
    Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning 1. Information Sciences, 8, 199–249.CrossRefzbMATHMathSciNetGoogle Scholar
  61. 61.
    Zadeh, L. A. (1996). Fuzzy logic = computing with words. IEEE Transactions on Fuzzy Systems, 2, 103–111.CrossRefMathSciNetGoogle Scholar
  62. 62.
    Zadeh, L. A. (1997). Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems, 90, 111–127.CrossRefzbMATHMathSciNetGoogle Scholar
  63. 63.
    Zadeh, L. A. (2002). Toward a perception-based theory of probabilistic reasoning with imprecise probabilities. Journal of Statistical Planning and Inference, 105(2002), 233–264.CrossRefzbMATHMathSciNetGoogle Scholar
  64. 64.
    Zadeh, L. A. (2005). Toward a generalized theory of uncertainty (GTU)-an outline. Information Sciences, 172, 1–40.zbMATHMathSciNetGoogle Scholar
  65. 65.
    Zemel, R. S., Behrmann, M., Mozer, M. C., & Bavelier, D. (2002). Experience-dependent perceptual grouping and object-based attention. Journal of Experimental Psychology: Human Perception and Performance, 28, 202–217.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of EconomicsHacettepe UniversityBeytepe, AnkaraTurkey
  2. 2.Knowledge/Intelligence System Lab, Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada
  3. 3.Department of Industrial EngineeringTOBB-Economics and Technology UniversityAnkaraTurkey
  4. 4.Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations