Skip to main content

Full-Waveform Airborne Laser Scanning Systems and Their Possibilities in Forest Applications

  • Chapter
  • First Online:
Forestry Applications of Airborne Laser Scanning

Part of the book series: Managing Forest Ecosystems ((MAFE,volume 27))

Abstract

Full-waveform (FWF) airborne laser scanning (ALS) systems became available for operational data acquisition around the year 2004. These systems typically digitize the analogue backscattered echo of the emitted laser pulse with a high frequency. FWF digitization has the advantage of not limiting the number of echoes that are recorded for each individual emitted laser pulse. Studies utilizing FWF data have shown that more echoes are provided from reflections in the vegetation in comparison to discrete echo systems. To obtain geophysical metrics based on ALS data that are independent of a mission’s flying height, acquisition time or sensor characteristics, the FWF amplitude values can be calibrated, which is an important requirement before using them in further classification tasks. Beyond that, waveform digitization provides an additional observable which can be exploited in forestry, namely the width of the backscattered pulse (i.e. echo width). An early application of FWF ALS was to improve ground and shrub echo identification below the forest canopy for the improvement of terrain modelling, which can be achieved using the discriminative capability of the amplitude and echo width in classification algorithms. Further studies indicate that accuracies can be increased for classification (e.g. species) and biophysical parameter extraction (e.g. diameter at breast height) for single-tree- and area-based methods by exploiting the FWF observables amplitude and echo width.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    called MPiA (multiple pulses in air) by Leica Geosystems (2013), CMP (continuous multipulse) by Optech Inc. (2013) and MTA (multiple time-around) by Riegl LMS (2013).

References

  • Adams T, Beets P, Parrish C (2012) Extracting more data from LiDAR in forested areas by analyzing waveform shape. Remote Sens 4(3):682–702

    Article  Google Scholar 

  • Ahokas E, Kaasalainen S, Hyyppä J, Suomalainen J (2006) Calibration of the Optech ALTM 3100 laser scanner intensity data using brightness targets. Int Arch Photogramm Remote Sens Spat Inf Sci 36(1):T03–11

    Google Scholar 

  • Alexander C, Tansey K, Kaduk J, Holland D, Tate NJ (2010) Backscatter coefficient as an attribute for the classification of full-waveform airborne laser scanning data in urban areas. ISPRS J Photogramm Remote Sens 65:423–432

    Article  Google Scholar 

  • Axelsson P (2000) DEM generation from laser scanner data using adaptive TIN models. Int Arch Photogramm Remote Sens 33(B4):110–117

    Google Scholar 

  • Beraldin JA, Blais F, Lohr U (2010) Laser scanning technology. In: Vosselman G, Maas H-G (eds) Airborne and terrestrial laser scanning. Boca Raton, London, New York, CRC press, Taylor and Francis Group, chap 1, pp 1–42

    Google Scholar 

  • Briese C, Pfeifer N, Dorninger P (2002) Applications of the robust interpolating for DTM determination. Int Arch Photogramm Remote Sens Spat Inf Sci 34(3A):55–61

    Google Scholar 

  • Briese C, Doneus M, Pfeifer N, Melzer T (2007) Verbesserte DGM-Erstellung mittels full-waveform airborne laserscanning. In: Proceedings of the 3-Ländertagung DGPF, SGPBF, OVG, Basel (in German)

    Google Scholar 

  • Briese C, Höfle B, Lehner H, Wagner W, Pfenningbauer M (2008) Calibration of full-waveform airborne laser scanning data for object classification. In: Proceedings of the SPIE: laser radar technology and applications XIII, Orlando

    Google Scholar 

  • Briese C, Pfennigbauer M, Lehner H, Ullrich A, Wagner W, Pfeifer N (2012) Radiometric calibration of multi-wavelength airborne laser scanning data. ISPRS Ann Photogramm Remote Sensing and Spat Inf Sci 1(7):335–340

    Article  Google Scholar 

  • Chauve A, Vega C, Durrieu S, Bretar F, Allouis T, Pierrot-Deseilligny M, Puech W (2009) Advanced full-waveform lidar data echo detection: assessing quality of derived terrain and tree height models in an alpine coniferous forest. Int J Remote Sens 30:5211–5228

    Article  Google Scholar 

  • Doneus M, Briese C (2006) Digital terrain modelling for archaeological interpretation within forested areas using full-waveform laserscanning. In: Proceedings of the 7th international symposium on virtual reality, archaeology and cultural heritage VAST, Nicosia, Cyprus, pp 155–162

    Google Scholar 

  • Doneus M, Briese C, Fera M, Janner M (2008) Archaeological prospection of forested areas using full-waveform airborne laser scanning. J Archaeol Sci 35:882–893

    Article  Google Scholar 

  • Ducic V, Hollaus M, Ullrich A, Wagner W, Melzer T (2006) 3D vegetation mapping and classification using full-waveform laser scanning. In: Proceedings of the international workshop 3D remote sensing in forestry, Vienna, pp 211–217

    Google Scholar 

  • Heinzel J, Koch B (2011) Exploring full-waveform LiDAR parameters for tree species classification. Int J Appl Earth Obs Geoinf 13:152–160

    Article  Google Scholar 

  • Heinzel J, Koch B (2012) Investigating multiple data sources for tree species classification in temperate forest and use for single tree delineation. Int J Appl Earth Obs Geoinf 18:101–110

    Article  Google Scholar 

  • Höfle B, Pfeifer N (2007) Correction of laser scanning intensity data: data and model-driven approaches. ISPRS J Photogramm Remote Sens 62:415–433

    Article  Google Scholar 

  • Höfle B, Hollaus M, Lehner H, Pfeifer N, Wagner W (2008) Area-based parameterization of forest structure using full-waveform airborne laser scanning data. In: Proceedings of the SilviLaser 2008, Edinburgh, p 9

    Google Scholar 

  • Höfle B, Hollaus M, Hagenauer J (2012) Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne lidar data. ISPRS J Photogramm Remote Sens 67:134–147

    Article  Google Scholar 

  • Hollaus M (2006) Large scale applications of airborne laser scanning for a complex mountainous environment. PhD thesis, Vienna University of Technology

    Google Scholar 

  • Hollaus M, Mücke W, Höfle B, Dorigo W, Pfeifer N, Wagner W, Bauerhansl C, Regner B (2009a) Tree species classification based on full-waveform airborne laser scanning data. In: Proceedings of the SilviLaser 2009, College Station, Texas, USA, pp 54–62

    Google Scholar 

  • Hollaus M, Wagner W, Schadauer K, Maier B, Gabler K (2009b) Growing stock estimation for alpine forests in austria: a robust lidar-based approach. Can J For Res 39:1387–1400

    Article  Google Scholar 

  • Hollaus M, Aubrecht C, Höfle B, Steinnocher K, Wagner W (2011) Roughness mapping on various vertical scales based on full-waveform airborne laser scanning data. Remote Sens 3:503–523

    Article  Google Scholar 

  • Holmgren J, Persson Å (2004) Identifying species of individual trees using airborne laser scanner. Remote Sens Environ 90:415–423

    Article  Google Scholar 

  • Hopkinson C, Chasmer L (2009) Testing LiDAR models of fractional cover across multiple forest ecozones. Remote Sens Environ 113:275–288

    Article  Google Scholar 

  • Hyyppä J, Hyyppä H, Leckie D, Gougeon F, Yu X, Maltamo M (2008) Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests. Int J Remote Sens 29:1339–1366

    Article  Google Scholar 

  • Hyyppä J, Yu X, Hyyppä H, Vastaranta M, Holopainen M, Kukko A, Kaartinen H, Jaakkola A, Vaaja M, Koskinen J, Alho P (2012) Advances in forest inventory using airborne laser scanning. Remote Sens 4:1190–1207

    Article  Google Scholar 

  • Kaasalainen S, Hyyppä J, Litkey P, Hyyppä H, Ahokas E, Kukko A, Kaartinen H (2007) Radiometric calibration of ALS intensity. Int Arch Photogramm Remote Sens Spat Inf Sci 36(3/W52):201–205

    Google Scholar 

  • Korpela I, Koskinen M, Vasander H, Holopainen M, Minkkinen K (2009) Airborne small-footprint discrete-return LiDAR data in the assessment of boreal mire surface patterns, vegetation, and habitats. For Ecol Manag 258:1549–1566

    Article  Google Scholar 

  • Kraus K, Pfeifer N (1998) Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS J Photogramm Remote Sens 53:193–203

    Article  Google Scholar 

  • Kraus K, Briese C, Attwenger M, Pfeifer N (2004) Quality measures for digital terrain models. Int Arch Photogramm Remote Sens Spat Inf Sci 35(B2):113–118

    Google Scholar 

  • Kronseder K, Ballhorn U, Böhm V, Siegert F (2012) Above ground biomass estimation across forest types at different degradation levels in Central Kalimantan using LiDAR data. Int J Appl Earth Obs Geoinf 18:37–48

    Article  Google Scholar 

  • Lehner H, Briese C (2010) Radiometric calibration of full-waveform airborne laser scanning data based on natural surfaces. Int Arch Photogramm Remote Sens Spat Inf Sci 38(7B):360–365

    Google Scholar 

  • Leica Geosystems (2013) www.leica-geosystems.com. Homepage of the company Leica Geosystems. Accessed Aug 2013

  • Leiterer R, Morsdorf F, Schaepman M, Mücke W, Pfeifer N, Hollaus M (2012) Robust characterization of forest canopy structure types using full-waveform airborne laser scanning. In: Proceedings of the SilviLaser 2012, Vancouver, p 8

    Google Scholar 

  • Lin Y, Mills J (2009) Integration of full-waveform information into the airborne laser scanning data filtering process. Int Arch Photogramm Remote Sens Spat Inf Sci 38(3/W8):224–229

    Google Scholar 

  • Lindberg E, Olofsson K, Holmgren J, Olsson H (2012) Estimation of 3D vegetation structure from waveform and discrete return airborne laser scanning data. Remote Sens Environ 118:151–161

    Article  Google Scholar 

  • Liu Q, Li Z, Chen E, Pang Y, Li S, Tian X (2011) Feature analysis of lidar waveforms from forest canopies. Sci China Earth Sci 54:1206–1214

    Article  Google Scholar 

  • Luzum B, Starek J, Slatton K (2004) Normalizing ALSM intensities. Technical report Rep_2004-07-001, Geosensing Engineering and Mapping, Civil and Coastal Engineering Department, University of Florida, p 8

    Google Scholar 

  • MacLean GA, Krabill WB (1986) Gross-merchantable timber volume estimation using an airborne LiDAR system. Can Journal Remote Sens 12:7–18

    Google Scholar 

  • Mallet C, Bretar F (2009) Full-waveform topographic lidar: State-of-the-art. ISPRS J Photogramm Remote Sens 64:1–16

    Article  Google Scholar 

  • Mallet C, Lafarge F, Roux M, Soergel U, Bretar F, Heipke C (2010) A marked point process for modeling lidar waveforms. IEEE Trans Image Process 19:3204–3221

    Article  PubMed  Google Scholar 

  • Mandlburger G, Briese C, Pfeifer N (2007) Progress in LiDAR sensor technology – chance and challenge for DTM generation and data administration. In: Proceedings of the 51st photogrammetric week, Stuttgart. Herbert Wichmann Verlag, pp 159–169

    Google Scholar 

  • Miura N, Jones SD (2010) Characterizing forest ecological structure using pulse types and heights of airborne laser scanning. Remote Sens Environ 114:1069–1076

    Article  Google Scholar 

  • Morsdorf F, Mårell A, Koetz B, Cassagne N, Pimont F, Rigolot E, Allgöwer B (2010) Discrimination of vegetation strata in a multi-layered mediterranean forest ecosystem using height and intensity information derived from airborne laser scanning. Remote Sens Environ 114:1403–1415

    Article  Google Scholar 

  • Mücke W (2008) Analysis of full-waveform airborne laser scanning data for the improvement of DTM generation. Master’s thesis, Institute of Photogrammetry and Remote Sensing, Vienna University of Technology

    Google Scholar 

  • Mücke W, Hollaus M (2011) Modelling light conditions in forests using airborne laser scanning data. In: Proceedings of the SilviLaser 2011, Tasmania, p 8

    Google Scholar 

  • Mücke W, Briese C, Hollaus M (2010) Terrain echo probability assignment based on full-waveform airborne laser scanning observables. Int Arch Photogramm Remote Sens Spat Inf Sci 38(7A):157–162

    Google Scholar 

  • Næsset E (1997) Estimating timber volume of forest stand using airborne laser scanner data. Remote Sens Environ 61:246–253

    Article  Google Scholar 

  • Næsset E (2002) Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens Environ 80:88–99

    Article  Google Scholar 

  • Næsset E (2007) Airborne laser scanning as a method in operational forest inventory: status of accuracy assessments accomplished in scandinavia. Scand J For Res 22:433–442

    Article  Google Scholar 

  • Neuenschwander AL, Magruder LA, Tyler M (2009) Landcover classification of small-footprint, fullwaveform lidar data. J Appl Remote Sens 3:033,544/1–033,544/13

    Google Scholar 

  • Nilsson M (1996) Estimation of tree heights and stand volume using an airborne lidar system. Remote Sens Environ 56:1–7

    Article  Google Scholar 

  • Optech Inc. (2013) www.leica-geosystems.com. Homepage of the company Optech Inc. Accessed Aug 2013

  • Ørka HO, Næsset E, Bollandsås OM (2009) Classifying species of individual trees by intensity and structure features derived from airborne laser scanner data. Remote Sens Environ 113:1163–1174

    Article  Google Scholar 

  • Persson Å, Söderman U, Töpel J, Ahlberg S (2005) Visualization and analysis of full-waveform airborne laser scanner data. Int Arch Photogramm Remote Sens Spat Inf Sci 36(3/W19): 103–108

    Google Scholar 

  • Pfeifer N, Stadler P, Briese C (2001) Derivation of digital terrain models in the SCOP++ environment. In: Torlegård K, Nelson J (eds) Proceedings of the OEEPE workshop on airborne laserscanning and interferometric SAR for detailed digital terrain models, Stockholm

    Google Scholar 

  • Pfeifer N, Gorte B, Oude Elberink S (2004) Influences of vegetation on laser altimetry – analysis and correction approaches. Int Arch Photogramm Remote Sens Spat Inf Sci 36(8/W2):283–287

    Google Scholar 

  • Reitberger J, Krzystek P, Stilla U (2008) Analysis of full waveform LIDAR data for the classification of deciduous and coniferous trees. Int J Remote Sens 29:1407–1431

    Article  Google Scholar 

  • Reitberger J, Schnörr C, Krzystek P, Stilla U (2009) 3D segmentation of single trees exploiting full waveform LIDAR data. ISPRS J Photogramm Remote Sens 64:561–574

    Article  Google Scholar 

  • Riegl LMS (2013) www.riegl.com. Homepage of the company RIEGL laser measurement systems GmbH. Accessed Aug 2013

  • Rossmann J, Schluse M, Buecken A, Krahwinkler P, Hoppen M (2009) Cost-efficient semi-automatic forest inventory integrating large scale remote sensing technologies with goal-oriented manual quality assurance processes. In: IUFRO division 4 – extending forest inventory and monitoring over space and time, Quebec City

    Google Scholar 

  • Thiel KH, Wehr A (2004) Performance capabilities of laser scanners – an overview and measurement principle analysis. Int Arch Photogramm Remote Sens Spat Inf Sci 36(8/W2):14–18

    Google Scholar 

  • Tóvari D, Pfeifer N (2005) Segmentation based robust interpolation – a new approach to laser data filtering. Int Arch Photogramm Remote Sens Spat Inf Sci 36(3/W19):79–84

    Google Scholar 

  • Vaughn NR, Moskal LM, Turnblom EC (2012) Tree species detection accuracies using discrete point lidar and airborne waveform lidar. Remote Sens 4:377–403

    Article  Google Scholar 

  • Vetter M, Höfle B, Hollaus M, Gschöpf C, Mandlburger G, Pfeifer N, Wagner W (2011) Vertical vegetation structure analysis and hydraulic roughness determination using dense ALS point cloud data – a voxel based approach. Int Arch Photogramm Remote Sens Spat Inf Sci 38(5/W12):1–6

    Google Scholar 

  • Vosselman G (2000) Slope based filtering of laser altimetry data. Int Arch Photogramm Remote Sens 33(B3):935–942

    Google Scholar 

  • Wagner W, Ullrich A, Melzer T, Briese C, Kraus K (2004) From single-pulse to full-waveform airborne laser scanners: potential and practical challenges. Int Arch Photogramm Remote Sens Spat Inf Sci 35(Part B3):201–206

    Google Scholar 

  • Wagner W, Hollaus M, Briese C, Ducic V (2008) 3D vegetation mapping using small-footprint full-waveform airborne laser scanners. Int J Remote Sens 29:1433–1452

    Article  Google Scholar 

  • Wing BM, Ritchie MW, Boston K, Cohen WB, Gitelman A, Olsen MJ (2012) Prediction of understory vegetation cover with airborne lidar in an interior ponderosa pine forest. Remote Sens Environ 124:730–741

    Article  Google Scholar 

  • Yao W, Krzystek P, Heurich M (2012) Tree species classification and estimation of stem volume and DBH based on single tree extraction by exploiting airborne full-waveform LiDAR data. Remote Sens Environ 123:368–380

    Article  Google Scholar 

Download references

Acknowledgements

Markus Hollaus has been supported by the project NEWFOR, financed by the European Territorial Cooperation “Alpine Space”. Andreas Roncat has been supported by a Karl Neumaier PhD scholarship.

The Ludwig Boltzmann Institute for Archaeological Prospection and Virtual Archaeology is based on an international cooperation of the Ludwig Boltzmann Gesellschaft (Austria), the University of Vienna (Austria), the Vienna University of Technology (Austria), the Austrian Central Institute for Meteorology and Geodynamics, the office of the provincial government of Lower Austria, Airborne Technologies GmbH (Austria), RGZM (Roman-Germanic Central Museum Mainz, Germany), RA (Swedish National Heritage Board), VISTA (Visual and Spatial Technology Centre, University of Birmingham, UK) and NIKU (Norwegian Institute for Cultural Heritage Research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Hollaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hollaus, M., Mücke, W., Roncat, A., Pfeifer, N., Briese, C. (2014). Full-Waveform Airborne Laser Scanning Systems and Their Possibilities in Forest Applications. In: Maltamo, M., Næsset, E., Vauhkonen, J. (eds) Forestry Applications of Airborne Laser Scanning. Managing Forest Ecosystems, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8663-8_3

Download citation

Publish with us

Policies and ethics