Skip to main content

Applications of Airborne Laser Scanning in Forest Fuel Assessment and Fire Prevention

  • Chapter
  • First Online:
Forestry Applications of Airborne Laser Scanning

Part of the book series: Managing Forest Ecosystems ((MAFE,volume 27))

Abstract

Forest fire management requires accurate, spatially explicit and up-to date information on forest fuels and their vertical structure. Airborne laser scanning (ALS) provides 3-D vegetation models to map accurate fuel properties critical for modelling fire behaviour. Laser point cloud data stratified into height intervals coupled with spectral information can provide accurate fuel type maps, especially if non-parametric classifiers are used. Canopy bulk density (CBD) depends on ALS metrics related to canopy volume and biomass to yield regression models ranging between 0.77 and 0.94 in R2. ALS estimates canopy base height (CBH) after the identification of the gap in the canopy that describes the beginning of the tree crown. Due to laser point density among other factors, CBH for individual trees is usually less accurate than for plots. Penetration through the upper canopy and the low height of the surface fuels combined with a low laser pulse density constrain the estimation of surface canopy height (SCH). ALS together with optical sensors map the above mentioned fuels properties more accurately than with any of these sensors alone due to the synergy of the structural and spectral information collected by each sensor. Despite the fact that most attempts at using ALS for fire management have been focused on characterization of fuels at the pre-fire stage or during the fire, multi-temporal ALS data also have high potential at the post-fire stage to estimate burn severity and vegetation regeneration after fire.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albini FA (1976) Estimating wildfire behavior and effects. USDA, Forest Service, Intermountain Forest and Range Experiment Station, Ogden

    Google Scholar 

  • Andersen HE, McGaughey RJ, Reutebuch SE (2005) Estimating forest canopy fuel parameters using LIDAR data. Remote Sens Environ 94:441–449

    Article  Google Scholar 

  • Anderson HE (1982) Aids to determining fuel models for estimating fire behavior. USDA, Forest Service, Ogden

    Google Scholar 

  • Angelo JJ, Duncan BW, Weishampel JF (2010) Using lidar-derived vegetation profiles to predict time since fire in an oak scrub landscape in East-Central Florida. Remote Sens 2:514–525

    Article  Google Scholar 

  • Arroyo LA, Healey SP, Cohen WB, Cocero D, Manzanera JA (2006) Using object-oriented classification and high-resolution imagery to map fuel types in a Mediterranean region. J Geophys Res Biogeosci 111(G4):G04S04

    Google Scholar 

  • Ashworth A, Evans DL, Cooke WH, Londo A, Collins C, Neuenschwander A (2010) Predicting southeastern forest canopy heights and fire fuel models using GLAS data. Photogramm Eng Remote Sens 76:915–922

    Article  Google Scholar 

  • Axelsson P (1999) Processing of laser scanner data—algorithms and applications. ISPRS J Photogramm Remote Sens 54:138–147

    Article  Google Scholar 

  • Axelsson P (2000) DEM generation from laser scanner data using adaptive TIN models. Int Arch Photogramm Remote Sens 33:111–118

    Google Scholar 

  • Baltsavias EP (1999) Airborne laser scanning: basic relations and formulas. ISPRS J Photogramm Remote Sens 54:199–214

    Article  Google Scholar 

  • Burgan RE, Rothermel RC (1984) BEHAVE: fire behaviour prediction and fuel modeling system. USDA Forest Service, Ogden

    Google Scholar 

  • Chasmer L, Hopkinson C, Smith B, Treitz P (2006) Examining the influence of changing laser pulse repetition frequencies on conifer forest canopy returns. Photogramm Eng Remote Sens 72:1359–1367

    Article  Google Scholar 

  • Chuvieco E, Riaño D, Van Wagtendonk JW, Morsdorf F (2003) Fuel loads and fuel types. In: Chuvieco E (ed) Wildland fire danger estimation and mapping. The role of remote sensing data. World Scientific Publishing Co. Ltd., Singapore, pp 120–142

    Google Scholar 

  • Chuvieco E, Wagtendok J, Riaño D, Yebra M, Ustin SL (2009) Estimation of fuel conditions for fire danger assessment. In: Chuvieco E (ed) Earth observation of wildland fires in Mediterranean ecosystems. Springer, Berlin, pp 83–96

    Chapter  Google Scholar 

  • Contreras MA, Parsons RA, Chung W (2012) Modeling tree-level fuel connectivity to evaluate the effectiveness of thinning treatments for reducing crown fire potential. For Ecol Manage 264:134–149

    Article  Google Scholar 

  • Cuesta J, Chazette P, Allouis T, Flamant PH, Durrieu S, Sanak J, Genau P, Guyon D, Loustau D, Flamant C (2010) Observing the forest canopy with a new ultra-violet compact airborne Lidar. Sensors 10:7386–7403

    Article  PubMed  PubMed Central  Google Scholar 

  • De Santis A, Chuvieco E (2007) Burn severity estimation from remotely sensed data: performance of simulation versus empirical models. Remote Sens Environ 108:422–435

    Article  Google Scholar 

  • De Santis A, Chuvieco E (2009) GeoCBI: a modified version of the Composite Burn Index for the initial assessment of the short-term burn severity from remotely sensed data. Remote Sens Environ 113:554–562

    Article  Google Scholar 

  • De Santis A, Chuvieco E, Vaughan PJ (2009) Short-term assessment of burn severity using the inversion of PROSPECT and GeoSail models. Remote Sens Environ 113:126–136

    Article  Google Scholar 

  • Díaz-Delgado R, Salvador R, Pons X (1998) Monitoring of plant community regeneration after fire by remote sensing. In: Traboud L (ed) Fire management and landscape ecology. International Association of Wildland Fire, Fairfield, pp 315–324

    Google Scholar 

  • Epting J, Verbyla D, Sorbel B (2005) Evaluation of remotely sensed indices for assessing fire severity in interior Alaska using Landsat TM and ETM+. Remote Sens Environ 96:328–339

    Article  Google Scholar 

  • Erdody TL, Moskal LM (2010) Fusion of LiDAR and imagery for estimating forest canopy fuels. Remote Sens Environ 114:725–737

    Article  Google Scholar 

  • Estornell J, Ruiz LA, Velazquez-Marti B (2011a) Study of shrub cover and height using LIDAR data in a Mediterranean area. For Sci 57:171–179

    Google Scholar 

  • Estornell J, Ruiz LA, Velazquez-Marti B, Fernandez-Sarria A (2011b) Estimation of shrub biomass by airborne LiDAR data in small forest stands. For Ecol Manage 262:1697–1703

    Article  Google Scholar 

  • Finney MA (1998) FARSITE: fire area simulator – model development and evaluation. USDA Forest Service, Rocky Mountain Research Station, Ogden, RMRS-RP-4, p 47

    Google Scholar 

  • Frolking S, Palace MW, Clark DB, Chambers JQ, Shugart HH, Hurtt GC (2009) Forest disturbance and recovery: a general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure. J Geophys Res-Biogeosci 114:G00E02

    Google Scholar 

  • García M, Riaño D, Chuvieco E, Danson FM (2010) Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data. Remote Sens Environ 114:816–830

    Article  Google Scholar 

  • García M, Danson FM, Riano D, Chuvieco E, Ramirez FA, Bandugula V (2011a) Terrestrial laser scanning to estimate plot-level forest canopy fuel properties. Int J Appl Earth Obs Geoinfo 13:636–645

    Article  Google Scholar 

  • García M, Riaño D, Chuvieco E, Salas FJ, Danson FM (2011b) Multispectral and LiDAR data fusion for fuel type mapping using support vector machine and decision rules. Remote Sens Environ 115:1369–1379

    Article  Google Scholar 

  • García M, Popescu SC, Riaño D, Zhao K, Neuenschwander A, Agca M, Chuvieco E (2012) Characterization of canopy fuels using ICESat/GLAS data. Remote Sens Environ 123:81–89

    Article  Google Scholar 

  • Gitas I, Mitri G, Veraverbeke S, Polychronaki A (2012) Advances in remote sensing of post-fire vegetation recovery monitoring–a review. In: Fatoyinbo L (ed) Remote sensing of biomass – principles and applications. InTech, Rijeka, Croatia. http://www.intechopen.com/books/mostdownloaded/remote-sensing-of-biomass-principles-and-applications

  • Glenn NF, Spaete LP, Sankey TT, Derryberry DR, Hardegree SP, Mitchell JJ (2011) Errors in LiDAR-derived shrub height and crown area on sloped terrain. J Arid Environ 75:377–382

    Article  Google Scholar 

  • Goetz SJ, Sun M, Baccini A, Beck PSA (2010) Synergistic use of spaceborne lidar and optical imagery for assessing forest disturbance: an Alaska case study. J Geophys Res-Biogeosci 115:G00E07

    Google Scholar 

  • Hall SA, Burke IC, Box DO, Kaufmann MR, Stoker JM (2005) Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests. For Ecol Manage 208:189–209

    Article  Google Scholar 

  • Hall RJ, Freeburn JT, de Groot WJ, Pritchard JM, Lynham TJ, Landry R (2008) Remote sensing of burn severity: experience from western Canada boreal fires. Int J Wildland Fire 17:476–489

    Article  Google Scholar 

  • Henry MC, Hope AS (1998) Monitoring post-burn recovery of chaparral vegetation in southern California using multitemporal satellite data. Int J Remote Sens 19:3097–3107

    Article  Google Scholar 

  • Holmgren J, Persson Å (2004) Identifying species of individual trees using airborne laser scanner. Remote Sens Environ 90:415–423

    Article  Google Scholar 

  • Hopkinson C (2007) The influence of flying altitude, beam divergence, and pulse repetition frequency on laser pulse return intensity and canopy frequency distribution. Can J Remote Sens 33:312–324

    Article  Google Scholar 

  • Keane RE, Garner JL, Schmidt KM, Long DG, Menakis JP, Finney MA (1998) Development of input data layers for the FARSITE fire growth model for the Selway-Bitterroot Wilderness complex, USA, vol GTR-3, General technical report RMRS. U. S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Ogden

    Google Scholar 

  • Keane RE, Reinhardt ED, Scott J, Gray K, Reardon J (2005) Estimating forest canopy bulk density using six indirect methods. Can J For Res 35:724–739

    Article  Google Scholar 

  • Keane RE, Frescino T, Reeves MC, Long JL (2006) Mapping wildland fuel across large regions for the LANDFIRE Prototype Project. In: Rollins CK (ed) The LANDFIRE Prototype Project: nationally consistent and locally relevant geospatial data for wildland fire management, vol GTR_175, General technical report RMRS. USDA, Forest Service, Rocky Mountain Research Station, Frot Collins

    Google Scholar 

  • Keeley JE (2000) Chaparral. In: Barbour MG, Billings WD (eds) North American terrestrial vegetation, 2nd edn. Cambridge University Press, Cambridge, UK, pp 204–253

    Google Scholar 

  • Key CH, Benson NC (2006) Landscape assessment: ground measure of severity, the composite burn index; and remote sensing of severity, the normalized burn ratio. In: Lutes DC, Keane RE, Caratti JF, Key CH, Benson NC, Gangi LJ (eds) FIREMON: fire effects monitoring and inventory system. USDA Forest Service, Rocky Mountain Research Station, Ogden, General technical report. RMRS-GTR-164-CD: LA1-51

    Google Scholar 

  • Kim Y, Yang Z, Cohen WB, Pflugmacher D, Lauver CL, Vankat JL (2009) Distinguishing between live and dead standing tree biomass on the North Rim of Grand Canyon National Park, USA using small-footprint lidar data. Remote Sens Environ 113:2499–2510

    Article  Google Scholar 

  • Koetz B, Morsdorf F, van der Linden S, Curt T, Allgower B (2008) Multi-source land cover classification for forest fire management based on imaging spectrometry and LiDAR data. For Ecol Manage 256:263–271

    Article  Google Scholar 

  • Koutsias N, Karteris M (2003) Classification analyses of vegetation for delineating forest fire fuel complexes in a Mediterranean test site using satellite remote sensing and GIS. Int J Remote Sens 24:3093–3104

    Article  Google Scholar 

  • Kwak D-A, Chung J, Lee W-K, Kafatos M, Lee SY, Cho H-K, Lee S-H (2010) Evaluation for damaged degree of vegetation by forest fire using lidar and a digital aerial photograph. Photogramm Eng Remote Sens 76:277–287

    Article  Google Scholar 

  • Lentile LB, Holden ZA, Smith AMS, Falkowski MJ, Hudak AT, Morgan P, Lewis SA, Gessler PE, Benson NC (2006) Remote sensing techniques to assess active fire characteristics and post-fire effects. Int J Wildland Fire 15:319–345

    Article  Google Scholar 

  • Lim KS, Treitz PM (2004) Estimation of above ground forest biomass from airborne discrete return laser scanner data using canopy-based quantile estimators. Scand J For Res 19:558–570

    Article  Google Scholar 

  • Menning KM, Stephens SL (2007) Fire climbing in the forest: a semiqualitative, semiquantitative approach to assessing ladder fuel hazards. West J Appl For 22:88–93

    Google Scholar 

  • Merrill DF, Alexander ME (1987) Glossary of forest fire management terms. National Research Council of Canada. Committee for Forest Fire Management, Ottawa, p 44

    Google Scholar 

  • Miller JD, Yool SR (2002) Mapping forest post‐fire canopy consumption in several overstory types using multi‐temporal Landsat TM and ETM data. Remote Sens Environ 82:481–496

    Article  Google Scholar 

  • Morsdorf F, Meier E, Kötz B, Itten KI, Dobbertin M, Allgöwer B (2004) LIDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management. Remote Sens Environ 92:353–362

    Article  Google Scholar 

  • Mundt JT, Streutker DR, Glenn NF (2006) Mapping sagebrush distribution using fusion of hyperspectral and lidar classifications. Photogramm Eng Remote Sens 72:47–54

    Article  Google Scholar 

  • Mutlu M, Popescu SC, Stripling C, Spencer T (2008a) Mapping surface fuel models using lidar and multispectral data fusion for fire behavior. Remote Sens Environ 112:274–285

    Article  Google Scholar 

  • Mutlu M, Popescu SC, Zhao K (2008b) Sensitivity analysis of fire behavior modeling with LIDAR-derived surface fuel maps. For Ecol Manage 256:289–294

    Article  Google Scholar 

  • Naesset E, Økland T (2002) Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve. Remote Sens Environ 79:105–115

    Article  Google Scholar 

  • Ottmar RD, Vihnanek RE, Wright CS (2000) Stereo photo series for quantifying natural fuels. Volume III: Lodgepole pine, quaking aspen, and gambel oak types in the Rocky Mountains. US Forest Service. National Wildfire Coordinating Group NIFC, Boise, p 85

    Google Scholar 

  • Patterson MW, Yool SR (1998) Mapping fire-induced vegetation mortality using Landsat thematic mapper data: a comparison of linear transformation techniques. Remote Sens Environ 65:132–142

    Article  Google Scholar 

  • Pausas JG, Vallejo VR (1999) The role of fire in European Mediterranean ecosystem. In: Chuvieco E (ed) Remote sensing of large wildfires in the European Mediterranean basin. Springer, Berlin, pp 3–16

    Chapter  Google Scholar 

  • Peterson BE (2005) Canopy fuels inventory and mapping using large-footprint LiDAR. PhD dissertation, Faculty of the Graduate School of the University of Maryland, College Park

    Google Scholar 

  • Peterson B, Dubayah R, Hyde P, Hofton M, Blair JB, Fites-Kaufman J (2007) Use of LIDAR for forest inventory and forest management application. In: Proceedings of the seventh annual forest inventory and analysis symposium, Portland, ME, USA, 3–4 October 2005

    Google Scholar 

  • Popescu SC, Wynne RH (2004) Seeing the trees in the forest: using lidar and multispectral data fusion with local filtering and variable window size for estimating tree height. Photogramm Eng Remote Sens 70:589–604

    Article  Google Scholar 

  • Popescu SC, Zhao K (2008) A voxel-based lidar method for estimating crown base height for deciduous and pine trees. Remote Sens Environ 112:767–781

    Article  Google Scholar 

  • Prometheus SV (2000) Management techniques for optimization of suppression and minimization of wildfire effects. System validation. European Commission – contract number ENV4-CT98-0716

    Google Scholar 

  • Pyne SJ, Andrews PL, Laven RD (1996) Introduction to wildland fire. Wiley, New York, USA

    Google Scholar 

  • Reinhardt E, Scott J, Gray K, Keane R (2006) Estimating canopy fuel characteristics in five conifer stands in the western United States using tree and stand measurements. Can J For Res 36:2803–2814

    Article  Google Scholar 

  • Riaño D, Chuvieco E, Salas J, Palacios-Orueta A, Bastarrika A (2002a) Generation of fuel type maps from Landsat TM images and ancillary data in Mediterranean ecosystems. Can J For Res 32:1301–1315

    Article  Google Scholar 

  • Riaño D, Chuvieco E, Ustin SL, Zomer R, Dennison P, Roberts D, Salas J (2002b) Assessment of vegetation regeneration after fire through multitemporal analysis of AVIRIS images in the Santa Monica Mountains. Remote Sens Environ 79:60–71

    Article  Google Scholar 

  • Riaño D, Meier E, Allgower B, Chuvieco E, Ustin SL (2003) Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling. Remote Sens Environ 86:177–186

    Article  Google Scholar 

  • Riaño D, Chuvieco E, Condés S, González-Matesanz J, Ustin SL (2004) Generation of crown bulk density for Pinus sylvestris L. from lidar. Remote Sens Environ 92:345–352

    Article  Google Scholar 

  • Riaño D, Chuvieco E, Ustin SL, Salas J, Rodriguez-Perez JR, Ribeiro LM, Viegas DX, Moreno JM, Fernandez H (2007) Estimation of shrub height for fuel-type mapping combining airborne LiDAR and simultaneous color infrared ortho imaging. Int J Wildland Fire 16:341–348

    Article  Google Scholar 

  • Rothermel RC (1972) A mathematical model for predicting fire spread in wildland fuels. USDA, Forest Service, Ogden

    Google Scholar 

  • Rothermel RC (1991) Predicting behavior and size of crown fires in the Northern Rocky Mountains. USDA, Forest Service, Ogden

    Google Scholar 

  • Salas J, Chuvieco E (1995) Aplicación de imágenes Landsat-TM a la cartografía de modelos de combustibles. Revista de Teledetección 5:18–28

    Google Scholar 

  • Sando RW, Wick CH (1972) A method of evaluating crown fuels in forest stands, vol 84, U.S. Department of Agriculture, Forest Service research paper NC. U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station, St. Paul

    Google Scholar 

  • Sankey TT, Bond P (2011) LiDAR-based classification of sagebrush community types. Rangel Ecol Manage 64:92–98

    Article  Google Scholar 

  • Sankey TT, Glenn N, Ehinger S, Boehm A, Hardegree S (2010) Characterizing western juniper expansion via a fusion of Landsat 5 thematic mapper and lidar data. Rangel Ecol Manage 63:514–523

    Article  Google Scholar 

  • Schilling A, Schmidt A, Maas H-G (2012) Tree topology representation from TLS point clouds using depth-first search in voxel space. Photogramm Eng Remote Sens 78:383–392

    Article  Google Scholar 

  • Scott JH, Reinhardt ED (2001) Assessing crown fire potential by linking models of surface and crown fire behavior. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins

    Google Scholar 

  • Seielstad CA, Queen LP (2003) Using airborne laser altimetry to determine fuel models for estimating fire behavior. J For 101:10–15

    Google Scholar 

  • Seielstad C, Stonesifer C, Rowell E, Queen L (2011) Deriving fuel mass by size class in Douglas-fir (Pseudotsuga menziesii) using terrestrial laser scanning. Remote Sens 3:1691–1709

    Article  Google Scholar 

  • Skowronski NS, Clark KL, Duveneck M, Hom J (2011) Three-dimensional canopy fuel loading predicted using upward and downward sensing LiDAR systems. Remote Sens Environ 115:703–714

    Article  Google Scholar 

  • Spaete LP, Glenn NF, Shrestha R (2011) Estimating semiarid vegetation height from GLAS data. In: 34th international symposium on remote sensing of environment The GEOSS Era, 34 edn, Sydney

    Google Scholar 

  • Streutker DR, Glenn NF (2006) LiDAR measurement of sagebrush steppe vegetation heights. Remote Sens Environ 102:135–145

    Article  Google Scholar 

  • Valbuena R, Mauro F, Arjonilla FJ, Manzanera JA (2011) Comparing airborne laser scanning-imagery fusion methods based on geometric accuracy in forested areas. Remote Sens Environ 115:1942–1954

    Article  Google Scholar 

  • Van Wagner CE (1977) Conditions for the start and spread of crown fire. Can J For Res 7:23–34

    Article  Google Scholar 

  • Van Wagner CE (1993) Prediction of crown fire behavior in 2 stands of jack pine. Can J For Res 23:442–449

    Article  Google Scholar 

  • van Wagtendonk JW, Root RR, Key CH (2004) Comparison of AVIRIS and Landsat ETM + detection capabilities for burn severity. Remote Sens Environ 92:397–408

    Article  Google Scholar 

  • Varga TA, Asner GP (2008) Hyperspectral and lidar remote sensing of fire fuels in Hawaii Volcanoes National Park. Ecol Appl 18:613–623

    Article  PubMed  Google Scholar 

  • Wagner W (2010) Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: basic physical concepts. ISPRS J Photogramm Remote Sens 65:505–513

    Article  Google Scholar 

  • Wang C, Glenn NF (2009) Estimation of fire severity using pre- and post-fire LiDAR data in sagebrush steppe rangelands. Int J Wildland Fire 18:848–856

    Article  Google Scholar 

  • Wing MG, Eklund A, Sessions J (2010) Applying LiDAR technology for tree measurements in burned landscapes. Int J Wildland Fire 19:104–114

    Article  Google Scholar 

  • Wulder MA, White JC, Alvarez F, Han T, Rogan J, Hawkes B (2009) Characterizing boreal forest wildfire with multi-temporal Landsat and LIDAR data. Remote Sens Environ 113:1540–1555

    Article  Google Scholar 

  • Zhao K, Popescu S, Meng X, Pang Y, Agca M (2011) Characterizing forest canopy structure with lidar composite metrics and machine learning. Remote Sens Environ 115:1978–1996

    Article  Google Scholar 

Download references

Acknowledgements

John Gajardo was supported by CONICYT Doctoral Fellowship, Government of Chile. Felix Morsdorf and Rubén Valbuena provided insightful review to improve this chapter. We would also like to thank Joaquín Ramírez and his team from Tecnosylva SL. for generating Fig. 22.1. Linguistic assistance from Richard Hewitt is as well acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Riaño .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gajardo, J., García, M., Riaño, D. (2014). Applications of Airborne Laser Scanning in Forest Fuel Assessment and Fire Prevention. In: Maltamo, M., Næsset, E., Vauhkonen, J. (eds) Forestry Applications of Airborne Laser Scanning. Managing Forest Ecosystems, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8663-8_22

Download citation

Publish with us

Policies and ethics