Skip to main content

Laser Pulse Interaction with Forest Canopy: Geometric and Radiometric Issues

  • Chapter
  • First Online:
Forestry Applications of Airborne Laser Scanning

Part of the book series: Managing Forest Ecosystems ((MAFE,volume 27))

Abstract

This chapter focuses upon retrieving forest biophysical parameters by extracting three-dimensional point cloud information from small-footprint full-waveform airborne laser scanner data. This full waveform gives the end user the possibility to gain control over range determination and the subsequent derivation of the point clouds. Furthermore, the attribution of physical parameters to the single points using these waveforms becomes additionally possible. The underlying physical principles form the begin of this chapter, followed by forward modeling of waveforms over simulated forested areas, the treatment of real waveforms and an example for validating the results of full-waveform analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Most commercial ALS systems employ adaptive thresholding to avoid “trigger walk”, making discrete return data less susceptible to changes in object reflectance.

  2. 2.

    Or leave its width unchanged in the case of direct reflection.

  3. 3.

    In the literature, varying pulse energies E S and peak powers \(\hat{S}\) are reported for this instrument w.r.t. the pulse repetition rate. E.g. in Chasmer et al. (2006), for pulse repetition rates of 33, 71 and 100 kHz, the respective FWHM resulted in 7. 0, 10. 8 and 14. 9 ns, using Eq. (2.6) and \(s = E_{S}/(\hat{S}\sqrt{2\pi })\). Næsset (2009) reports FWHM values of 10 ns at 50 kHz and 16 ns at 100 kHz pulse repetition rate.

References

  • Ahokas E, Kaasalainen S, Hyyppä J, Suomalainen J (2006) Calibration of the Optech ALTM 3100 laser scanner intensity data using brightness targets. Int Arch Photogramm Remote Sens Spat Inf Sci 36(1), 7 p

    Google Scholar 

  • Alexander C, Tansey K, Kaduk J, Holland D, Tate NJ (2010) Backscatter coefficient as an attribute for the classification of full-waveform airborne laser scanning data in urban areas. ISPRS J Photogramm Remote Sens 65:423–432

    Article  Google Scholar 

  • Bretar F, Chauve A, Bailly JS, Mallet C, Jacome A (2009) Terrain surfaces and 3-d landcover classification from small footprint full-waveform lidar data: application to badlands. Hydrol Earth Syst Sci 13:1531–1545

    Article  Google Scholar 

  • Briese C, Pfennigbauer M, Lehner H, Ullrich A, Wagner W, Pfeifer N (2012) Radiometric calibration of multi-wavelength airborne laser scanning data. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 1(7):335–340

    Article  Google Scholar 

  • Calders K, Lewis P, Disney M, Verbesselt J, Herold M (2013) Investigating assumptions of crown archetypes for modelling LiDAR returns. Remote Sens Environ 134:39–49

    Article  Google Scholar 

  • Chasmer L, Hopkinson C, Smith B, Treitz B (2006) Examining the influence of changing laser pulse repetition frequencies on conifer forest canopy returns. Photogramm Eng Remote Sens 72:1359–1367

    Article  Google Scholar 

  • Chauve A, Durrieu S, Bretar F, Pierrot-Deseilligny M, Puech W (2007) Processing full-waveform lidar data to extract forest parameters and digital terrain model: validation in an alpine coniferous forest. In: Proceedings of ForestSat conference’07, Montpeillier, France, p 5

    Google Scholar 

  • Cote JF, Widlowski JL, Fournier RA, Verstraete MM (2009) The structural and radiative consistency of three-dimensional tree reconstructions from terrestrial lidar. Remote Sens Environ 113:1067–1081

    Article  Google Scholar 

  • Disney M, Lewis P, Saich P (2006) 3d modelling of forest canopy structure for remote sensing simulations in the optical and microwave domains. Remote Sens Environ 100:114–132

    Article  Google Scholar 

  • Disney M, Kalogirou V, Lewis P, Prieto-Blanco A, Hancock S, Pfeifer M (2010) Simulating the impact of discrete-return lidar system and survey characteristics over young conifer and broadleaf forests. Remote Sens Environ 114:1546–1560

    Article  Google Scholar 

  • Doneus M, Briese C, Studnicka N (2010) Analysis of full-waveform ALS data by simultaneously acquired TLS data: towards an advanced DTM generation in wooded areas. Int Arch Photogramm Remote Sens Spat Inf Sci 38(Part 7B):193–198

    Google Scholar 

  • Gastellu-Etchegorry J, Demarez V, Pinel V, Zagolski F (1996) Modeling radiative transfer in heterogeneous 3-d vegetation canopies. Remote Sens Environ 58:131–156

    Article  Google Scholar 

  • Hancock S, Lewis P, Foster M, Disney M, Muller JP (2012) Measuring forests with dual wavelength lidar: a simulation study over topography. Agric For Meteorol 161:123–133

    Article  Google Scholar 

  • Höfle B, Pfeifer N (2007) Correction of laser scanning intensity data: data and model-driven approaches. ISPRS J Photogramm Remote Sens 62:415–433

    Article  Google Scholar 

  • Höfle B, Hollaus M, Hagenauer J (2012) Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne lidar data. ISPRS J Photogramm Remote Sens 67:134–147

    Article  Google Scholar 

  • Jelalian AV (1992) Laser radar systems. Artech House, Boston

    Google Scholar 

  • Jutzi B, Stilla U (2006) Range determination with waveform recording laser systems using a Wiener filter. ISPRS J Photogramm Remote Sens 61:95–107

    Article  Google Scholar 

  • Kaasalainen S, Hyyppä J, Litkey P, Hyyppä H, Ahokas E, Kukko A, Kaartinen H (2007) Radiometric calibration of ALS intensity. Int Arch Photogramm Remote Sens Spat Inf Sci 36(3/W52):201–205

    Google Scholar 

  • Kaasalainen S, Hyyppä H, Kukko A, Litkey P, Ahokas E, Hyyppä J, Lehner H, Jaakkola A, Suomalainen J, Akujarvi A, Kaasalainen M, Pyysalo U (2009) Radiometric calibration of lidar intensity with commercially available reference targets. IEEE Trans Geosci Remote Sens 47:588–598

    Article  Google Scholar 

  • Kager H (2004) Discrepancies between overlapping laser scanning strips – simultaneous fitting of aerial laser scanner strips. Int Arch Photogramm Remote Sens Spat Inf Sci 35(B1):555–560

    Google Scholar 

  • Koetz B, Morsdorf F, Sun G, Ranson KJ, Itten K, Allgöwer B (2006) Inversion of a lidar waveform model for forest biophysical parameter estimation. IEEE Geosci Remote Sens Lett 3:49–53

    Article  Google Scholar 

  • Koetz B, Sun G, Morsdorf F, Ranson K, Kneubühler M, Itten K, Allgöwer B (2007) Fusion of imaging spectrometer and lidar data over combined radiative transfer models for forest canopy characterization. Remote Sens Environ 106:449–459

    Article  Google Scholar 

  • Kotchenova SY, Shabanov NV, Knyazikhin Y, Davis AB, Dubayah R, Myneni RB (2003) Modeling lidar waveforms with time-dependent stochastic radiative transfer theory for remote estimations of forest structure. J Geophys Res 108:13

    Google Scholar 

  • Lehner H, Briese C (2010) Radiometric calibration of full-waveform airborne laser scanning data based on natural surfaces. Int Arch Photogramm Remote Sens Spat Inf Sci 38(7B):360–365

    Google Scholar 

  • Lehner H, Kager H, Roncat A, Zlinszky A (2011) Consideration of laser pulse fluctuations and automatic gain control in radiometric calibration of airborne laser scanning data. In: Proceedings of 6th ISPRS Student Consortium and WG VI/5 Summer School, Fayetteville State University, North Carolina, USA

    Google Scholar 

  • Liang X, Litkey P, Hyyppä J, Kaartinen H, Vastaranta M, Holopainen M (2012) Automatic stem mapping using single-scan terrestrial laser scanning. IEEE Trans Geosci Remote Sens 50:661–670

    Article  Google Scholar 

  • Mallet C, Bretar F (2009) Full-waveform topographic lidar: state-of-the-art. ISPRS J Photogramm Remote Sens 64:1–16

    Article  Google Scholar 

  • Mallet C, Lafarge F, Bretar F, Roux M, Soergel U, Heipke C (2009) A stochastic approach for modelling airborne lidar waveforms. In: Bretar F, Pierrot-Deseilligny M, Vosselman G (eds) Int Arch Photogramm Remote Sens Spat Inf Sci 38(3/W8):201–206

    Google Scholar 

  • Morsdorf F, Frey O, Koetz B, Meier E (2007) Ray tracing for modeling of small footprint airborne laser scanning returns. Int Arch Photogramm Remote Sens Spat Inf Sci 36(3/W52):294–299

    Google Scholar 

  • Morsdorf F, Nichol C, Malthus T, Woodhouse IH (2009) Assessing forest structural and physiological information content of multi-spectral LiDAR waveforms by radiative transfer modelling. Remote Sens Environ 113:2152–2163

    Article  Google Scholar 

  • Mücke W, Briese C, Hollaus M (2010) Terrain echo probability assignment based on full-waveform airborne laser scanning observables. Int Arch Photogramm Remote Sens Spat Inf Sci 38(7A):157–162

    Google Scholar 

  • Næsset E (2009) Effects of different sensors, flying altitudes, and pulse repetition frequencies on forest canopy metrics and biophysical stand properties derived from small-footprint airborne laser data. Remote Sens Environ 113:148–159

    Article  Google Scholar 

  • Ni-Meister W, Jupp DLB, Dubayah R (2001) Modeling lidar waveforms in heterogeneous and discrete canopies. IEEE Trans Geosci Remote Sens 39:1943–1958

    Article  Google Scholar 

  • North PRJ (1996) Three-dimensional forest light interaction model using a Monte Carlo method. IEEE Trans Geosci Remote Sens 34:946–956

    Article  Google Scholar 

  • North PRJ, Rosette JAB, Suarez JC, Los SO (2010) A Monte Carlo radiative transfer model of satellite waveform lidar. Int J Remote Sens 31(5):1343–1358

    Article  Google Scholar 

  • Parrish CE, Nowak RD (2009) Improved approach to lidar airport obstruction surveying using full-waveform data. J Surv Eng 135:72–82

    Article  Google Scholar 

  • Parrish CE, Jeong I, Nowak RD, Brent Smith R (2011) Empirical comparison of full-waveform lidar algorithms: range extraction and discrimination performance. Photogramm Eng Remote Sens 77:825–838

    Article  Google Scholar 

  • Reitberger J, Krzystek P, Stilla U (2008) Analysis of full waveform LIDAR data for the classification of deciduous and coniferous trees. Int J Remote Sens 29:1407–1431

    Article  Google Scholar 

  • Riegl LMS (2013) www.riegl.com. Homepage of the company RIEGL Laser Measurement Systems GmbH. Accessed Aug 2013

  • Roncat A, Wagner W, Melzer T, Ullrich A (2008) Echo detection and localization in full-waveform airborne laser scanner data using the averaged square difference function estimator. Photogramm J Finl 21:62–75

    Google Scholar 

  • Roncat A, Bergauer G, Pfeifer N (2011a) B-Spline deconvolution for differential target cross-section determination in full-waveform laser scanner data. ISPRS J Photogramm Remote Sens 66:418–428

    Article  Google Scholar 

  • Roncat A, Lehner H, Briese C (2011b) Laser pulse variations and their influence on radiometric calibration of full-waveform laser scanner data. Int Arch Photogramm Remote Sens Spat Inf Sci 38(5/W12):137–142

    Google Scholar 

  • Rubio J, Grau E, Sun G, Gastellu-Etchgorry J, Ranson K (2009) Lidar modeling with the 3D DART model. In: AGU Fall Meeting Abstracts, p A330

    Google Scholar 

  • Sun G, Ranson K (2000) Modeling lidar returns from forest canopies. IEEE Trans Geosci Remote Sens 38:2617–2626

    Article  Google Scholar 

  • Tikhonov AN, Arsenin VY (1977) Solutions of ill-posed problems. V. H. Winston & Sons, Washington

    Google Scholar 

  • Wagner W (2010) Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: basic physical concepts. ISPRS J Photogramm Remote Sens 65:505–513

    Article  Google Scholar 

  • Wagner W, Ullrich A, Melzer T, Briese C, Kraus K (2004) From single-pulse to full-waveform airborne laser scanners: potential and practical challenges. Int Arch Photogramm Remote Sens Spat Inf Sci 35(Part B3):201–206

    Google Scholar 

  • Wagner W, Ullrich A, Ducic V, Melzer T, Studnicka N (2006) Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner. ISPRS J Photogramm Remote Sens 60:100–112

    Article  Google Scholar 

  • Wagner W, Hollaus M, Briese C, Ducic V (2008) 3D vegetation mapping using small-footprint full-waveform airborne laser scanners. Int J Remote Sens 29:1433–1452

    Article  Google Scholar 

  • Widlowski JL, Robustelli M, Disney M, Gastellu-Etchegorry JP, Lavergne T, Lewis P, North PRJ, Pinty B, Thompson R, Verstraete M (2008) The RAMI On-line Model Checker (ROMC): a web-based benchmarking facility for canopy reflectance models. Remote Sens Environ 112:1144–1150

    Article  Google Scholar 

  • Yu X, Liang X, Hyyppä J, Kankare V, Vastaranta M, Holopainen M (2013) Stem biomass estimation based on stem reconstruction from terrestrial laser scanning point clouds. Remote Sens Lett 4:344–353

    Article  Google Scholar 

Download references

Acknowledgements

Andreas Roncat has been supported by a Karl Neumaier PhD scholarship.

The Ludwig Boltzmann Institute for Archaeological Prospection and Virtual Archaeology is based on an international cooperation of the Ludwig Boltzmann Gesellschaft (Austria), the University of Vienna (Austria), the Vienna University of Technology (Austria), the Austrian Central Institute for Meteorology and Geodynamics, the office of the provincial government of Lower Austria, Airborne Technologies GmbH (Austria), RGZM (Roman-Germanic Central Museum Mainz, Germany), RA (Swedish National Heritage Board), VISTA (Visual and Spatial Technology Centre, University of Birmingham, UK) and NIKU (Norwegian Institute for Cultural Heritage Research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Roncat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Roncat, A., Morsdorf, F., Briese, C., Wagner, W., Pfeifer, N. (2014). Laser Pulse Interaction with Forest Canopy: Geometric and Radiometric Issues. In: Maltamo, M., Næsset, E., Vauhkonen, J. (eds) Forestry Applications of Airborne Laser Scanning. Managing Forest Ecosystems, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8663-8_2

Download citation

Publish with us

Policies and ethics